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MIXED-HYBRID MODEL OF THE FRACTURE FLOW*
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Abstract. Finite element/mixed-hybrid formulation of a discrete fracture network model.
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1. Introduction. Nuclear energy produced on the Earth has reached 16% of the
world’s energy production and it is generated by almost 500 nuclear reactors. The
weakest link in the production of the energy by this way is a safe storage of highly
radioactive spent fuel. This text deals with suggestion of a mathematical model
describing percolation of groundwater in the fractured matrix of a solid rock, medium
supposed as possible repository of dangerous nuclear waste.

In general, there are three main possible accesses to the problem of modelling the
fracture flow. When only a large-scale model is required and if there is no need
to know detail flow and transport behavior in any site subarea, it is possible to
use equivalent porous medium models. More complex than single continuum models
are double porosity models. These models are, however, again not capable adequate
interpret small-scale measurements, it is possible to use them only to predict the
average behavior at some distance from a repository. As a third possibility, we can
generate a statistical model of the fracture network and model the flow and transport
in by this way obtained network. Nowadays, due to high computer requirements, it
is possible to solve just local problems by using (stochastic) discrete fracture network
models. For more complex description of the problem, see for instance [1] or [11].

We decided to build all scale models. Local models will be developed first to simulate
the detail behaviour of the contamination after an accidental breakdown of the waste
container. In this case, stochastic discrete fracture network model will be
constructed under the assumption that the fractures can be represented by circle
discs whose frequency, size, aperture and orientation can be statistically derived from
field measurements of characteristics of natural fractures. The hydraulic conductivity
will be assigned from known hydraulic tests performed in drill holes in crystalline rocks
or alternatively approximated by known relations to the other measurements. Also
the fracture wall roughness will be statistically characterized. In order to comprehend
the channeling effect inside a single fracture, an aperture-distribution function will be
introduced.

For regional models, representing hydrogeological systems with size of tens
to hundreds of km?, an equivalent porous medium approach will be used. Here,
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we will develop a method of integration of physical and chemical characteristics of
the fracture network, obtained from local discrete fracture network models, into the
anisotropy tensor of hydraulic permeability of rock blocks, similarly as in [4]. By
using local discrete fracture network models, we will also determine mean values of
active surfaces of rock in order that we can evaluate the chemical interaction between
rock and solution.

In this text, only a stochastic discrete fracture network model, obvi-
ously basis for our models, will be presented.

2. Mathematical-Physical Formulation. Let us suppose that in the domain
of interest (2, the system S of subdomains representing the fractures is given. The
subdomains are supposed as bounded parts of plane varieties in B3. We suppose that
we have

(2.1) S = {Ozg, Xg;fGL},
where ay is the equation of £t* variety and x, specifies the space limitation of this
variety. L is the index set of fractures. Let us suppose that the boundary 8S and the
boundaries of each fracture are Lipschitzian.

The fluid velocity /mass weighted velocity within a system of fractures S u, u :
S = R%, ue S can be characterized by

u' = —EVh,
M

where tensor k is a general permeability tensor (second rank symmetric and uniformly
positive definite tensor), u is the liquid dynamic viscosity, the prime indicates vector
in the fracture plane (the whole equation is expressed in local 2-D coordinates of
an appropriate fracture) and Vh is a gradient of the piezometric head h defined as
h = 2 + 2, pis the fluid pressure, g is the gravitational acceleration constant, g is
the fluid density, and z is the elevation, positive upward taken vertical coordinate.

If we suppose that the whole system S is already completely drowned by a con-
taminated underground water supposed as a sparse homogeneous liquid, we can use
the hydraulic conductivity tensor K = % and finally also positive definite tensor

A = K~!, which characterizes medium resistance. We denote p = % as modified

pressure and we are ready to sign the general fracture flow equation in a form
(2.2) Au' =—(Vp+Vz).

The mass balance/continuity equation will be used in the form
(2.3) V-u=gq,

since we suppose an uncompressible fluid and a steady case. Here V - u means di-
vergence of the searched vector function u and ¢ represents stationary sources/sinks
density.

lu € S is a symbolic expressions for the fact that the fracture flow velocity vector has to lie in
the fracture plane/planes.
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We set the Dirichlet’s boundary condition
(24) ]5 = ﬁD in AD

on a subset Ap of 8S. Here pp is a known function prescribing the external piezo-
metric head p.
We suppose fulfilling of the general Newton’s boundary condition on Ay C 88

(2.5) u-n—o(P—pp)=unxy in An.

Here o is the transmission coefficient function delimited by the constant s, (0 < o <
o), Dp is function similar to pp in (2.4), varying only by the support, and n is the
unit outward boundary normal vector. This form of Newton’s boundary condition
allows us to describe even the situations, when some part of the boundary 08 is
impervious and a homogeneous Neumann’s condition u - n = 0 should be prescribed.
In our case, we only set 0 = uy = 0.

Finally, we require

ADﬂAN=0,KDUKN=8S,AD750.

3. Mixed-hybrid Formulation. In this section, we will present the own finite
element, mixed hybrid formulation of the problem of saturated steady flow of a ho-
mogeneous incompressible fluid in a discrete fracture network. For the mixed-hybrid
formulation, we will need a concrete partition of the system S.

Let us suppose that we have a triangulation 7Tj of the system S. We suppose that
it holds:

(7') S= UeeTn€ ;
) eiﬁej:(i), if i#£7j;
(i4i) e € T is an open subset of S.

Let us denote
Ah,D = UeeThae —Ap,

i.e. Ay p denotes the structure of interelement edges and edges belonging to so part
of the boundary 08, where the Newton’s condition is prescribed. Further, we will
need following function spaces:

We extend the space of scalar Lebesgue integrable functions L?(S) also for the
vector functions and denote the appropriate space L%(S), L%(S) = L%(S) x L*(S),
again supposed in local coordinates in a given element e € S. We set a scalar product
on this space as (u,v)o,s = [gu-v dS.

We denote as H'(S) the Sobolev space

H'(S) = {p € L*(S); Vp e L*(S)}.

For the functions ¢ € H'(S), it is possible to define the trace y¢ on the boundary
0S. We further define

Hp(S)={p e H'(S); v¢=0 on Ap}.
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On the the partition 7} and edges structure Ay p, we define spaces
H(div, T) = {v € L3(S); V-v® € L*(e) Ve€ Tn},
and
HE(Anp) ={p: Ao = R 3p € HH(S), p=me},

where 7, is a trace operator defined on the element edges structure Ay, p of selected
partition 7. The upper index e denotes restriction of a function on appropriate
element e.

For the weak mixed-hybrid formulation, we suppose a,q(x) € Loo(S), g € La(S),
pp € Hi(Ap UAy), uy € H 2(Ay) and 0 € Loo(Ax). The main idea of this
formulation is a weak performance of Darcy’s law (2.2), mass balance (2.3) and the
boundary condition (2.5) on each element e from the given partition 7. Using only
the Green’s formula and summing of the three describing weak equalities over all
elements e € Ty, assuring the weak mass balance between single elements (each inner
edge of the partition 7, is common to two elements and it can happen, that it is
common to three or more elements), we obtain a resulting set of equations, which is
equivalently rewritten by the following construction and definition:

We define a space
(3.1) Wi (Th) = H(div, T) x L*(S) x H3(Ap.p) ,

bilinear form

B(Th; W, w) Z{ (Au®,v®)o,e — (p°,V -v%)g,e — (V -1’ ¢%)0,e+
e€Th
(32) +<)\e’ve : ne>3€ﬁAh,D - <ue : neaue)aeﬂAh,D - <0€)‘e’:u/e)3eﬁl\1v}

and a linear functional

AT w) = > _ {05, v* - n%sennp + (ufy — 0°Ph, 1) venan
e€Th

(3.3) + (2% V- v)o,e = (2% v -n%)0e — (¢°,9%)0,e} 5

where W = (u,p,A\) € Wp(Tr) and w = (v, ¢, ) € Wp(Tr).

DEFINITION 3.1. As a weak solution of the mized-hybrid formulation of the prob-
lem of steady fracture flow described by (2.2) and (2.8) with boundary conditions de-
fined by (2.4) and (2.5) on the partition Ty, of the system of varieties S, we understand
a function W = (u,p,\) € Wp(Tp), which satisfies the integral identity

(3.4) B(Th; w,w) = Q(Th; w)

for all w = (v, ¢, u) € Wp(Tp).

Our three unknowns are the finally searched fracture flow velocity u?, the external
piezometric head p and the solution will yield also directly approximation A of trace of
p on the element edges structure Ay p. Functions v, ¢ and p are the testing functions.

2We suppose here u directly as a vector in an appropriate fracture plane 2-D local coordinates
and we do not repeat the notation u’ used by the formulation of the problem. Similarly, we use
single p instead of p for the simplification.
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4. Finite-dimensional Approximation. The main idea of the final approxi-
mation is to transform the problem from the definition 3.1 into a finite dimensional
one. We have to prepare appropriate finite dimensional function spaces first.

We define a 3-dimensional space of vector functions RT(e) linear on a given
element e with the base v{, [ € {1,2,3}, where

1 —aof T — o T — of
ik | TTOI L vpm kg | TITON | vgogg | TP
T2 — Qqg T2 — Q33 T2 — Q33

We set the parameters af; — a§, so that each base function v{ expresses flux through
one edge of the element e, i.e. we require that

/ n;-vi dl = 6 I,m=1,2,3,
fr

where ff is I-th edge of the element e and nj is the unite outward normal vector of
this edge.

We define now the Raviart-Thomas space RT° ;(75) of on each element linear
vector functions,

RT? ,(T) = {v € L*(S); v|. € RT%(e) Vee€ Tp},

an index set I, = 1,2,...,|I| for global numbering of basic functions of RT? , (7)
and we set following relation between local and global numbering: vf = V3(j—1)41-

We need first the space MO(e) of scalar functions constant on a given element e
for the definition of the space M°,(T),

M2(Th) = {¢n € L*(S); dnle € M°(e) VeeTr} .

The functions ¢;, ¢;(x) = 1 for x € e; and ¢;(x) = 0 for x ¢ e;, j € Jp, where
Jn =1,2,...,|Jp| is the index set of elements, create the base of M°,(T3).

If f € Ap,p is some edge, we define first the space M°(f) of functions constant
on the edge f and finally

M2 (Anp) = {pn : An,p = R; pnly € M°(f) Vf€Anp}.

The basic functions of M2, (A, p) are ui(x) =1 for x € fi and pi(x) = 0 for x ¢ fr,
where f;, is k-th edge from A, p, k € Ky, K = 1,2,...,|K}p| is the index set of
element edges from Ay p.

For more proper definition of the finite dimensional spaces, see for example [2].
We are ready now to define the own finite-dimensional approximation of the problem
of the fracture flow.

DEFINITION 4.1. As a Raviart-Thomas approximation of the mized-hybrid for-
mulation of the problem of steady fracture flow described by (2.2), (2.3) with boundary
conditions (2.4) and (2.5) on the partition Ty of the system of varieties S, we under-
stand a function W = (up,pn, An) € WA (TL), which satisfies the integral identity

(4.1) B(Th; %", w") = Q(Th; wh)

fOT all Wh = (vha¢ha/~l’h) € W}b(ﬂb) .
The function space W2 (Ty) is defined by

(4.2) Wh(Th) = RT, (Th) x M2, (Th) x M®,(An.p).
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If we substitute for W and w” into the equation (4.1), using the finite dimension
of used spaces and expressing un(x) = 3 ,cp, U'Vi(x), pa(x) = Y, ;, P?¢;(x) and
An(X) =D ke, A* g (x), realizing that the basic function v, is not zero only on the
element ey, where d = (a — 1) + 3 + 1 (the expression + means integral division), ¢
has only a triangle e, as its support and pu. is non-zero only on edge of such element,
that this elements contains the edge f. (we denote this set of triangles for given .
as 7.), and using the linearity of the scalar product and all operators (involving the
divergence and integral ones), we obtain set of linear equations

Z Ui(Avfdava)U,ed - Z Pj((bjd:v : Va)O,ed + Z Ak(ﬂzdava : ned)f)ed NAp,p —

i€l JEIn keKy,
(43) = _<p[6)dava . ned>86d NAp + (zma V- va)O,ed - (zedava . ned)aed )

I
Vv, € {vi}l

(4.4) =D UV -V, 0)o,e, = —(0%, Bb)0,cy 5

i€l

Vo € {¢j}|jJ:h1| ;

Z Z Ui<vz€ 'neall/c)aeﬁAh,D - Z Ak<UeNz:Mc>8eﬂAN =
e€T. Li€ly kEKR

(45) = Z <U§V - Uepf)a Nc)BeﬂAN )
eeTe

K
Ve € i)

where v, is a-th basic function of RT® (75), the superscript e, denotes restriction
on the a-th element and correspondingly in the two remaining set of equations.

If we analyze in detail the structure of the system of equations (4.3)-(4.5) descri-
bing the mixed-hybrid model of the fracture flow, we can express the linear algebra
problem in a form

Au + Bp + CA =
(4.6) BT u = q2 5
CTu + SA = a3

the unknowns u = (U,...,U™NT p = (P',...,P»)T and A = (A',... A/K=DT.
For more details, see [10] or [5].

5. Stochastic Discrete Fracture Network Generation. In order to gene-
rate the stochastic discrete fracture networks, an original software called Fracture
Network Generator was developed. Each fracture (geological 3-D object) is in the
generator approximated by a flat circle characterized by its middle coordinates, ra-
dius, orientation, possibly hydraulic conductivity, aperture distribution and roughness.
Fractures are divided into four sets, fractures in fracture zones, deterministically mea-
sured single fractures, hydraulically important fractures and other (common) fractures.
Fractures are further supposed to be divided into three types according to their mean
orientation [0,0,1], [0,1,0] or [1,0,0].
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Description of all fracture characteristics if fully statistical. Number and spacing
of fractures in each set and type determines fracture frequency, defined as amount
of fractures per one depth meter in each part of the simulated domain 2. Fracture
lengths for each combination of set and type are supposed longnormally distributed,
i.e. with the probability density function (p.d.f) f(z) = —2— exp(~(lnz—p)*/20%).

For each type (according to the orientation) and set, Fisher-von-Mises distribution
fla) = ﬁ exp(k cos ) sin a of angles a between fracture normal vectors and vec-
tors of mean orientations is entered. Here k is the parameter of the Fisher-von-Mises
distribution probably various for various combinations of types and sets.

The generator accepts required deterministically measured single fractures, gene-
rates a network of hydraulically important fractures into the whole entered domain,
generates fractures into prescribed fracture zones and into the remaining part of the
whole domain (except fracture zones) generates network of other, common fractures.
The computer generation of random numbers with required distribution is based on
principles described in [7], usually used to Monte Carlo simmulations. The generator
is also prepared for additional accepting of fractures of a given set, if needed for
change of characteristics of already generated fractures. Finally fracture intersections
are computed.

A plenty of control tests was provided in order to validate used generating algo-
rithms. We have validated the generator especially from the mathematical (statistical)
point, but the sensibility of all results was checked too. All tests methods and their
results are in detail described in [9]. In general, we can say that all used generating
methods function without any significant mistakes, we only have to put an emphasis
on strictly distinguishing between real and in exploration boreholes measured distri-
butions, the latter of them are affected by a selective effect.

We can see an example of a generated fracture network on the figure 5.1.

FiG. 5.1. Generated fracture network
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6. Final Triangular Mesh Construction. Discretization of approximating
circles into triangle elements has occurred as a crucial point in final triangular mesh
preparation. Although many algorithms solving the discretization of a given 2-D
domain are known, only few of them are able to involve pre-defined interface lines
(intersections of approximating circles in our case) randomly distributed in the con-
sidered domain. The searched algorithm is, however, in addition required not to be
designed for adaptive meshing (because of sparing of computer storage) and should
be on the contrary capable to simplify the given geometrical situation, i.e. it can
be only approximative. In the Fracture Network Generator, originally develo-
ped discretization algorithm is implemented. It contains of a preliminary phase and
of an algorithm for triangulation of an arbitrary polygonally bounded domain with
pre-defined interface lines (triangulation algorithm).

In the preliminary phase, identification and various geometrical simplifications of
the structure of intersections in single fractures even of the whole fracture network
are made. Close, almost parallel fractures are removed from the fracture population
or equivalently replaced, because when kept, they could create close intersections in
another fracture and this could cause either numerical unstability in the triangulation
algorithm or very ill-conditioned resulting matrix due to increase of the chunkiness
parameter. 2-D geometrical adaptations (moving and stretching intersections in frac-
ture planes) simplifying the situation in fractures are provided before the start of the
triangulation algorithm. However, using these 2-D geometrical simplifications has not
trivial consequences for the whole 3-D representation.

The own triangulation algorithm is based on combining the Domain Decomposi-
tion Conception and adapted Advancing Front Method. Many user’s setting influenc-
ing mainly precision/complexity of the final triangulation are possible.

An example of final triangulated circle disk is on the fig. 6.1.

B Generator siti puklin - fizeni vlastni simulace

Znéna det| Nova sit| Profiizent aeditecs | Znsieri 2| Koioa | Muli pack | vipote prssinic| Disksetizace| - Kones

Diskretizované puklina:
Soufadnice: 1.650 201 -2.98
Uhly: 10 315
Polamér 1.00
Podet prisednic: B
Skupina: 2
Typ: 1

Cels it plivodng:
Celk poé vjznabngch 21
Cell. pog. noimalnich; 123
Cell. poé. jednatlivich: 1

Celk pod. v pukl 26nédch: 0

Rovnob&2njch=umazano: 7

F1G. 6.1. Final discretization of a circle disk
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An on-element aperture distribution function, derived again from the Fisher-
von-Mises distribution p.d.f., but depending also on the size of given fracture and
emplacement of the element inside a fracture, is used after the discretization in order
to assign to each triangle element an imaginary aperture. Based on this aperture
and on a parameter describing roughness of the fracture walls, the element hydraulic
conductivity can be later set, if it is not entered directly from results of experimental
measurements as unique for the whole fracture; the fracture is, however, still supposed
as planar. Data files with complete information about elements in the final triangular
network (emplacement, aperture, roughness, hydraulic conductivity and connection
to the other elements) are the final results of the Fracture Network Generator.

We can see part of a final triangular mesh on the figure 6.2.

F1G. 6.2. Final triangular mesh

7. Conclusion. In the submitted text, possible approaches to the description of
the fracture flow and transport are presented first. Consequently, detailed suggestion
of a finite element/mixed-hybrid discrete fracture network model is presented. In this
model, fractures are supposed as bounded parts of plane varieties, later discretized
into triangle elements, the flow is supposed as governed by the Darcy’s law. Complete
formulation of the Raviart-Thomas approximation of the problem of steady fracture
flow leading to final linear-algebra problem is the main result of sections 3 and 4.
Later, a brief description of a stochastic fracture network generated by the originally
developed software Fracture Network Generator is suggested and also the most
valuable part of the Fracture Network Generator, the algorithm for approximate
two-dimensional triangular mesh generation in a circle disk with pre-defined interface
lines, is introduced.

The main emphasis is put on the discrete fracture network model, since it is a
basis for by us proposed models. A mixed hybrid formulation of the finite element
method was chosen for the discretization of the problem, because it, unlike the primal
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formulation, assures mass balance on each element and its data structures are though
suitable for finite volume contaminant transport models, which are perspectively our
main goal. A wide work will have to be done in implementation of presented model
and later all scale models, but a solid base already exists in a form of the Fracture
Network Generator, software preparing complex data structures.

[11]
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