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INTEGRAL TRANSFORMS AND AMERICAN OPTIONS:

LAPLACE AND MELLIN GO GREEN

G. ALOBAIDI, R. MALLIER and M. C. HASLAM

Abstract. We use Mellin and Laplace transforms to study the price of American options, and show

that both transforms produce solutions and integral equations which are equivalent to the Green’s
function approach. Conventional rather than partial transforms are used. We also combine a boundary
fixing transformation with the integral transforms.

1. Introduction

One of the classic problems of mathematical finance is the pricing of American options and the
associated free boundary. For the uninitiated, financial derivatives are securities whose value is
based on the value of some other underlying security, and options are an example of derivatives,
carrying the right but not the obligation to enter into a specified transaction in the underlying
security. A call option allows the holder to buy the underlying security at a specified strike price E,
while a put option allows the holder to sell the underlying at the price E. Unlike Europeans, which
can be exercised only at expiry. American options may be exercised at any time at or before expiry,
For vanilla Americans, the pay-off from immediate exercise is the same as the pay-off at expiry,
namely max (S − E, 0) for a call and max (E − S, 0) for a put. Naturally, a rational investor will
choose to exercise early if that maximizes his return, and it follows that there will be regions where
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it is optimal to hold the option and others where exercise is optimal, with a free boundary known
as the optimal exercise boundary separating these regions. For vanilla Americans, there have been
numerous studies of this free boundary, as well a number of reviews such as [6, 10, 11, 22], but
a closed form solution for its location remains elusive, as does a closed form expression for the
value of an American option, although a number of series solutions have been presented such as
[18, 1, 41] and an infinite sum of double integrals [62].

We would note that [59] proved that the free boundary was regular for vanilla Americans, and
that the results of [58] on the analyticity of solutions to general Stefan problems are also applicable
to American options, while [13] has shown existence and uniqueness for the free boundary for the
put.

One popular approach over the years has been to reformulate the problem as an integral equation
for the location of the free boundary, which can be solved using either asymptotics or numerics.
Two forms of this integral equation approach are pertinent here. As our reference point, we
will use the Green’s function approach [35, 44, 7, 30, 32, 29]; by reference point, we mean
that this is existing work to which we will compare our results obtained by other methods. The
Green’s function approach was originally developed for physical Stefan problems by Kolodner
[35] and later applied to economics by McKean [44] who rederived the results in [35] using a
partial Fourier transform, which was published as an appendix to a 1965 paper on the pricing of
American warrants by Samuelson [53] which predated the publication of the Black-Scholes [8] and
Merton [45] studies and involved hard-to-estimate discount rates rather than the risk-free rate
which [8, 45] arrived at using a continuous-time arbitrage argument. These results were applied
to vanilla Americans with great success by Kim [32] and Jacka [29], who independently derived
the same results, Kim both by using McKean’s formula and by taking the continuous limit of the
Geske-Johnson formula [25] which is a discrete approximation for American options, and thereby
demonstrating that those two approaches led to the same result, and Jacka by applying probability
theory to the optimal stopping problem. [9] later used these results to show how to decompose the
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value of an American into intrinsic value and time value. The approach in [44, 32, 29] leads to an
integral equation for the location of the free boundary, which was solved numerically by [28], by
approximating the free boundary as a multipiece exponential function by [31], and, in a slightly
different form, using asymptotics by [12, 21, 26, 34, 36]. Chiarella [15] has surveyed the Green’s
function approach to American options using the incomplete Fourier transform and demonstrated
how the various representations are related, as well as considering their economic interpretations.

The other method we would mention is the integral transform approach, which is the subject of
the present paper. The use of integral transform methods for Stefan-type free boundary problems
dates back at least as far as the classic work of Evans et al. [20], who considered the recrystallization
of an infinite metal slab. In that work, the governing partial differential equation (PDE) was the
diffusion equation,

∂V

∂τ
= σ2 ∂

2V

∂x2
,(1)

and [20] were able to apply a partial Laplace transform in time to (1) to reduce the PDE to
an ordinary differential equation in transform space. The solution of that ordinary differential
equation together with the conditions of the free boundary enabled [20] to give an integral equa-
tion formulation of their problem, which they solved as a series. Overviews of partial transforms,
sometimes called modified transforms or incomplete transforms, can be found in standard texts
on diffusion and Stefan problems, such as [19, 27, 47]. Broadly speaking, the objective of apply-
ing an integral transform such as the Laplace transform, L [A (τ)] =

∫∞
0

e−pτ A (τ) dτ , or Mellin

transform, M [A (S)] =
∫∞
0
A (S)Sp−1dS, to a PDE such as the diffusion equation (1) or the

Black-Scholes-Merton equation,

∂V

∂τ
− σ2S2

2

∂2V

∂S2
− (r −D)S

∂V

∂S
+ rV = 0,(2)
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is to reduce the dimension of the problem, by which we mean that if we apply a transform to an
equation such as (1) or (2) with derivatives with respect to two (or more) variables, the transformed
equation should have derivatives with respect to one fewer variables. In order to achieve this goal,
it is obviously necessary to pick the correct integral transform, and for the Black-Scholes-Merton
equation (2) the natural integral transforms are Laplace with respect to time τ and Mellin with
respect to stock price S, where natural in this sense means that the transformed equation does
indeed have derivatives with respect to fewer variables. For the diffusion equation (1), the natural
integral transforms are again Laplace with respect to time τ but now either Fourier or two-sided
Laplace with respect to x. Although it is straightforward to apply integral transforms to unbounded
problems, where the governing equation applies everywhere, it is less straightforward to apply them
to problems with boundaries, as typically the governing equation does not apply once the boundary
is crossed, and it was for this reason that partial integral transforms were developed, in which the
transform is only applied where the governing equation holds, and the function being transformed
is essentially set to zero elsewhere. With a partial Laplace transform, for example, instead of
taking an in integral from τ = 0 to τ = ∞, there would typically be an integral from τ = τf to
τ = ∞, where τf is the location of the boundary which often depends on the other variables in
the problem. Although partial transforms address the issue that the governing equation does not
apply once they boundary is crossed, they can be difficult to invert, because the inverse is required
to be zero where the equation does not apply. In many problems, this is not an issue, especially in
free boundary problems where it is often possible to obtain an integral equation for the location
of the boundary in transform space without needing to invert the transform.

For securities which involve both equity and debt, such as equity-linked debt or convertible
bonds, one approach has been to combine the Black-Scholes model with an interest rate model,
which leads to a three-dimensional PDE involving derivatives with respect to the interest rate r as
well as S and τ , and it is possible to take the Laplace transform with respect to τ and the Mellin
transform with respect to S to reduce the dimension of the problem by two [40, 42].
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Having given a very brief sketch of the use of integral transforms to solve diffusion-like PDEs in
general, we now turn to American options. The price V (S, τ) of an American option is governed
by the Black-Scholes-Merton PDE (2). American options can be exercised at any time at or before
expiry, and this early exercise feature leads to a free boundary problem very similar to the Stefan
problem, and indeed it is well-known that (2) can be transformed into the diffusion equation (1),
this transformation having been crucial to the derivation of the original Black-Scholes formula
[8]. As we mentioned above, the natural integral transforms for (2) are Laplace with respect to
τ and Mellin with respect to S, and applying either of these transforms to (2) yields an ordinary
differential equation which can be solved fairly easily. Both of these natural transforms have
previously been applied to American options. In [2, 3, 4, 5, 39], we followed Evans and applied
a partial Laplace transform in time to study American, and American-style exotic, options, while
[33] used what was essentially a partial Mellin transform with respect to S. To be more precise,
[33] used a change of variables which both fixed the boundary and turned (2) into a diffusion-like
equation, and then used a Laplace transform with respect to the new spatial variable, but if the
change of variables is reversed, it becomes apparent that this Laplace transform is equivalent to
applying a partial Mellin transform with respect to stock price S to the original equation (2).
More recently, [23, 24, 48, 49, 50] have used conventional Mellin transforms with respect to S.
Partial Fourier transforms have been considered in [15, 16, 17], while [54, 55, 57] have combined
a boundary fixing transformation with Fourier sine and cosine transformations on a half-space.

In the present study, we will again use integral transforms to study the Black-Scholes-Merton
PDE, specifically Laplace and Mellin transforms, which are the natural transforms for this PDE,
but rather than use partial transforms applied only to the region where it is optimal to hold the
option, we will apply conventional transforms to the whole of space. To do so, we obviously need to
have a PDE which covers the whole of space, not just the region where it is optimal to hold. There
is actually a straightforward way to do this, which can be found in for example [37]. When an
American option is exercised early, with exercise taking place on the free boundary, it is exchanged
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for another portfolio with value P (S, τ); for an American call, which carries the right to buy the
underlying at strike price E, this new portfolio is P (S, τ) = S − E, while for an American put,
which carries the right to sell the underlying, P (S, τ) = E − S. This new portfolio will obey the
nonhomogeneous form of (2), meaning (2) together with a forcing term on the right-hand side, and
so when we apply our integral transform, we apply it to (2) together with a forcing term, with this
forcing term zero where it is optimal to hold the option. This explanation should become clearer
in the next section when we present the analysis.

2. Analysis

Our starting point is the Black-Scholes-Merton partial differential equation (PDE) [8, 45] governing
the price V of an equity derivative,

BS (V ) =

[
∂

∂τ
− σ2S2

2

∂2

∂S2
− (r −D)S

∂

∂S
+ r

]
V = 0 ,(3)

where S is the price of the underlying stock and τ = T − t is the time remaining until expiry. In
our analysis, the volatility σ, risk-free interest rate r, and dividend yield D are assumed constant.
For European options, which can be exercised only at expiry, we must solve (3) together with the
condition that the payoff at expiry V (S, 0) is specified. The value of a European option can be
written in terms of a Green’s function as

V (S, τ) =

∫ ∞
0

V (Z, 0)G

(
S

Z
, τ

)
dZ

Z
,

G (S, τ) =
e−rτ

σ
√

2πτ
exp

(
− [ln(S) + ντ ]

2

2σ2τ

)
,

(4)

where V (S, 0) is the payoff at expiry, and we have introduced ν = r −D − σ2/2.
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American options, by contrast, can be exercised at any time at or before expiry, with early exer-
cise taking place on an optimal exercise boundary, which [44, 45] recognized was a free boundary.
We will denote this free boundary by S = Sf (τ) or equivalently τ = τf (S) and write the pay-off
from early exercise as P (S, τ). For American options, we must solve (3) together with the con-
dition that the payoff at expiry V (S, 0) is specified and the additional conditions that at the free
boundary, we require V (Sf (τ), τ) = P (Sf (τ), τ) and (∂V/∂S) (Sf (τ), τ) = (∂P/∂S)(Sf (τ), τ).
These two conditions at the free boundary mean that both the value of the option and its delta
are continuous there. The condition on the delta is known as the high contact or smooth pasting
condition [53]. It follows from [35, 44, 7, 30, 32, 29] that we can write the value of an American
option as the combination of the European value together with another term coming from the right
to exercise early,

V (S, τ) =

∫ ∞
0

V (Z, 0)G

(
S

Z
, τ

)
dZ

Z

+

∫ τ

0

∫ ∞
0

F (Z, ζ)G

(
S

Z
, τ − ζ

)
dZdζ

Z
,

(5)

with F (S, τ) = 0 where it is optimal to hold the option, while where exercise is optimal F (S, τ) =
BS (P ) which is the result of substituting the early exercise payoff into (3). This solution (5) is
a valid solution to BS (V ) = F (S, τ) for all τ ≥ 0 and all S, not just in the region where it is
optimal to retain the option. Applying the conditions at the free boundary to (5) leads to a pair
of integral equations for the location of the free boundary [44, 32, 29], which in the case of vanilla
Americans were solved numerically by [28], by approximating the free boundary as a multipiece
exponential function by [31], and using asymptotics by [12, 21, 26, 34, 36].

In what follows, we will discuss the relation of the expression (5) for the value of the option
and the resulting integral equations with the corresponding expressions obtained using Mellin
transforms and Laplace transforms. To facilitate this comparison, we will formulate the problem
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slightly differently and decompose the value of the option into the value from immediate exercise,
P (S, τ) and the residual, R(S, τ),

V (S, τ) = P (S, τ) +R(S, τ).(6)

For vanilla Americans, V (S, 0) = P (S, 0), so in this case we are decomposing the value of the
option into its intrinsic value and time value [9].

With this formulation, R(S, τ) is zero where it is optimal to exercise the option, withR(Sf (τ), τ)=
(∂R/∂S) (Sf (τ), τ) = 0 on the free boundary, while where it optimal to hold, R obeys

BS (R) = −BS (P ) ,(7)

where BS is the Black-Scholes-Merton operator defined in (3). At expiry, R(S, 0) = 0. This has a
solution using (5),

R(S, τ) =

∫ τ

0

∫ ∞
0

F (Z, ζ)G

(
S

Z
, τ − ζ

)
dZdζ

Z
,(8)

where now we have defined F (S, τ) = 0 where it is optimal to exercise the option, while where
holding is optimal F (S, τ) = −BS (P ). Once again, (8) is a valid solution to BS (R) = F (S, τ) for
all τ ≥ 0 and all S, not just in the region where it is optimal to retain the option. Applying the
conditions on R and (∂R/∂S) at the free boundary to (8) gives a pair of integral equations,∫ τ

0

∫ ∞
0

F (Z, ζ)G

(
Sf (τ)

Z
, τ − ζ

)
dZdζ

Z
= 0,∫ τ

0

∫ ∞
0

F (Z, ζ)
∂G

∂S

(
Sf (τ)

Z
, τ − ζ

)
dZdζ

Z
= 0.

(9)
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For a call, we have P (S, τ) = (S − E)H (S − E), where E is the strike price of the option and H
is the Heaviside step function, so that for a call,

F (S, τ) =

(
[rE −DS]H (S − E) +

[
(r −D) (S − E) +

σ2S

2

]
Sδ (S − E)

+
σ2S2

2
[(S − E) δ (S − E)]

′
)
H (Sf (τ)− S) ,

(10)

while for a put, we have P (S, τ) = (E − S)H (E − S) and

F (S, τ) =

(
[DS − rE]H (E − S) +

[
(D − r) (E − S) +

σ2S

2

]
Sδ (E − S)

+
σ2S2

2
[(E − S) δ (E − S)]

′
)
H (S − Sf (τ)) ,

(11)

with δ the Dirac delta function. The factors H (Sf (τ)− S) and H (S − Sf (τ)) in (10) and (11)
ensure that F is zero where it is optimal to exercise. The use of the Heaviside step function to
extend the governing PDE to region where exercise is optimal can be found in standard texts
[37, 61] and studies such as [16].

Using (10) and (11) in (8), for a call we have

R(S, τ) =

∫ τ

0

σ2

2E
G
(S
E
, τ − ζ

)
dζ

+

∫ τ

0

∫ Sf (ζ)

E

(rE −DZ)G
(S
Z
, τ − ζ

)dZdζ

Z
,

(12)
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while for a put, we have

R(S, τ) =

∫ τ

0

σ2

2E
G
(S
E
, τ − ζ

)
dζ

+

∫ τ

0

∫ E

Sf (ζ)

(DZ − rE)G
(S
Z
, τ − ζ

)dZdζ

Z
.

(13)

The well-known put-call symmetry for American options [14, 43] is apparent in (12) and (13).
The first equation in (9) then becomes∫ τ

0

σ2

2E
G
(Sf (τ)

E
, τ − ζ

)
dζ

+

∫ τ

0

∫ Sf (ζ)

E

(rE −DZ)G
(Sf (τ)

Z
, τ − ζ

)dZdζ

Z
= 0

(14)

for a call, while for a put we have∫ τ

0

σ2

2E
G
(Sf (τ)

E
, τ − ζ

)
+

∫ τ

0

∫ E

Sf (ζ)

(DZ − rE)G
(Sf (τ)

Z
, τ − ζ

)dZdζ

Z
= 0.

(15)

A similar pair of equations can be written using the second equation in (9).

2.1. Mellin Transforms

The main object of this study is to show that conventional Mellin and Laplace transforms can
applied to American options. We will first consider a Mellin transform with respect to stock
price S. To make the analysis as painless as possible, we will approach it from two directions
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simultaneously. We will apply a Mellin transform to the governing PDE and solve the resulting
ordinary differential equation (ODE) in transform space to obtain an expression for the transform
of the solution. Rather than invert this transform, we will apply a forward transform to the Green’s
function solution (8) presented above, which will be the same as the solution of the ODE, meaning
that the inverse transform yields (8).

We recall that the Mellin transform of a function A(S) and its inverse are [52]

Â (p) =M [A (S)] =

∫ ∞
0

A (S)Sp−1dS,

A(S) =M−1
[
Â(p)

]
=

1

2π i

∫ σ+i∞

σ−i∞
Â(p)S−pdp.

(16)

Convolution can be defined in several ways for Mellin transforms, including

A (S) ∗B (S) =

∫ ∞
0

A

(
S

Z

)
B (Z)

dZ

Z
,

M [A (S) ∗B (S)] = Â (p) B̂ (p) ,

(17)

so that (8) is a convolution integral,

R(S, τ) =

∫ τ

0

F (S, ζ) ∗G(S, τ − ζ)dζ,

R̂(p, τ) =

∫ τ

0

F̂ (p, ζ)Ĝ(p, τ − ζ)dζ,

(18)
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with R̂ the transform of (8). We will need Ĝ and F̂ shortly,

Ĝ(p, τ) = exp

[(
−r − νp+

σ2p2

2

)
τ

]
,

F̂ (p, τ) =
D
(
S2−p
f (τ)− E2−p

)
p− 2

−
rE
(
S1−p
f (τ)− E1−p

)
p− 1

+
σ2E2−p

2
,

(19)

with F̂ (p, τ) the same for both the call and the put. We would stress that our Mellin transform
(16) covers the whole of space, 0 ≤ S <∞, and therefore covers both the region where it is optimal
to hold the option and that where exercise is optimal. In the second region (8) is a perfectly good
solution, even though the option is no longer held. A consequence of this is that we are setting
aside the conditions on R and (∂R/∂S) at the free boundary. In effect, we are arguing that (8) is
valid for all S, and that the location of the free boundary Sf (τ) can be determined by applying
the conditions at the free boundary to (8), which leads to (9).

This is in contrast to the partial transform approach, where the transform is only applied where
it is optimal to hold the option. At this point, we should briefly mention the work of [33], who
used what was essentially a partial Mellin transform. If we return to our definition of the Mellin
transform (16), and make the transformation S = e−x and A(S) = B(x), we arrive at the two-sided
Laplace transform [51]

L(2) [B (x)] (p) =

∫ ∞
−∞

B (x) e−px dx.(20)
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For the two-sided Laplace transform, convolution follows from (17),

A (x) ∗B (x) =

∫ ∞
−∞

A (x− z)B (z) dz,

L(2) [A (x) ∗B (x)] = Â (p) B̂ (p) .

(21)

By contrast, [33] used a one-sided Laplace transform,

L(1) [B (x)] (p) =

∫ ∞
0

B (x) e−px dx.

A (x) ∗B (x) =

∫ x

0

A (x− z)B (z) dz,

L(1) [A (x) ∗B (x)] = Â (p) B̂ (p) ,

(22)

having first used the Landau boundary fixing transformation X = S/Sf (τ) [38, 19, 57] to fix the
free boundary at X = 1. It is worth noting that the convolutions for one- and two-sided Laplace
transforms (21) and (22) are different, with the limits of integration being −∞ to +∞ for the
two-sided transform but 0 to x for the one-sided transform. This one-sided Laplace transform is
essentially the same as taking a partial Mellin transform, which we define for the call as

Mc [A(S, τ)] =

∫ Sf (τ)

0

A(S, τ)Sp−1dS,(23)

while for the put, we define

Mp [A(S, τ)] =

∫ ∞
Sf (τ)

A(S, τ)Sp−1dS.(24)

These definitions are of course equivalent to setting the value of a function equal to zero where it
is optimal to exercise, which is what the decomposition (6) implies. The definitions (23) and (24)
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differ from an earlier partial Mellin transform defined by Naylor [46] and discussed in [56]. Naylor
defined finite Mellin transforms of the first and second kind to be

M1 [V (S)] =

∫ Z

0

(
Z2p

Sp+1
− Sp−1

)
V (S)dS,

M2 [V (S)] =

∫ Z

0

(
Z2p

Sp+1
+ Sp−1

)
V (S)dS.

(25)

In (18) and (19), we have the Mellin transform of our solution (8). We will now apply a
(conventional) Mellin transform (16) to (7) and work forward trying to solve the problem in Mellin
transform space and thereby recover (18,19) and thence (8). If we apply a conventional transform
(16) to (7), we get an ODE for the transform of the residual R,[

d

dτ
− σ2p2

2
+ pν + r

]
R̂ = F̂ (p, τ).(26)

Again, we would note that we have transformed (7) in both the region where it is optimal to hold
and that where exercise is optimal. Interestingly, the conventional and partial Mellin transforms
of F will be the same since F is zero where it is optimal to exercise. Since R(S, 0) = 0 for vanilla

Americans, it follows that R̂(p, 0) = 0, and (26) has a solution

R̂(p, τ) =

∫ τ

0

F̂ (p, ζ) exp

[(
σ2p2

2
− pν − r

)
(τ − ζ)

]
dz

=

∫ τ

0

F̂ (p, ζ)Ĝ(p, τ − ζ)dζ,

(27)

which of course recovers (18) and thence (8).
The next issue is whether we can arrive at an equation for the free boundary from (27). Obvi-

ously, if we invert the transform, we can again arrive at (9). However, a rather different equation
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can be derived if we take the limit τ →∞ of (8),

R∞(S) = lim
τ→∞

∫ τ

0

∫ ∞
0

F (Z, ζ)G

(
S

Z
, τ − ζ

)
dZdζ

Z
,(28)

where R∞ is the perpetual version of the residue. If we apply the same limit to (27), we arrive at
the transform of (28), namely

R̂∞(p) = lim
τ→∞

∫ τ

0

F̂ (p, ζ)Ĝ(p, τ − ζ)dζ

= lim
τ→∞

∫ τ

0

D
(
S2−p
f (ζ)− E2−p

)
p− 2

−
rE
(
S1−p
f (ζ)− E1−p

)
p− 1

+
σ2E2−p

2

]
exp

[(
−r − νp+

σ2p2

2

)
(τ − ζ)

]
dζ.

(29)

For the call, (29) is the transform of

R∞(S) = lim
τ→∞

∫ τ

0

e−r(τ−ζ)

σ
√

2π (τ − ζ)

[
σ2

2E
exp

(
− [ln(S/E) + ν (τ − ζ)]

2

2σ2 (τ − ζ)

)

+

∫ Sf (ζ)

E

(rE −DZ) exp

(
− [ln(S/Z) + ν (τ − ζ)]

2

2σ2 (τ − ζ)

)
dZ

Z

]
dζ,

(30)
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while for the put, it is the transform of

R∞(S) = lim
τ→∞

∫ τ

0

e−r(τ−ζ)

σ
√

2π (τ − ζ)

[
σ2

2E
exp

(
− [ln(S/E) + ν (τ − ζ)]

2

2σ2 (τ − ζ)

)

+

∫ E

Sf (ζ)

(DZ − rE) exp

(
− [ln(S/Z) + ν (τ − ζ)]

2

2σ2 (τ − ζ)

)
dZ

Z

]
dζ.

(31)

2.2. Laplace Transforms

We now turn our attention to Laplace transforms. Our analysis will follow a broadly similar path
to that for Mellin transforms, and we will again tackle the problem from two directions. We recall
that the Laplace transform of a function A(S) and its inverse are [52]

Â = L [A (τ)] =

∫ ∞
0

e−pτ A (τ) dτ,

A(τ) = L−1
[
Â(p)

]
=

1

2π i

∫ σ+i∞

σ−i∞
Â(p) epτ dp.

(32)

Convolution for Laplace transforms is defined by

A (τ) ∗B (τ) =

∫ τ

0

A (ζ)B (τ − ζ) dζ,

L [A (τ) ∗B (τ)] = Â(p)B̂(p),

(33)
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so that (8) is a convolution integral

R(S, τ) =

∫ ∞
0

F (Z, τ) ∗G
(
S

Z
, τ

)
dZ

Z
,

R̂(S, p) =

∫ ∞
0

F̂ (Z, p)Ĝ

(
S

Z
, p

)
dZ

Z
,

(34)

with R̂ the transform of (8). For the Laplace transform approach, we must write F in a slightly
different, but equivalent, form to (10) and (11). For Mellin transforms, we wrote the free boundary
as S = Sf (τ), while for Laplace transforms, we will invert this and write τ = τf (S). For values
of S for which an option is held until expiry, we define τf (S) = 0. We can then replace the terms
H (Sf (τ)− S) in (10) and H (S − Sf (τ)) in (11) by H (τ − τf (S)), so that for the call,

F (S, τ) =

(
[rE −DS]H (S − E) +

[
(r −D) (S − E) +

σ2S

2

]
Sδ (S − E)

+
σ2S2

2
[(S − E) δ (S − E)]

′
)
H (τ − τf (S))H (S∗ − S) ,

(35)

while for the put,

F (S, τ) =

(
[DS − rE]H (E − S) +

[
(D − r) (E − S) +

σ2S

2

]
Sδ (E − S)

+
σ2S2

2
[(E − S) δ (E − S)]

′
)
H (τ − τf (S))H (S − S∗) .

(36)
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S∗ is the location of the free boundary in the limit τ →∞ which can be deduced from the perpetual
American option [60, 61]. We will need Ĝ and F̂ shortly,

Ĝ(S, p) =
[
2 (p+ p0)σ2

]−1/2 ×
 S−

(ν+σ
√

2(p+p0))
σ2 S > 1

S−
(ν−σ

√
2(p+p0))
σ2 S < 1

,(37)

with p0 =
(
4(D − r)2 + 4σ2(D + r) + σ4

)
/(8σ2). For the call

F̂ (S, p) = −
(

[rE −DS]H (S − E) +

[
(r −D) (S − E) +

σ2S

2

]
Sδ (S − E)

+
σ2S2

2
[(S − E) δ (S − E)]

′
)
H (S∗ − S)

e−pτf (S)

p
,

(38)

while for the put,

F̂ (S, p) = −
(

[DS − rE]H (E − S) +

[
(D − r) (E − S) +

σ2S

2

]
Sδ (E − S)

+
σ2S2

2
[(E − S) δ (E − S)]

′
)
H (S − S∗)

e−pτf (S)

p
.

(39)
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Because of the split nature of Ĝ, we note that we can write (34) as

R̂(S, p) =
[
2 (p+ p0)σ2

]−1/2 ∫ S

0

F̂ (Z, p)

(
S

Z

)− (ν−σ
√

2(p+p0))
σ2 dZ

Z

+
[
2 (p+ p0)σ2

]−1/2 ∫ ∞
S

F̂ (Z, p)

(
S

Z

)− (ν+σ
√

2(p+p0))
σ2 dZ

Z
.

(40)

As with the Mellin transforms, we would stress that our Laplace transform (32) covers the whole of
space, 0 ≤ τ <∞, and therefore covers both the region where it is optimal to hold the option and
that where exercise is optimal. Once again, in the second region (8) is a perfectly good solution,
even though the option is no longer held. This is in contrast to the partial transform approach,
where the transform is only applied where it is optimal to hold the option. The partial Laplace
transform is due to Evans [20, 19], and can be defined as

L [A (τ)] =

∫ ∞
τf (S)

e−pτ A (τ) dτ.(41)

We will now apply a (conventional) Laplace transform (32) to (7), and work forward to recover
(8). We are transforming (7) both in the region where it is optimal to hold and where exercise is
optimal. From (7), we get an ODE for the transform of the residual R,[

p− σ2S2

2

d2

dS2
− (r −D)S

d

dS
+ r

]
R̂ = F̂ (S, p),(42)

which has homogeneous solutions,

R̂1 = S−
(ν−σ

√
2(p+p0))
σ2 , R̂2 = S−

(ν+σ
√

2(p+p0))
σ2 .(43)
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We note that since r, D and σ are all assumed to be positive, and we assume that p has a positive
real part from the definition of the Laplace transform, then the real part of the exponent in R̂1 is
assumed positive, while that in R̂2 is assumed negative. The Wronskian of R̂1 and R̂2 is

W = R̂1R̂
′
2 − R̂′1R̂2 = −2σ−1 [2 (p+ p0)]

1/2
S−1−2ν/σ

2

,(44)

so that we can write the solution to (42) using variation of parameters as

R̂ = − R̂1(S)

∫ ∞
S

2R̂2(Z)F̂ (Z, p)dZ

σ2Z2W
− R̂2(S)

∫ S

0

2R̂1(Z)F̂ (Z, p)dZ

σ2Z2W

=
[
2 (p+ p0)σ2

]−1/2 ∫ S

0

F̂ (Z, p)

(
S

Z

)− (ν+σ
√

2(p+p0))
σ2 dZ

Z

+
[
2 (p+ p0)σ2

]−1/2 ∫ ∞
S

F̂ (Z, p)

(
S

Z

)− (ν−σ
√

2(p+p0))
σ2 dZ

Z
,

(45)

which of course recovers (40) and thence (8).
Once again, we wonder out loud whether we can arrive at an equation for the free boundary

from (40). Again, if we invert the transform, we arrive at (9), but there does not appear to be any
other obvious equation in Laplace transform space.

2.3. Fourier Transforms

The analysis using Fourier transforms is straightforward because of the well-known relation between
Mellin transforms, two-sided Laplace transforms, and Fourier transforms. We should recall our
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definitions of the Mellin (16), and the two-sided Laplace (20) transforms discussed earlier,

M [A (S)] (p) =

∫ ∞
0

A (S)Sp−1dS,

L(2) [B (x)] (p) =

∫ ∞
−∞

B (x) e−px dx.

(46)

which were linked via the transformation S = e−x and A(S) = B(x). If we write p = i s in (16),
we arrive at one of the definitions of the Fourier transform,

F [B (x)] (s) =

∫ ∞
−∞

B (x) e− i sx dx = L(2) [B (x)] (i s).(47)

Convolution for Fourier transforms is defined by

A (x) ∗B (x) =

∫ ∞
0

A (x− z)B (z) dz,

F [A (x) ∗B (x)] = Â (s) B̂ (s) .

(48)

If follows that combining the transformation S = e−x with a Fourier transform is equivalent to
taking a complex Mellin transform, so that many of the results for Mellin transforms carry over
to Fourier transforms, with in particular

R̂(s, τ) =
∫ τ
0
F̂ (s, ζ)Ĝ(s, τ − ζ)dζ.(49)
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with

Ĝ(s, τ) = exp

[(
−r − ν i s− σ2s2

2

)
τ

]
,

F̂ (s, τ) =
D
(
S2−i s
f (τ)− E2−i s

)
i s− 2

−
rE
(
S1−i s
f (τ)− E1−i s

)
i s− 1

+
σ2E2−i s

2
.

(50)

F̂ (s, τ) is the same for both the call and the put. From (26), the ODE for the transform of the
residual R becomes [

d

dτ
+
σ2s2

2
+ i sν + r

]
R̂ = F̂ (s, τ),(51)

which has a solution

R̂(s, τ) =

∫ τ

0

F̂ (s, ζ) exp

[(
−σ

2s2

2
− i sν − r

)
(τ − ζ)

]
dz

=

∫ τ

0

F̂ (s, ζ)Ĝ(s, τ − ζ)dζ,

(52)

which of course recovers (49) and thence (8).

3. Boundary Fixing Transformation

In our analysis so far, we have assumed that the boundary was a free boundary, located at
S = Sf (τ) or equivalently at τ = τf (S). However, it is also possible to use Landau’s bound-
ary fixing transformation and write S = XSf (τ) so that the free boundary is fixed at X = 1.
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For completeness, we present the analysis for the Mellin transform combined with the Landau
transform.

If we write V (XSf (τ), τ) = VF (X, τ), then (3) becomes

BSF (V | =
[
∂

∂τ
− σ2X2

2

∂2

∂X2
−
(
r −D +

S′f (τ)

Sf (τ)

)
X

∂

∂X
+ r

]
VF

= 0.

(53)

The Landau transformation fixes the boundary, but introduces a new term given by

−
(
S′f (τ)/Sf (τ)

)
X (∂ /∂X) in (53), with the result that the conditions at the free boundary are

easier to implement but the underlying PDE is more complicated. Both [21, 36] and [33] took
this approach.

At expiry τ = 0, we have VF (X, 0) = (XS0 − E)H (XS0 − E), where S0 = Sf (0) is the location
of the free boundary at expiry. At the free boundary, X = 1, we exchange VF for the portfolio
XSf (τ) − E, and we require that the value of the option and its delta be continuous across the
boundary, so VF (1, τ) = Sf (τ) − E and (∂VF /∂X) (1, τ) = Sf (τ). Once again, we will work in
terms of the residual defined in (6), and to this end, we will introduce RF (X, τ) = R(XSf (τ), τ)
and FF (X, τ) = F (XSf (τ), τ). We can then use (4,8) to write

RF (X, τ) =

∫ τ

0

∫ ∞
0

FF (Z, ζ)GF

(
X

Z
, τ, ζ

)
dZdζ

Z
,

GF (X, τ, ζ) =
e−r(τ−ζ)

σ
√

2π (τ − ζ)
exp

−
[
ln(X) + ln

(
Sf (τ)
Sf (ζ)

)
+ ν (τ − ζ)

]2
2σ2 (τ − ζ)

 .

(54)
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From (54), we see that GF is slightly more complicated than G. The integral equations (9) from
continuity of the option and its delta at the free boundary become∫ τ

0

∫ ∞
0

FF (Z, ζ)GF

(
1

Z
, τ, ζ

)
dZdζ

Z
= 0,∫ τ

0

∫ ∞
0

FF (Z, ζ)
∂GF
∂X

(
1

Z
, τ, ζ

)
dZdζ

Z
= 0.

(55)

For a call, the counterpart of the forcing term (10) is

FF (X, τ) = ([rE −DXSf (τ)]H (XSf (τ)− E)

+

[
(r −D) (XSf (τ)− E) +

σ2XSf (τ)

2

]
XSf (τ)δ (XSf (τ)− E)

+
σ2X2S2

f (τ)

2
[(XSf (τ)− E) δ (XSf (τ)− E)]

′

)
H (1−X) ,

(56)

while for a put, (11) is replaced by

FF (X, τ) = ([DXSf (τ)− rE]H (E −XSf (τ))

+

[
(D − r) (E −XSf (τ)) +

σ2XSf (τ)

2

]
XSf (τ)δ (E −XSf (τ))

+
σ2X2S2

f (τ)

2
[(E −XSf (τ)) δ (E −XSf (τ))]

′

)
H (X − 1) .

(57)
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Using (56) and (57) in (54), for a call (12) is replaced by

RF (X, τ) =

∫ τ

0

σ2Sf (ζ)

2E
GF

(
XSf (ζ)

E
, τ, ζ

)
dζ

+

∫ τ

0

∫ 1

E/Sf (ζ)

(rE −DZSf (ζ))GF

(
X

Z
, τ, ζ

)
dZdζ

Z
,

(58)

and for a put (13) is replaced by

Rf (X, τ) =

∫ τ

0

σ2ESf (ζ)

2
GF

(
XSf (ζ)

E
, τ, ζ

)
dζ

+

∫ τ

0

∫ E/Sf (ζ)

1

(DZSf (ζ)− rE)GF

(
X

Z
, τ, ζ

)
dZdζ

Z
.

(59)

The first equation in (55) then becomes∫ τ

0

σ2Sf (ζ)

2E
GF

(
Sf (ζ)

E
, τ, ζ

)
dζ

+

∫ τ

0

∫ 1

E/Sf (ζ)

(rE −DZSf (ζ))GF

(
1

Z
, τ, ζ

)
dZdζ

Z
= 0,

(60)

for a call, while for a put we have∫ τ

0

σ2ESf (ζ)

2
GF

(
Sf (ζ)

E
, τ, ζ

)
dζ

+

∫ τ

0

∫ E/Sf (ζ)

1

(DZSf (ζ)− rE)GF

(
1

Z
, τ, ζ

)
dZdζ

Z
= 0.

(61)

A similar pair of equations can be written using the second equation in (55).
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3.1. Mellin Transforms

The analysis in this section is very similar to that presented without the use of the boundary fixing
transformation, and once again, we will approach the problem from two directions simultaneously.
We will apply a Mellin transform to the governing PDE after the Landau transformation and solve
the resulting ordinary differential equation (ODE) in transform space to obtain an expression for
the transform of the solution. Rather than invert this transform, we will apply a forward transform
to the Green’s function solution (54) presented above, which will be the same as the solution of
the ODE, meaning that the inverse transform yields (54).

The Mellin transform used here is (16), but taking a transform with respect to X rather than
S. As with (8), (54) is a convolution integral,

RF (X, τ) =

∫ τ

0

FF (X, ζ) ∗GF (X, τ, ζ) dζ,

R̂F (p, τ) =

∫ τ

0

F̂F (p, ζ)ĜF (p, τ, ζ) dζ,

(62)

with R̂F the transform of RF . We can write ĜF and F̂F in terms of Ĝ and F̂ (19), the transforms
obtained without fixing the boundary,

ĜF (p, τ, ζ) = Ĝ(p, τ)

(
Sf (τ)

Sf (ζ)

)−p
= exp

[(
−r − νp+

σ2p2

2

)
(τ − ζ)

](
Sf (τ)

Sf (ζ)

)−p
,

F̂F (p, τ) = S−pf (τ)F̂ (p, τ) =

D
(
S2−p
f (τ)− E2−p

)
p− 2

−
rE
(
S1−p
f (τ)− E1−p

)
p− 1

+
σ2E2−p

2

]
S−pf (τ).

(63)



JJ J I II

Go back

Full Screen

Close

Quit

F̂F (p, τ) is the same for both the call and the put. Once again, our Mellin transform covers the
whole of space, 0 ≤ X <∞, rather than just the region where it is optimal to hold the option.

We will now apply a Mellin transform to the equation BSF (RF ) = FF and work forward to
recover (54). This yields an ODE for the transform of RF ,

[
d

dτ
− σ2p2

2
+ p

(
ν +

S′f (τ)

Sf (τ)

)
+ r

]
R̂F = F̂F (p, τ).(64)

Thus has an additional term p
(
S′f (τ)/Sf (τ)

)
R̂F compared to (26). Again, we have transformed

the equation for 0 ≤ X < ∞, not just where it is optimal to hold. Since RF (S, 0) = 0 for vanilla

Americans, it follows that R̂F (p, 0) = 0, and (64) has a solution

R̂F (p, τ) =

∫ τ

0

F̂F (p, ζ) exp

[(
σ2p2

2
− pν − r

)
(τ − ζ)

](
Sf (τ)

Sf (ζ)

)−p
dz

=

∫ τ

0

F̂F (p, ζ)ĜF (p, τ, ζ)dζ,

(65)

which of course recovers (62) and thence (54).
Again, we must consider if we can arrive at an equation for the free boundary from (65), other

than the obvious transform of (55). Once again, we will apply the limit τ →∞ to (54),

RF∞(X) = lim
τ→∞

∫ τ

0

∫ ∞
0

FF (Y, ζ)GF

(
X

Y
, τ, ζ

)
dY dζ

Y
,(66)
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where RF∞ is the perpetual version of the residue. If we apply the same limit to (65), we arrive
at the transform of (66), namely

R̂F∞(p) = lim
τ→∞

∫ τ

0

F̂F (p, ζ)ĜF (p, τ, ζ)dζ

= lim
τ→∞

∫ τ

0

D
(
S2−p
f (ζ)− E2−p

)
p− 2

−
rE
(
S1−p
f (ζ)− E1−p

)
p− 1

+
σ2E2−p

2

]
exp

[(
−r − νp+

σ2p2

2

)
(τ − ζ)

]
S−pf (τ)dζ.

(67)

For the call, (67) is the transform of

RF∞(X) =

∫ τ

0

e−r(τ−ζ)

σ
√

2π (τ − ζ)

σ2Sf (ζ)

2E
exp

−
[
ln
(
XSf (τ)
E

)
+ ν (τ−ζ)

]2
2σ2 (τ − ζ)


+

∫ 1

E/Sf (ζ)

(rE −DZSf (ζ))

× exp

−
[
ln
(
XSf (τ)
ZSf (ζ)

)
+ ν (τ − ζ)

]2
2σ2 (τ − ζ)

 dZ

Z

dζ,

(68)
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while for the put, it is the transform of

RF∞(X) =

∫ τ

0

e−r(τ−ζ)

σ
√

2π (τ − ζ)

σ2Sf (ζ)

2E
exp

−
[
ln
(
XSf (τ)
E

)
+ ν (τ − ζ)

]2
2σ2 (τ − ζ)


+

∫ E/Sf (ζ)

1

(DZSf (ζ)− rE)

× exp

−
[
ln
(
XSf (τ)
ZSf (ζ)

)
+ ν (τ − ζ)

]2
2σ2 (τ − ζ)

 dZ

Z

dζ.

(69)

4. Discussion

In the previous two sections, we revisited the use of integral transforms to tackle American options,
using conventional Mellin, Laplace and Fourier transforms (16,32,47) rather than their partial
counterparts. We were able to use conventional transforms rather than partial transforms because
we were able to extend the governing PDE to the region where exercise is optimal by using the
PDE obeyed by the early exercise pay-off, which is in effect also the approach taken by the Green’s
function approach. In each case, we transformed the governing PDE into an ODE in transform
space and solved the ODE, finding that in each case, the solution of the ODE was the same as the
transform of the Green’s function solution, which we used as our reference solution, and the same
was true when we combined a Mellin transform with Landau’s boundary fixing transformation.
Each of these approaches leads to leads to a pair of integral equations for the location of the free
boundary, and again we found that the integral equations from the transform approaches were the
same as those from the Green’s function approach. This is the principal result of this paper, and
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the motivation for our study, that all roads (or at least the roads considered here) lead to Rome, by
which we mean that the differing approaches produce equivalent solutions and equivalent integral
equations. In one sense, our analysis is not a surprise, because the Green’s function solution (8) is
both a Mellin and a Laplace convolution. In another sense, however, it is a surprise as our analysis
required us to use a PDE in the region where exercise is optimal, and historically, there have been
concerns over whether it is possible to apply full-space transforms in such situations, which led
to the development of partial transforms [19, 20, 46, 56] and their application to free boundary
problems, although recent studies such as [16] have done much to allay those concerns.

The pair of integral equations for the location of the free boundary (9) has been written in a
number of different forms in the extensive literature on the Green’s function approach. Chiarella
[15] has discussed how the various representations are related. The integral equations produced by
our analysis do not have any particular advantage over the existing literature, and that was not the
goal of our study. It is probably true that some of the integral equations in the existing literature are
easier to solve either as a series close to expiry or numerically than those produced by our analysis,
and it is probably also true that some of the integral equations in the existing literature are in a
form that makes some property or other of the solution more readily apparent than those produced
by our analysis, but this is an aspect of the problem which we have not explored as that was not
the object of our study. We have not concerned ourselves with whether one approach or another
is in some sense better, or whether one approach is efficacious or another meretricious, although if
other researchers choose to pursue that path we would encourage them. For much of our analysis,
we applied integral transforms directly to the Black-Scholes-Merton PDE (2) rather than following
many earlier authors and transforming this PDE into a diffusion-like equation. There is of course
some value in making such a transformation, not least because the diffusion equation has been
studied for longer, and in more depth, than the Black-Scholes-Merton PDE, and in this respect at
least, it could be argued that studies such as [15, 16, 17, 54, 55, 57], which apply various flavors
of Fourier transform to a diffusion-like equation, and [33], which applies a Laplace transform,
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have an advantage over studies working directly with the Black-Scholes-Merton PDE. With such
a transformation, the pair of integral equations (9) for the location of the free boundary would
simply be replaced by the same equations with S and Z replaced by the transformed variables, so
that the equations would involve the Green’s function for the diffusion-like equation rather than
the Green’s function for the Black-Scholes-Merton PDE.

In our study, we wrote the pair of integral equations (9) for the location of the free boundary
in a very simple form which is both a Mellin (in S) and a Laplace (in τ) convolution of a non-
homogeneous forcing term F (S, τ) with the Green’s function G (S, τ). This was deliberate, as in
this study we have not been concerned with solving these integral equations or discussing their
various properties. Rather, we chose this particular form to ensure that the integral transforms
were straightforward and to allow us to square the circle and show that the roads considered here
all lead to Rome, with the different approaches producing equivalent integral equations.

As we mentioned above, for each case studied here, the solution of the ODE in transform space
is simply the transform of the Green’s function solution, so that the equations for the free boundary
stemming from these transforms are simply those stemming from the Green’s function approach
(55). For the Mellin transform, if we take the limit τ →∞ we arrive at an alternative, and more
complicated, set of equations (31), (30), (68), (69) in addition to (55).

In the Introduction, we said that for the Black-Scholes-Merton PDE (2), the natural transforms
are Laplace with respect to τ and Mellin with respect to S, where natural in this sense means that
the transformed equation does indeed have derivatives with respect to fewer variables. Equivalently,
if we transform the Black-Scholes-Merton PDE into a diffusion-like equation, the natural transforms
are again Laplace with respect to τ but now either two-sided Laplace or Fourier with respect to
the transformed variable x. From our analysis, it would seem that Mellin with respect to S (or
equivalently two-sided Laplace or Fourier with respect to x) is the more natural and direct approach
because it leads to a first order ODE in transform space (26), (51), (64) while Laplace with respect
to τ leads to a more complicated second order ODE in transform space (42).



JJ J I II

Go back

Full Screen

Close

Quit

Acknowledgment. The authors would like to thank the referees for their insightful sugges-
tions and comments which greatly improved the paper, and A. S. Deakin for some helpful comments
and encouragement.

1. Alobaidi G. and Mallier R., Asymptotic analysis of American call options, International J. Mathematics and
Mathematical Sciences 27 (2001), 177–188.

2. , Laplace transforms and the American straddle, J. Applied Math. 2 (2002), 121–129.
3. , Laplace Transforms and the American Call Option, in Mathematical Control Theory and Finance,

(ed.s A. Sarychev, et al.), Springer (2008), 15–27.
4. Alobaidi G., Mallier R. and Deakin A. S., Laplace transforms and installment options, Math. Models Methods

Appl. Sci. 14 (2004), 1167–1189.
5. Alobaidi G., Mallier R. and Mansi S., Laplace transforms and shout options, Acta Math. Univ. Comenian. 80

(2011), 79–102.
6. Barone-Adesi G., The saga of the American put , J. Banking & Fin. 29 (2005), 2909–2918.
7. Barone-Adesi G. and Elliot R.J., Free boundary problems in the valuation of securities, Working Paper, Uni-

versity of Alberta 1989.
8. Black F. and Scholes M., The pricing of options and corporate liabilities, J. Political Economy 81 (1973),

637–659.
9. Carr P., Jarrow R. and Myneni R., Alternative characterizations of the American put option, Math. Fin. 2

(1992), 87–106.

10. Chadam J., Free boundary problems in mathematical finance, in Progress in Industrial Mathematics at ECMI
2006, (ed.s L.L. Bonilla, et al.), Mathematics in Industry Volume 12, Springer (2008), 655–665.

11. , Integral equation methods for free boundary problems, in Encyclopedia of Quantitative Finance Volume

2, (ed. R. Cont), Wiley (2010), 956– 962.
12. Chen X. and Chadam J., Analytical and numerical approximations for the early exercise boundary for American

options, Dynamics of Continuous, Discrete and Impulsive Systems 10 (2003), 649–660.



JJ J I II

Go back

Full Screen

Close

Quit

13. , A mathematical analysis of the optimal exercise boundary for american put options, SIAM J. Math.

Anal. 38 (2006) 1613–1641.

14. Chesney M. and Gibson R., State space symmetry and two-factor option pricing models, Advances in Futures
and Options Research 8 (1993), 85–112.

15. Chiarella C., Kucera A. and Ziogas A., A survey of the integral representation of American option prices,

Quantitative Finance Research Centre Research Paper 118, University of Technology, Sydney, Australia 2004.
16. Chiarella C. and Ziogas A., A Fourier transform analysis of the American call option on assets driven by

jump-diffusion processes, Quantitative Finance Research Centre Research Paper 174, University of Technology,
Sydney, Australia 2006.

17. , American call options under jump-diffusion processes – a Fourier transform approach, Appl. Math.
Fin. 16 (2009), 37–79.

18. Cook J., Asymptotic Analysis of American-Style Options, PhD thesis, University of Bath 2009.
19. Crank J., Free and Moving Boundary Problems, Clarendon 1984.
20. Evans G.W., Isaacson E. and MacDonald J. K. L., Stefan-like problems, Q. Appl. Math. 8 (1950), 312–319.
21. Evans J.D., Kuske R.E. and Keller J.B., American options with dividends near expiry, Math. Fin. 12 (2002),

219–237.
22. Firth N., High Dimensional American Options, PhD thesis, University of Oxford 2005.
23. Frontczak R., On the Application of Mellin Transforms in the Theory of Option Pricing, Dissertation, Uni-

versity of Tübingen 2010.
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