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DIHEDRAL COVERS OF THE COMPLETE GRAPH K5

M. GHASEMI

Abstract. A regular cover of a connected graph is called dihedral if its transformation group is
dihedral. In this paper, the author classifies all dihedral coverings of the complete graph K5 whose

fibre-preserving automorphism subgroups act arc-transitively.

1. Introduction

Throughout this paper, we consider finite connected graphs without loops or multiple edges. For
a graph X, every edge of X gives rise to a pair of opposite arcs. By V(X), E(X), A(X) and
Aut(X), we denote the vertex set, the edge set, the arc set and the automorphism group of the
graph X, respectively. The neighborhood of a vertex v ∈ V(X) denoted by N(v) is the set of
vertices adjacent to v in X. Let a group G act on a set Ω and let α ∈ Ω. We denote by Gα the
stabilizer of α in G, that is, the subgroup of G fixing α. The group G is said to be semiregular if

Gα = 1 for each α ∈ Ω, and regular if G is semiregular and transitive on Ω. A graph X̃ is called

a covering of a graph X with projection p : X̃ → X if there is a surjection p : V (X̃)→ V (X) such
that p|N(ṽ) : N(ṽ) → N(v) is a bijection for any vertex v ∈ V(X) and ṽ ∈ p−1(v). The graph

X̃ is called the covering graph and X is the base graph. A covering X̃ of X with a projection p
is said to be regular (or K-covering) if there is a semiregular subgroup K of the automorphism

group Aut(X̃) such that graph X is isomorphic to the quotient graph X̃/K, say by h, and the
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quotient map X̃ → X̃/K is the composition ph of p and h (for the purpose of this paper, all

functions are composed from left to right). If K is cyclic, elementary abelian or dihedral then X̃

is called a cyclic, elementary abelian or dihedral covering of X, respectively. If X̃ is connected, K
is the covering transformation group. The fibre of an edge or a vertex is its preimage under p. An

automorphism of X̃ is said to be fibre-preserving if it maps a fibre to a fibre while an element of
the covering transformation group fixes each fibre setwise. All of fibre-preserving automorphisms
form a group called the fibre-preserving group.

An s-arc in a graph X is an ordered (s+ 1)-tuple (v0, v1, . . . , vs) of vertices of X such that vi−1

is adjacent to vi for 1 ≤ i ≤ s, and vi−1 6= vi+1 for 1 ≤ i < s; in other words, a directed walk of
length s which never includes a backtracking. A graph X is said to be s-arc-transitive if Aut(X)
is transitive on the set of s-arcs in X. In particular, 0-arc-transitive means vertex-transitive, and
1-arc-transitive means arc-transitive or symmetric. An s-arc-transitive graph is said to be s-
transitive if it is not (s+ 1)-arc-transitive. In particular, a subgroup of the automorphism group of
a graph X is said to be s-regular if it acts regularly on the set of s-arcs of X. Also if the subgroup
is the full automorphism group Aut(X) of X, then X is said to be s-regular. Thus, if a graph X
is s-regular, then Aut(X) is transitive on the set of s-arcs and the only automorphism fixing an
s-arc is the identity automorphism of X.

Regular coverings of a graph have received considerable attention. For example, for a graph
X which is the complete graph K4, the complete bipartite graph K3,3, hypercube Q3 or Petersen
graph O3, the s-regular cyclic or elementary abelian coverings of X, whose fibre-preserving groups
are arc-transitive, classified for each 1 ≤ s ≤ 5 [3, 4, 6, 7]. As an application of these classifications,
all s-regular cubic graphs of order 4p, 4p2, 6p, 6p2, 8p, 8p2, 10p, and 10p2 constructed for each
1 ≤ s ≤ 5 and each prime p [3, 4, 6]. In [14], it was shown that all cubic graphs admitting
a solvable edge-transitive group of automorphisms arise as regular covers of one of the following
basic graphs: the complete graph K4, the dipole Dip3 with two vertices and three parallel edges,
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the complete bipartite graph K3,3, the Pappus graph of order 18, and the Gray graph of order
54. Also all dihedral coverings of the complete graph K4 and cubic symmetric graphs of order
2p were classified in [5, 8]. But apart from the octahedron graph [11], graphs of higher valencies
have not received much attention. For more results see [1, 2, 13, 15]. In a series of reductions
of this kind, the final, irreducible graph is often a complete graph. Thus studying K5 is the
obvious next choice in order to establish a base of examples for further investigation. All pairwise
non-isomorphic connected arc-transitive p-elementary abelian covers of the complete graph K5 are
constructed in [10]. In this paper all dihedral coverings of the complete graph K5 whose fibre-
preserving automorphism subgroups act arc-transitively are determined. Also we give a family of
2-arc-transitive graphs.

Let n be a non-negative integer. Let Zn denote the cyclic group of order n and D2n the dihedral
group of order 2n. Set

D2n = 〈a, b | an = b2 = 1, b−1ab = a−1〉.
By {0, 1, 2, 3, 4} denote the vertex set of K5. For n ≥ 3, the graph DK(2n) is defined to have

vertex set

V (DK(2n)) = {0, 1, 2, 3, 4} ×D2n

and edge set

E(DK(2n)) = {(0, c)(3, c), (1, c)(3, c), (1, c)(4, c), (2, c)(4, c), (0, c)(1, bc),
(0, c)(2, a−1bc), (0, c)(4, ac), (1, c)(2, bc), (2, c)(3, ac),

(3, c)(4, a−2bc), (4, c)(0, a−1c) | c ∈ D2n}.

Note that the first four edges in the edge set E(DK(2n)) correspond with the tree edges in the
spanning tree T as depicted by the dashed lines in Fig. 1 and these four edges have the common
c as the second coordinates. In fact, the graph DK(2n) is the covering graph derived from a
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T -reduced voltage assignment φ : A(K5) → D2n which assigns the six values b, a−1b, a, b, a−2b,
a−1 to the six cotree edges in K5.

The following theorem is the main result of this paper.

Theorem 1.1. Let X̃ be a connected D2n-covering (n ≥ 3) of the complete graphK5 whose

fibre-preserving subgroup is arc-transitive. Then X̃ is arc-transitive if and only if X̃ is isomorphic
to DK(2n) for n ≥ 3.

2. Preliminaries related to coverings

Let X be a graph and K a finite group. By a−1, we mean the reverse arc to an arc a. A voltage
assignment (or K-voltage assignment) of X is a function φ : A(X) → K with the property that

φ(a−1) = φ(a)
−1

for each arc a ∈ A(X). The values of φ are called voltages and K is the voltage
group. The graph X ×φ K derived from a voltage assignment φ : A(X) → K has a vertex set
V (X) ×K and an edge set E(X) ×K, so that an edge (e, g) of X ×φ K joins a vertex (u, g) to
(v, φ(a)g) for a = (u, v) ∈ A(X) and g ∈ K, where e = uv.

Clearly, the derived graph X ×φ K is a covering of X with the first coordinate projection

p : X ×φ K → X which is called the natural projection. By defining (u, g
′
)g := (u, g

′
g) for any

g ∈ K and (u, g
′
) ∈ V (X×φK), K becomes a subgroup of Aut(X×φK) which acts semiregularly on

V (X×φK). Therefore, X×φK can be viewed as a K-covering. For each u ∈ V (X) and uv ∈ E(X),
the vertex set {(u, g) | g ∈ K} is the fibre of u and the edge set {(u, g)(v, φ(a)g) | g ∈ K} is the fibre

of uv, where a = (u, v). Conversely, each regular covering X̃ of X with a covering transformation
group K can be derived from a K-voltage assignment. Given a spanning tree T of the graph X,
a voltage assignment φ is said to be T-reduced if the voltages on the tree arcs are the identity.

Gross and Tucker [9] showed that every regular covering X̃ of a graph X can be derived from a
T -reduced voltage assignment φ with respect to an arbitrary fixed spanning tree T of X. It is
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clear that if φ is reduced, the derived graph X ×φK is connected if and only if the voltages on the
cotree arcs generate the voltage group K.

Let X̃ be a K-covering of X with a projection p. If α∈ Aut(X) and α̃∈ Aut(X̃) satisfy α̃p = pα,
we call α̃ a lift of α, and α the projection of α̃. Concepts such as a lift of a subgroup of Aut(X)

and the projection of a subgroup of Aut(X̃) are self-explanatory. The lifts and the projections of

such subgroups are of course subgroups in Aut(X̃) and Aut(X), respectively. In particular, if the

covering graph X̃ is connected, then the covering transformation group K is the lift of the trivial

group, that is K={α̃∈ Aut(X̃): p = α̃p}. Clearly, if α̃ is a lift of α, then Kα̃ consists of all the
lifts of α.

0

1

2

3 4

a0a1

a2 a4a4

a1a3

a1a1

Figure 1. A choice of the six cotree arcs in K5.
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Let X ×φ K → X be a connected K-covering derived from a T -reduced voltage assignment φ.
The problem whether an automorphism α of X lifts or not can be grasped in terms of voltages as
follows. Observe that a voltage assignment on arcs extends to a voltage assignment on walks in a
natural way. Given α∈ Aut(X), we define a function ᾱ from the set of voltages on fundamental
closed walks based at a fixed vertex v ∈ V (X) to the voltage group K by

(φ(C))ᾱ = φ(Cα),

where C ranges over all fundamental closed walks at v, and φ(C) and φ(Cα) are the voltages on C
and Cα, respectively. Note that if K is abelian, ᾱ does not depend on the choice of the base vertex,
and the fundamental closed walks at v can be substituted by the fundamental cycles generated by
the cotree arcs of X.

The next proposition is a special case of [12, Theorem 3.5].

Proposition 2.1. Let X×φK → X be a connected K-covering derived from a T -reduced voltage
assignment φ. Then, an automorphism α of X lifts if and only if ᾱ extends to an automorphism
of K.

Two coverings X̃1 and X̃2 of X with projections p1 and p2, respectively, are said to be equivalent

if there exists a graph isomorphism α̃ : X̃1 → X̃2 such that α̃p2 = p1. We quote the following
proposition.

Proposition 2.2 ([16]). Two connected regular coverings X ×φ K and X ×ψ K, where φ and
ψ are T -reduced, are equivalent if and only if there exists an automorphism σ∈ Aut(K) such that
φ(u, v)σ = ψ(u, v) for any cotree arc(u, v) of X.
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3. Proof of Theorem 1.1

Suppose that D2n = 〈a, b | an = b2 = 1, b−1ab = a−1〉. If n = 2, then D4
∼= Z2 × Z2. Now since

elementary abelian coverings of the complete graph K5 were classified by Kuzman [10], we only
consider n ≥ 3.

By K5, we denote the complete graph with vertex set {0, 1, 2, 3, 4}. Let T be a spanning tree of
K5 as shown by dashed lines in Figure 2. Let φ be such a voltage assignment defined by φ = 1 on
T and φ = a0, a1, a2, a3, a4, and b0 on the cotree arcs (0, 1), (1, 2), (2, 3), (3, 4), (4, 0), and (0, 2),
respectively. Let ρ = (01234), τ = (0132) and σ = (024). Then ρ, τ , and σ are automorphisms of
K5.

By i1i2 . . . is denote a directed cycle which has vertices i1, i2, . . . , is in a consecutive order.
There are six fundamental cycles 130, 124, 1423, 134, 1403, and 13024 in K5 which are generated
by the six cotree arcs (0, 1), (1, 2), (2, 3), (3, 4), (4, 0) and (0, 2), respectively. Each cycle is mapped
to a cycle of the same length under the actions of ρ, τ , σ. We list all these cycles and their voltages
in Table 1 in which C denotes a fundamental cycle of K5 and φ(C) denotes the voltage of C.

Let X̃ = K5×φD2n be a covering graph of the graphK5 satisfying the hypotheses in the theorem,
where φ = 1 on the spanning tree T which is depicted by the dashed lines in Figure 2. Note that
the vertices of K5 are labeled by 0, 1, 2, 3, and 4. By the hypotheses, the fibre-preserving group,

say L̃, of the covering graph K5×φD2n acts arc-transitively on K5×φD2n. Hence, the projection

of L̃, say L, is arc-transitive on the base graph K5. Thus L is isomorphic to AGL(1, 5) = 〈ρ, τ〉,
A5 = 〈ρ, σ〉, or S5 = 〈ρ, σ, τ〉. Consider the mapping ρ̄ from the set {a0, a1, a2, a3, a4, b0} of the
voltages of the six fundamental cycles of K5 to the group D2n, defined by (φ(C))ρ̄ = φ(Cρ), where
C ranges over the six fundamental cycles. From Table 1, one can see that aρ̄0 = a1, aρ̄1 = a2b0,
aρ̄2 = b−1

0 a3, aρ̄3 = a4b0, aρ̄4 = b−1
0 a0 and bρ̄0 = b0. Similarly, we can define σ̄ and τ̄ .
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C φ(C) Cρ φ(Cρ)

130 a0 241 a1

124 a1 230 a2b0

1423 a2 2034 b−1
0 a3

134 a3 240 a4b0

1403 a4 2014 b−1
0 a0

13024 b0 24130 b0

Cσ φ(Cσ) Cτ φ(Cτ )

132 a−1
2 a−1

1 321 a−1
2 a−1

1

140 a4a0 304 a−1
4 a−1

3

1043 a−1
0 a−1

4 a−1
3 3402 a3a4b0a2

130 a0 324 a−1
2 a−1

3

1023 a−1
0 b0a2 3412 a3a1a2

13240 a−1
2 a4a0 32104 a−1

2 a−1
1 a−1

0 a−1
4 a−1

3

Table 1. Fundamental cycles and their images with corresponding voltages.

Here we make the following general assumption.

(I) Let X̃ be a connected D2n-covering (n ≥ 3) of the complete graph K5 whose fibre-preserving
subgroup is arc-transitive.

For the three following lemmas we suppose that n is an odd number.

Lemma 3.1. Suppose that the subgroup of Aut(X̃) generated by ρ and σ, say L, lifts. Under

the assumption (I), X̃ is arc-transitive if and only if X̃ is isomorphic to DK(6).

Proof. Since ρ, σ ∈ L, Proposition 2.1 implies that ρ̄ and σ̄ can be extended to automorphisms
of D2n. We denote by ρ∗ and σ∗ these extended automorphisms, respectively. In this case o(a0) =
o(a1) = o(a3). Now we consider the following two subcases:
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Subcase I. o(a0) = o(a1) = o(a3) = 2.

By considering aσ
∗

1 = a4a0, we have o(a4a0) = 2. It follows that o(a4) 6= 2. Since aρ
∗

4 = b−1
0 a0,

we have o(b−1
0 a0) 6= 2. So o(b−1

0 ) = 2, and hence o(a2) 6= 2, by aρ
∗

2 = b−1
0 a3. Now we may assume

that a0 = aib, a1 = ajb, a3 = akb, a2 = ar, a4 = as and b0 = alb, where 0 ≤ i, j, k, l ≤ n − 1
and 0 < r, s ≤ n− 1. Since Aut(D2n) acts transitively on involutions, by Proposition 2.2 we may
assume that a0 = b, a1 = aib, a3 = ajb, a2 = ar, a4 = as and b0 = akb, where 0 ≤ i, j, k ≤ n−1 and
0 < r, s ≤ n − 1. Also since K5 ×φ D2n is assumed to be connected, D2n = 〈a0, a1, a2, a3, a4, b0〉.
Thus we may assume that (t, n) = 1, where t ∈ {i, j, k, r, s}. Without loss of generality, we may
assume that (i, n) = 1 or (r, n) = 1. In fact, with the same arguments as in other cases we get the
same results. First suppose that (i, n) = 1. Since σ : a 7→ ai, b 7→ b is an automorphism of D2n, by
Proposition 2.2, we may assume that a0 = b, a1 = ab, a3 = aib, a2 = ar, a4 = as, and b0 = ajb,

where 0 ≤ i, j ≤ n − 1 and 0 < r, s ≤ n − 1. From Table 1, one can see that aρ
∗

0 = bρ
∗

= ab,

aρ
∗

1 = (ab)ρ
∗

= aρ
∗
bρ
∗

= ar+jb. Thus aρ
∗

= ar+j−1. By considering the image of a2 = ar, a4 = as

and b0 = ajb under ρ∗, we conclude that ar(r+j−1) = aj−i, as(r+j−1) = aj and aj(r+j−1)ab = ajb.
Also aσ

∗

0 = bσ
∗

= a−r+1b and aσ
∗

1 = (ab)σ
∗

= aσ
∗
bσ
∗

= asb. Thus aσ
∗

= as+r−1.
Now by considering the image of a2 = ar, a4 = as and b0 = ajb under σ∗, we conclude that

ar(r+s−1) = as−i, as(r+s−1) = a−j+r and aj(s+r−1)a−r+1b = as−rb.
Therefore, we have the following:
(1) r(r + j − 1) = j − i, (2) s(r + j − 1) = j,
(3) j(r + j − 1) = j − 1, (4) j(s+ r − 1) = s− 1,
(5) r(s+ r − 1) = s− i (6) s(s+ r − 1) = −j + r.

By (1) and (3), rj(r + j − 1) = j2 − ij and rj(r + j − 1) = rj − r. Thus j2 − ji = rj − r.
Also by (4) and (5), rj(s + r − 1) = sr − r and rj(s + r − 1) = sj − ij. Thus sj − ij = sr − r.
So j2 − rj = sj − sr, and hence (j − r)(j − s) = 0. Also by (2) and (3), sj(r + j − 1) = j2 and
sj(r + j − 1) = sj − s. Thus j2 = sj − s. By (j − r)(j − s) = 0, we have j = r or j = s. If j = r,
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then s2 + sr − s = 0, by (6). Thus s = 0 or s = −r + 1. If s = 0, then j = 0 by (2). Thus r = 0,
a contradiction. If s = −r + 1, then s = 1 by j(s + r − 1) = s − 1. So r = 0, a contradiction. If
j = s, then by j2 = sj − s, we have s = 0, a contradiction.

Now suppose that (r, n) = 1. Since σ : a 7→ ar, b 7→ b is an automorphism of D2n, by Propo-
sition 2.2, we may assume that a0 = b, a1 = aib, a3 = ajb, a2 = a, a4 = ar and b0 = akb,

where 0 ≤ i, j, k ≤ n − 1 and 0 < r ≤ n − 1. From Table 1, one can see that aρ
∗

0 = bρ
∗

= aib,

aρ
∗

2 = (a)ρ
∗

= ak−j . By considering the image of a1 = aib, a3 = ajb, a4 = ar and b0 = akb under

ρ∗, we conclude that ai(k−j)aib = ak+1b, aj(k−j)aib = ar+kb, ar(k−j) = ak and ak(k−j)aib = akb.
Also aσ

∗

0 = bσ
∗

= ai−1b and aσ
∗

2 = (a)σ
∗

= ar−j . Now by considering the image of a1 = aib,
a3 = ajb, a4 = ar and b0 = akb under σ∗, we conclude that ai(r−j)ai−1b = arb, aj(r−j)ai−1b = b,
ar(r−j) = a−k+1 and ak(r−j)ai−1b = ar−1b.

Therefore, we have the following:
(1) i(k − j) + i = k + 1, (2) j(k − j) + i = r + k,
(3) r(k − j) = k, (4) k(k − j) + i = k,
(5) i(r − j) + i− 1 = r, (6) j(r − j) + i− 1 = 0,
(7) r(r − j) = −k + 1, (8) k(r − j) = r − i.

By (2) and (3), rj(k− j) = r2 + rk− ir and rj(k− j) = kj. Thus r2 + rk− ir = kj. Also by (7)
and (8), rk(r−j) = −k2 +k and rk(r−j) = r2−ir. Thus −k2 +k = r2−ir. So kj−rk = −k2 +k,
and hence k(j − r+ k− 1) = 0. Thus k = 0 or j = r− k+ 1. If k = 0, then i = 0 by (4). Thus by
−k2 + k = r2 − ir, we have r = 0, a contradiction. If j = r− k+ 1, then (k− 1)(r+ 1) = 0 by (7).
Hence k = 1 or r = −1. If k = 1, then j = r. Now by (6), i = 1, and so by (8), we have r = 1. So
by (5), 1 = 0, a contradiction. If r = −1, then j = −k. Also by (5), i(r − j + 1) = 0, and so i = 0
or r = j − 1. If i = 0, then by (1), k = −1. Thus j = 1, and so by (3), 2 = −1. Therefore, n = 3
and

a0 = b, a1 = b, a3 = ab, a2 = a, a4 = a−1, b0 = a−1b.
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From Table 1, it is easy to check that ρ̄, σ̄ and τ̄ can be extended to automorphisms of D2n.
Thus by Proposition 2.1, ρ, σ and τ lift. Since S5 = 〈ρ, σ, τ〉 is 2-arc-transitive, it follows that

Aut(X̃) contains a 2-arc-transitive subgroup lifted by 〈ρ, σ, τ〉. Therefore, X̃ is 2-arc-transitive.
Finally, if r = j − 1, then by r = −1, we have j = 0. So by (6), i = 1. Also by (7), k = 0. Now

by (2), 1 = −1, and so n = 2, a contradiction.

Subcase II. o(a0) = o(a1) = o(a3) 6= 2.

By considering aσ
∗

1 = a4a0, we have o(a4a0) 6= 2. It follows that o(a4) 6= 2. Since aρ
∗

4 = b−1
0 a0,

we have o(b−1
0 a0) 6= 2. So o(b−1

0 ) 6= 2, and hence o(a2) 6= 2 by aρ
∗

2 = b−1
0 a3. Now we may assume

that a0 = ai, a1 = aj , a2 = ak, a3 = al, a4 = am and b0 = an, where 0 ≤ i, j, k, l,m, n ≤ n − 1.
Since K5 ×φ D2n is connected, we have a contradiction. �

Lemma 3.2. Suppose that the subgroup of Aut(X̃) generated by ρ and τ , say L, lifts. Under

the assumption (I), X̃ is arc-transitive if and only if X̃ is isomorphic to DK(2n) for n > 3.

Proof. Since ρ, τ ∈ L, Proposition 2.1 implies that ρ̄ and τ̄ can be extended to automorphisms
of D2n. We denote these extended automorphisms by ρ∗ and τ∗, respectively. In this case o(a0) =
o(a1). Now we consider the following two subcases:

Subcase I. o(a0) = o(a1) = 2.
By considering aτ

∗

0 = a−1
2 a−1

1 , we have o(a−1
2 a−1

1 ) = 2. It follows that o(a2) 6= 2. Since

aρ
∗

2 = b−1
0 a3, we have either o(b0) = o(a3) = 2 or o(b0) 6= 2 and o(a3) 6= 2. First suppose that

o(b0) 6= 2 and o(a3) 6= 2. Since aρ
∗

3 = a4b0, we have o(a4) 6= 2. Also since aρ
∗

4 = b−1
0 a0, it follows

that o(a0) 6= 2, a contradiction.

Now suppose that o(b0) = o(a3) = 2. Since aρ
∗

3 = a4b0, it implies that o(a4) 6= 2. Now
we may assume that a0 = aib, a1 = ajb, a3 = akb, a2 = ar, a4 = as and b0 = alb, where
0 ≤ i, j, k, l ≤ n− 1 and 0 < r, s ≤ n− 1. Since Aut(D2n) acts transitively on involutions, we may
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assume that a0 = b, a1 = aib, a3 = ajb, a2 = ar, a4 = as and b0 = akb, where 0 ≤ i, j, k ≤ n − 1
and 0 < r, s ≤ n − 1. Since K5 ×φ D2n is assumed to be connected, D2n = 〈a0, a1, a2, a3, a4, b0〉.
Thus we may assume that (t, n) = 1, where t ∈ {i, j, k, r, s}. Without loss of generality, we may
assume that (i, n) = 1 or (r, n) = 1. In fact, with the same arguments as in other cases we get
the same results. First suppose that (i, n) = 1. Since σ : a 7→ ai, b 7→ b is an automorphism
of D2n, by Proposition 2.2, we may assume that a0 = b, a1 = ab, a3 = aib, a2 = ar, a4 = as

and b0 = ajb, where 0 ≤ i, j ≤ n − 1 and 0 < r, s ≤ n − 1. From Table 1, one can see that

aρ
∗

0 = bρ
∗

= ab, aρ
∗

1 = (ab)ρ
∗

= aρ
∗
bρ
∗

= ar+jb. Thus aρ
∗

= ar+j−1. By considering the image of

a2 = ar, a3 = aib and b0 = ajb under ρ∗, we conclude that ar(r+j−1) = aj−i, ai(r+j−1)ab = as+jb
and aj(r+j−1)ab = ajb. Also aτ

∗

0 = bτ
∗

= a−r+1b, aτ
∗

1 = (ab)τ
∗

= aτ
∗
bτ
∗

= ai−sb. Thus
aτ
∗

= ai−s+r−1. By considering the image of a2 = ar and b0 = ajb under τ∗, we conclude that
ar(i−s+r−1) = ai−s−j+r and aj(i−s+r−1)a−r+1 = a−r+1−s+i.

Therefore, we have the following:
(1) r(r + j − 1) = j − i, (2) i(r + j − 1) + 1 = s+ j,
(3) j(r + j − 1) + 1 = j, (4) r(i− s+ r − 1) = i− s− j + r,
(5) j(i− s+ r − 1) = i− s.

By (4) and (5), (j − r)(i− s+ r− 2) = 0. Thus j = r or i− s+ r = 2. If i− s+ r = 2, then by
(4) j = i− s. Now by (1), r(r+ i− s− 1) = −s. So by considering (4) i+ r = j. Thus r = −s by
j = i− s. So i = 2s+ 2, and hence j = s+ 2. Now by (2), 1 = 0, a contradiction. If j = r, then
r(2r − 1) = r − i by (1). Also by (3), r(2r − 1) = r − 1. So i = 1, and hence by (2), s = r. Now
by (5), s = r = j = 1. Thus by (1), 1 = 0, a contradiction.

Now suppose that (r, n) = 1. Since σ : a 7→ ar, b 7→ b is an automorphism of D2n, by Propo-
sition 2.2, we may assume that a0 = b, a1 = aib, a3 = ajb, a2 = a, a4 = ar and b0 = akb,

where 0 ≤ i, j, k ≤ n − 1 and 0 < r ≤ n − 1. From Table 1, one can see that aρ
∗

0 = bρ
∗

= aib,

aρ
∗

2 = (a)ρ
∗

= ak−j . By considering the image of a1 = aib, a3 = ajb, a4 = ar and b0 = akb under
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ρ∗, we conclude that ai(k−j)aib = ak+1b, aj(k−j)aib = ak+rb, ar(k−j) = ak and ak(k−j)aib = akb.
Also aτ

∗

0 = bτ
∗

= ai−1b, aτ
∗

2 = aτ
∗

= aj−r−k+1. By considering the image of a1 = aib, a3 = ajb
and b0 = akb under τ∗, we conclude that ai(j−r−k+1)ai−1b = aj−rb, aj(j−r−k+1)ai−1b = aj−1b and
ak(j−r−k+1)ai−1b = ai−1−r+jb.

Therefore, we have the following:
(1) ik − ij + i = k + 1, (2) jk − j2 + i = r + k,
(3) rk − rj = k, (4) k2 − kj + i = k,
(5) i(j − r − k + 1) + i− 1 = −r + j, (6) j(j − r − k + 1) = j − i,
(7) k(j − r − k + 1) = j − r.

By (6), j2 − jr − jk + i = 0. Also by (6) and (7), we have kj(j − r − k + 1) = kj − ki and
kj(j − r − k + 1) = j2 − rj. Thus j2 − jr = kj − ki. Thus i(k − 1) = 0, and so i = 0 or k = 1. If
i = 0, then by (1), we have k = −1. Also by (4), j = −2. Now by (2), r = −1. Therefore,

a0 = b, a1 = b, a3 = a−2b, a2 = a, a4 = a−1, b0 = a−1b.

From Table 1, it is easy to check that ρ̄ and τ̄ can be extended to automorphisms of D2n. By

Proposition 2.1, ρ and τ lift. Clearly, AGL(1, 5) = 〈ρ, τ〉 is 1-regular. Thus Aut(X̃) contains a
1-regular subgroup lifted by 〈ρ, τ〉.

Now if k = 1, then by (3) and (4), r − rj = 1 and i − j = 0. Since i = j, it follows that
i(i− r) = −r + 1 by (5). So i2 − ir = −r + 1 = −1− rj + 1. Thus i = j = 0, and so r = 1. Now
by (2), 2 = 0, a contradiction.

Subcase II. o(a0) = o(a1) 6= 2.
By considering aτ

∗

0 = a−1
2 a−1

1 , we have o(a−1
2 a−1

1 ) 6= 2. It follows that o(a2) 6= 2. Since

aρ
∗

2 = b−1
0 a3, we have either o(b0) = o(a3) = 2 or o(b0) 6= 2 and o(a3) 6= 2. First suppose that

o(b0) = o(a3) = 2. Since aρ
∗

3 = a4b0, it follows that o(a4) 6= 2. Now by considering aρ
∗

4 = b−1
0 a0,

we have o(b−1
0 a0) 6= 2 a contradiction.
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Now suppose that o(b0) 6= 2 and o(a3) 6= 2. Since aρ
∗

3 = a4b0, we have o(a4) 6= 2. Therefore,
K5 ×φ D2n is not connected, a contradiction. �

Lemma 3.3. Suppose that the subgroup of Aut(X̃) generated by ρ, σ and τ , say L, lifts. Under

the assumption (I), X̃ is arc-transitive if and only if X̃ is isomorphic to DK(2n) for n ≥ 3.

Proof. ρ and σ lift. With the same arguments as in Cubcase I, we have n = 3 and

a0 = b, a1 = b, a3 = ab, a2 = a, a4 = a−1, b0 = a−1b.

From Table 1, it is easy to check that ρ̄ σ̄ and τ̄ can be extended to automorphisms of D2n.

By Proposition 2.1, ρ, σ and τ lift. Also S5 = 〈ρ, σ, τ〉 is 2-arc-transitive. Thus Aut(X̃) contains

a 2-arc-transitive subgroup lifted by 〈ρ, σ, τ〉. Thus X̃ is 2-arc-transitive. Moreover, ρ and τ lift.
With the same arguments as in Subcase II, we have

a0 = b, a1 = b, a3 = a−2b, a2 = a, a4 = a−1, b0 = a−1b.

From Table 1, it is easy to check that σ̄ can be extended to automorphisms of D2n whenever

n = 3. Now if n = 3, then by Proposition 2.1, σ lift. Now with the same arguments as above, X̃
is 2-arc-transitive. �

Now suppose that n is even.

Lemma 3.4. Suppose that the subgroup of Aut(X̃) generated by ρ and σ, say L, lifts. Then
there is no connected regular covering of the complete graph K5 whose fibre-preserving group is
arc-transitive.

Proof. Since ρ, σ ∈ L, Proposition 2.1 implies that ρ̄ and σ̄ can be extended to automorphisms
of D2n. We denote these extended automorphisms by ρ∗ and σ∗, respectively. In this case o(a0) =
o(a1) = o(a3). Now we consider the following two subcases:
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Subcase I. o(a0) = o(a1) = o(a3) = 2.
Since o(a0) = 2, we may assume that a0 = an/2 or a0 6= an/2 and a0 = aib (0 ≤ i < n). If

a0 = an/2, then a1 = a3 = an/2. By Table 1, aσ
∗

1 = a4a0 and aσ
∗

3 = a0. Thus a4 = 1 and so by

aρ
∗

4 = b−1
0 a0, we have b0 = an/2. Also by aρ

∗

2 = b−1
0 a3, we have a2 = 1. Therefore K5 ×φ D2n is

not connected, a contradiction.
Thus we may assume that a0 6= an/2. So a1 6= an/2 and a3 6= an/2. Thus we may assume that

a0 = aib, a1 = ajb and a3 = akb, where 0 ≤ i, j, k < n. By considering aρ
∗

1 = a2b0, we have one of
the following cases:

i) a2 = alb, b0 = at (0 ≤ l < n, 0 < t < n);
ii) a2 = al, b0 = atb (0 < l < n, 0 ≤ t < n).

First suppose that a2 = alb, b0 = at (0 ≤ l < n, 0 < t < n). Since aρ
∗

4 = b−1
0 a0, we may suppose

that a4 = asb, where 0 ≤ s < n. Now since bσ
∗

0 = a−1
2 a4a0, we have a contradiction. Now suppose

that a2 = al, b0 = atb (0 < l < n, 0 ≤ t < n). Since aρ
∗

4 = b−1
0 a0, we have o(a4) 6= 2 or a4 = an/2.

First suppose that o(a4) 6= 2. Now by Proposition 2.2, we may assume that a0 = aib, a1 = ajb,
a3 = akb, a2 = al, a4 = ak and b0 = atb, where 0 ≤ i, j, k, t ≤ n − 1 and 0 < l, k ≤ n − 1. Now
with the same arguments as in Subcase I, when n is odd, we have

a0 = b, a1 = b, a3 = ab, a2 = a, a4 = a−1, b0 = a−1b.

From Table 1, it is easy to check that ρ̄ and σ̄ can be extended to automorphisms of D2n when
n = 3, a contradiction.

Now suppose that a4 = an/2. Now we may assume that a0 = aib, a1 = ajb, a3 = akb, a2 = ar,
a4 = an/2, and b0 = alb, where 0 ≤ i, j, k, l ≤ n − 1 and 0 < r ≤ n − 1. Since Aut(D2n) acts
transitively on involutions, by Proposition 2.2, we may assume that a0 = b, a1 = aib, a3 = ajb,
a2 = ar, a4 = an/2 and b0 = akb, where 0 ≤ i, j, k ≤ n− 1 and 0 < r ≤ n− 1. Since K5 ×φ D2n is
assumed to be connected, D2n = 〈a0, a1, a2, a3, a4, b0〉. Thus we may assume that (t, n) = 1, where
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t ∈ {i, j, k, r}. Without loss of generality, we may assume that (i, n) = 1 or (r, n) = 1. In fact,
with the same arguments as in other cases we get same results. First suppose that (i, n) = 1. Since
σ : a 7→ ai, b 7→ b is an automorphism of D2n, by Proposition 2.2, we may assume that a0 = b,
a1 = ab, a3 = aib, a2 = ar, a4 = a(n/2) and b0 = ajb, where 0 ≤ i, j ≤ n − 1 and 0 < r ≤ n − 1.
Now with the same arguments as in Subcase I, when n is odd (by replacing s with (n/2)), we have
a contradiction.

Now suppose that (r, n) = 1. Since σ : a 7→ ar, b 7→ b is an automorphism of D2n, by Propo-
sition 2.2, we may assume that a0 = b, a1 = aib, a3 = ajb, a2 = a, a4 = a(n/2) and b0 = akb,
where 0 ≤ i, j, k ≤ n − 1. Now by replacing r with (n/2) in Case I, when n is odd, we have
(n/2)(k−j) = k and (n/2)((n/2)−j) = −k+1 (see Equations (3) and (7) in Subcase I). So n = 2,
a contradiction.

Subcase II. o(a0) = o(a1) = o(a3) 6= 2.
By considering aσ

∗

1 = a4a0, we have o(a4a0) 6= 2. So we have o(a4) 6= 2 or o(a4) = 2 and

a4 = an/2. If o(a4) 6= 2, then o(b−1
0 a0) 6= 2 by aρ

∗

4 = b−1
0 a0. Now we have o(b0) 6= 2 or o(b0) = 2

and b0 = an/2. If b0 = an/2, then o(a2) 6= 2 by aρ
∗

2 = b−1
0 a3. Therefore, K5 ×φ D2n is not

connected, a contradiction. If o(b0) 6= 2, then by aρ
∗

2 = b−1
0 a3, we have o(a2) 6= 2 or o(a2) = 2

and a2 = an/2. Thus K5 ×φ D2n is not connected, a contradiction. Finally, if a4 = an/2, then

by considering aρ
∗

3 = a4b0, we have o(b0) 6= 2 or o(b0) = 2 and b0 = an/2. Clearly, b0 6= an/2 by

aρ
∗

3 = a4b0. Thus o(b0) 6= 2, and so by aρ
∗

2 = b−1
0 a3, we have o(a2) 6= 2 or o(a2) = 2 and a2 = an/2.

Therefore, K5 ×φ D2n is not connected, a contradiction. �

Lemma 3.5. Suppose that the subgroup of Aut(X̃) generated by ρ and τ , say L, lifts. Under

the assumption (I), X̃ is arc-transitive if and only if X̃ is isomorphic to DK(2n) for n > 3.
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Proof. Since ρ, τ ∈ L, Proposition 2.1 implies that ρ̄ and τ̄ can be extended to automorphisms
of D2n. We denote these extended automorphisms by ρ∗ and τ∗, respectively. In this case o(a0) =
o(a1). Now we consider the following two subcases:

Subcase I. o(a0) = o(a1) = 2.
Since o(a0) = 2, we may assume that a0 = an/2 or a0 6= an/2 and a0 = aib (0 ≤ i < n). If

a0 = an/2, then a1 = an/2. By Table 1, we have aτ
∗

0 = a−1
2 a−1

1 and aρ
∗

1 = a2b0. Therefore, a2 = 1

and b0 = an/2. Also by aρ
∗

2 = b−1
0 a3, we have a3 = an/2. Now by aρ

∗

3 = a4b0, we have a4 = 1.

Thus X̃ is not connected, a contradiction. Thus we may assume that a0 6= an/2 and a0 = aib. So
a1 6= an/2 and so we may assume that a0 = aib, a1 = ajb, where 0 ≤ i, j < n. By considering
aτ
∗

0 = a−1
2 a−1

1 , we have o(a2) 6= 2 or a2 = an/2. First assume that o(a2) 6= 2. Thus b0 = akb

(0 ≤ k < n) by aρ
∗

1 = a2b0. Also since aρ
∗

2 = b−1
0 a3, we have o(a3) = 2 and a3 = alb (0 ≤ l < n).

Finally, since aρ
∗

4 = b−1
0 a0, we have o(a4) 6= 2 or a4 = an/2. First suppose that a4 = an/2. We

have a0 = aib, a1 = ajb, a3 = akb, a2 = ar, a4 = an/2 and b0 = alb, where 0 ≤ i, j, k, l ≤ n − 1
and 0 < r ≤ n − 1. Since Aut(D2n) acts transitively on involutions, by Proposition 2.2, we may
assume that a0 = b, a1 = aib, a3 = ajb, a2 = ar, a4 = an/2 and b0 = akb, where 0 ≤ i, j, k ≤ n− 1

and 0 < r ≤ n − 1. Since aρ
∗

4 = b−1
0 a0, we have k = n/2. Now a4a0 = b0, and so (a4a0)ρ

∗
= bρ

∗

0 .

Thus a0 = a1, and so i = 0. We have aρ
∗

0 = aρ
∗

1 . So a1 = a2b0, and hence r = n/2. Now a2 = a4,

and so aρ
∗

2 = aρ
∗

4 . Therefore, a0 = a3, and hence a3 = b. Now K5 ×φ D2n is not connected a
contradiction.

Now suppose that o(a4) 6= 2. With the same arguments as in Subcase II, when n is odd, we
have

a0 = b, a1 = b, a3 = a−2b, a2 = a, a4 = a−1, b0 = a−1b.
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From Table 1, it is easy to check that ρ̄ and τ̄ can be extended to automorphisms of D2n.

By Proposition 2.1, ρ and τ lift. Also AGL(1, 5) = 〈ρ, τ〉 is 1-regular. Thus Aut(X̃) contains a
1-regular subgroup lifted by 〈ρ, τ〉.

Now assume that a2 = an/2. Thus b0 = akb (0 ≤ k < n) by aρ
∗

1 = a2b0. Also since aρ
∗

2 = b−1
0 a3,

we have o(a3) = 2 and a3 = alb (0 ≤ l < n). Finally, since aρ
∗

4 = b−1
0 a0, we have o(a4) 6= 2 or

a4 = an/2. First suppose that a4 = an/2. We have a0 = aib, a1 = ajb, a3 = akb, a2 = a4 = an/2 and
b0 = alb, where 0 ≤ i, j, k, l ≤ n−1. Since aτ

∗

4 = a3a1a2, we have k = j. Also since aτ
∗

2 = a3a4b0a2,
we have l = k = j. Since Aut(D2n) acts transitively on involutions, by Proposition 2.2, we may
assume that a0 = b, a1 = aib, a3 = aib, a2 = a4 = an/2, and b0 = aib, where 0 ≤ i, j, k ≤ n − 1.

Since aρ
∗

4 = b−1
0 a0, we have i = n/2, a contradiction.

Now suppose that a0 = aib, a1 = ajb, a3 = akb, a2 = an/2, a4 = as and b0 = alb, where
0 ≤ i, j, k, l ≤ n − 1 and 0 < s ≤ n − 1. Since Aut(D2n) acts transitively on involutions, we may
assume that a0 = b, a1 = aib, a3 = ajb, a2 = an/2, a4 = as and b0 = akb, where 0 ≤ i, j, k ≤ n− 1
and 0 < s ≤ n−1. Since K5×φD2n is assumed to be connected, D2n = 〈a0, a1, a2, a3, a4, b0〉. Thus
we may assume that (t, n) = 1, where t ∈ {i, j, k, s}. Without loss of generality we may assume that
(i, n) = 1 or (s, n) = 1. In fact, with the same arguments the in other cases we get the same results.
First suppose that (i, n) = 1. Therefore, we may assume that a0 = b, a1 = ab, a3 = aib, a2 = a(n/2),
a4 = as, and b0 = ajb, where 0 ≤ i, j ≤ n− 1 and 0 < s ≤ n− 1. Now with the same arguments as
in Case II, when n is odd we get a contradiction. Now suppose that (s, n) = 1. Therefore, we may
assume that a0 = b, a1 = aib, a3 = ajb, a2 = an/2, a4 = a and b0 = akb, where 0 ≤ i, j, k ≤ n− 1.

From Table 1, one can see that aρ
∗

0 = bρ
∗

= aib, aρ
∗

4 = (a)ρ
∗

= ak. By considering the image of

a1 = aib, a3 = ajb and a2 = an/2 under ρ∗, we conclude that aik+ib = a(n/2)+kb, ajk+ib = ak+1b
and a(n/2)k = ak−j . Thus, we have ik + i = n/2 + k, jk + i = k + 1 and (n/2)k = k − j. By
(n/2)k = k−j, we have nk = 2k−2j. It follows that 2j = 2k. Also aτ

∗
= ajbaiba(n/2) = aj−i+(n/2).
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Thus aτ
∗

2 = an/2(j−i+(n/2)) = ajbaakba(n/2) = aj−1−k+(n/2). So, 2j − 2k − 2 = 0 and so 2 = 0, a
contradiction.

Subcase II. o(a0) = o(a1) 6= 2.
By considering aτ

∗

0 = a−1
2 a−1

1 , we have o(a−1
2 a−1

1 ) 6= 2. Thus o(a2) 6= 2 or a2 = an/2. First

suppose that o(a2) 6= 2. By considering aρ
∗

2 = b−1
0 a3, we have one of the following cases:

i) a3 = aib, b0 = ajb (0 ≤ i, j < n);
ii) a3 = ai, b0 = an/2 (0 < i < n);

iii) a3 = an/2, b0 = ai (0 < i < n).

By aρ
∗

1 = a2b0, we have a contradiction in the first case. Now consider the second case. Since

aρ
∗

3 = a4b0, we have o(a4) 6= 2. Now K5×φD2n is not connected, a contradiction. Now consider the

last case. Since aρ
∗

3 = a4b0, we have o(a4) 6= 2. Thus K5×φD2n is not connected, a contradiction.

Now suppose that a2 = an/2. By aρ
∗

1 = a2b0, we have o(b0) 6= 2. Also since aρ
∗

2 = b−1
0 a3, we

have o(a3) 6= 2. Finally, since aρ
∗

3 = a4b0, we have o(a4) 6= 2 or a4 = an/2. Thus K5 ×φ D2n is not
connected, a contradiction. �

Lemma 3.6. Suppose that the subgroup of Aut(X̃) generated by ρ, σ and τ , say L, lifts. Then
there is no connected regular covering of the complete graph K5 whose fibre-preserving group is
arc-transitive.

Proof. ρ and σ lift. With the same arguments as in Case I, we have a contradiction. Also ρ and
τ lift. With the same arguments as in Subcase II, we have

a0 = b, a1 = b, a3 = a−2b, a2 = a, a4 = a−1, b0 = a−1b.

From Table 1, it is easy to check that σ̄ can be extended to automorphisms of D2n whenever
n = 3, a contradiction. �
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Proof of Theorem 1.1. This follows from Lemmas 3.1, 3.2 , 3.3, 3.4, 3.5 and 3.6. �
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