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EXISTENCE AND A PRIORI ESTIMATES FOR SEMILINEAR ELLIPTIC

SYSTEMS OF HARDY TYPE

J. PAČUTA

Abstract. We study semilinear elliptic systems of Hardy type on bounded domains. We look for
conditions guaranteeing the existence and uniform boundedness of very weak solutions satisfying ho-
mogeneous Dirichlet boundary conditions.

1. Introduction

Consider the problem 
−∆u = a(x)|x|−κvq x ∈ Ω,

−∆v = b(x)|x|−λup x ∈ Ω,

u = v = 0, x ∈ ∂Ω,

(1)

where  Ω is a bounded domain in Rn (n ≥ 2) of the class C2+γ

for some γ ∈ (0, 1), 0 ∈ ∂Ω, p, q > 0, pq > 1,
a, b ∈ L∞(Ω), a, b ≥ 0, a, b 6≡ 0, κ, λ ∈ (0, 2).

(2)
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In this paper, we study boundedness and existence of nonnegative very weak solutions of problem
(1). We say that (u, v) is a very weak solution of (1) if u, v ∈ L1(Ω), the right-hand sides in (1)
belong to the weighted Lebesgue space L1(Ω; dist(x, ∂Ω) dx) and

−
∫

Ω

u∆ϕ dx =

∫
Ω

a(x)|x|−κvqϕ dx, −
∫

Ω

v∆ϕ dx =

∫
Ω

b(x)|x|−λupϕ dx

for every ϕ ∈ C2(Ω), ϕ = 0 on ∂Ω.
Problem (1) with κ = λ = 0 has been widely studied. Concerning very weak solutions, necessary

and sufficient conditions for their boundedness were found in [3], [11] and [13]. In those papers
the existence of very weak solution was studied as well.

Problem (1) with a = b ≡ 1, 0 ∈ Ω and general κ, λ ∈ R has been studied by several authors,
who were mainly interested in the existence of classical solutions (if max{κ, λ} ≤ 0) or solutions
of the class C2(Ω r {0}) ∩ C(Ω) (if max{κ, λ} > 0). If max{κ, λ} ≥ 2, then (1) has no positive
solution in this class for any domain Ω containing the origin; see [1]. If max{κ, λ} < 2, Ω is a
bounded starshaped domain and some additional assumptions are satisfied, then (1) has a positive
solution if and only if the following condition is satisfied

n− κ
1 + q

+
n− λ
1 + p

> n− 2;(3)

see, e.g., [4], [5], [7], [9] for details. If max{κ, λ} < 2 and Ω = Rn, n ≥ 3 , then (1) has no positive
radial solution if and only if (3) is true. The conjecture is that if (3) holds, (1) has no positive
nonradial solution for Ω = Rn; see [2]. This conjecture has been partially proved in, e.g., [10].
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We will assume (2) and we will deal with the problem
−∆u = a(x)|x|−κvq + t(u+ ϕ1), x ∈ Ω,

−∆v = b(x)|x|−λup, x ∈ Ω,

u = v = 0, x ∈ ∂Ω

(4)

if q ≥ 1, p > 0 and with problem
−∆u = a(x)|x|−κvq, x ∈ Ω,

−∆v = b(x)|x|−λup + t(v + ϕ1), x ∈ Ω,

u = v = 0, x ∈ ∂Ω

(5)

if q < 1, p > 1. In both cases we will assume t ≥ 0. The terms t(u+ ϕ1) in (4) or t(v + ϕ1) in (5)
are needed to use the topological degree in the proof of the existence of solutions of (1). Denote

α :=
(2− λ)q + 2− κ

pq − 1
, β :=

(2− κ)p+ 2− λ
pq − 1

.(6)

We have the following results.

Theorem 1.1. Assume (2) and max{α, β} > n−1. If q ≥ 1, p > 0, then for every nonnegative
very weak solution of problem (4) with t ≥ 0, we have u, v ∈ L∞(Ω) and there exists constant
C(Ω, a, b, p, q, κ, λ) > 0 such that

t+ ‖u‖∞ + ‖v‖∞ ≤ C(Ω, a, b, p, q, κ, λ).

If q < 1, p > 1, then the same result holds for nonnegative very weak solutions of problem (5) with
t ≥ 0.

Theorem 1.2. Assume (2) and max{α, β} > n− 1. Then there exists a positive bounded very
weak solution of problem (1).



JJ J I II

Go back

Full Screen

Close

Quit

Theorem 1.3. Assume (2) and max{α, β} < n− 1. Then there exist functions a, b ∈ L∞(Ω),
a, b ≥ 0, a, b 6≡ 0 and a positive very weak solution (u, v) of problem (1) such that u, v /∈ L∞(Ω).

Theorem 1.1 will be proved by a bootstrap method in weighted Lebesgue spaces used in [3],
[11], for example. Although [11, Theorem 2.1] also implies the assertion of Theorem 1.1, the
corresponding assumptions on p, q, κ, λ are more restrictive than our condition max{α, β} > n−1.
Theorem 1.3 is based on a modification of the proof in [13].

Analogous results to the above theorems are true in the case of the scalar problem{
−∆u = a(x)|x|−κup, x ∈ Ω,

u = 0, x ∈ ∂Ω.
(7)

The condition max{α, β} > n − 1 or max{α, β} < n − 1 is then replaced by 2−κ
p−1 > n − 1 or

2−κ
p−1 < n − 1, respectively. The proofs of such assertions are simpler than those of Theorems
1.1–1.3.

The case max{α, β} = n− 1 seems to be open in the vector case. The existence of unbounded
solutions of problem (7) with κ = 0 for 2

p−1 = n− 1 was proved in [6].

2. Preliminaries

Denote

δ(x) = dist(x, ∂Ω) for x ∈ Ω,

and for 1≤p≤∞ define the weighted Lebesgue spaces Lpδ =Lpδ(Ω):=Lp(Ω; δ(x) dx). If 1 ≤ p <∞,
then the norm in Lpδ is defined by

‖u‖p,δ =

(∫
Ω

|u(x)|pδ(x) dx

)1/p

.
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Recall that L∞δ = L∞(Ω; dx) with ‖u‖∞,δ = ‖u‖∞. We will use the notation ‖ · ‖p for the norm in
Lp(Ω) for p ∈ [1,∞) as well.

In the proofs we use the following lemmas.

Lemma 2.1. ([12, Theorem 49.1, Theorem 49.2(i)]) Let Ω be a bounded domain of class C2+γ

for some γ ∈ (0, 1). Assume that 1 ≤ p ≤ q ≤ ∞ satisfy

1

p
− 1

q
<

2

n+ 1
.

Let f ∈ L1
δ(Ω). Then there exists a unique very weak solution u of{

−∆u = f, x ∈ Ω,
u = 0, x ∈ ∂Ω.

(8)

If f ∈ Lpδ(Ω), then u ∈ Lqδ(Ω) and

‖u‖q,δ ≤ C(p, q,Ω)‖f‖p,δ.

Lemma 2.2. ([12, Remark 49.12(i)]) Let f ∈ L1
δ(Ω) satisfy f ≥ 0 a.e. Then the very weak

solution of (8) satisfies

u(x) ≥ C(Ω)‖f‖1,δδ(x), x ∈ Ω.

For F : R→ R and x ∈ R we denote F (0)(x) = x and F (j)(x) = F (F (j−1)(x)) (j ∈ N), the j-th
iteration of F .

Lemma 2.3. Let F : [a, b)→ R be a continuous function (b ≤ ∞) and

F (x) > x for all x ∈ [a, b).(9)

Then, for all Q ∈ (a, b) there exists j ∈ N, that F (j)(a) > Q.
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Proof of Lemma 2.3. The function F is continuous on the compact interval [a,Q]. The inequal-
ity (9) implies the existence of µ = µ(Q) > 0 such that for every x ∈ [a,Q], we have

F (x) ≥ µ+ x.

This implies F (j)(a) ≥ jµ+ a for all j ∈ N such that F (j−1)(a) ≤ Q. �

Lemma 2.4 ([13]). Let n ≥ 2 and let Ω be a bounded domain of the class C2. Assume that
0 ∈ ∂Ω. Let −2 < γ < n − 1. Then there exist R > 0 and a revolution cone Σ1 of the vertex 0
with Σ := Σ1 ∩ {x ∈ Rn; |x| < R} ⊂ Ω ∪ {0} such that the function

φ := |x|−(γ+2)χΣ

belongs to L1
δ(Ω) and the very weak solution u > 0 of the problem{

−∆u = φ, x ∈ Ω,
u = 0, x ∈ ∂Ω

satisfies the estimate

u ≥ C|x|−γχΣ .

3. Proofs of theorems

Proof of Theorem 1.1. In the proof, we use C or C ′ to denote constants which can vary from
step to step.

Observe that α, β defined by (6) satisfy

αp+ λ = β + 2,

βq + κ = α+ 2.
(10)
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Suppose first α ≥ β, so α > n− 1. Using these conditions and (10), we obtain

p <
n+ 1− λ
n− 1

, q > 1.(11)

Thus we will deal with system (4) in the following. The case β ≥ α can be treated similarly to
dealing with system (5).

Denote f(x, v) = a(x)|x|−κvq + t(u + ϕ1), g(x, u) = b(x)|x|−λup. Let (u, v) be a very weak
solution of (4), u, v ≥ 0. By definition of a very weak solution we have u, v ∈ L1(Ω), f, g ∈ L1

δ(Ω)
and for ϕ = ϕ1, it holds

λ1

∫
Ω

uϕ1 dx =

∫
Ω

u(−∆ϕ1) dx =

∫
Ω

fϕ1 dx,

λ1

∫
Ω

vϕ1 dx =

∫
Ω

gϕ1 dx,

(12)

where λ1 is the first eigenvalue of the problem{
−∆φ = λφ, x ∈ Ω,

φ = 0, x ∈ ∂Ω

and ϕ1 is the corresponding positive eigenfunction satisfying ‖ϕ1‖2 = 1. Using (12), we have

(λ1 − t)
∫

Ω
uϕ1 dx =

∫
Ω
a|x|−κvqϕ1 dx+ t ≥ 0,(13)

therefore, t ≤ λ1 for u 6≡ 0. The equality in (13) further implies that (0, v) is not a solution of
problem (4) for any nonnegative v ∈ L1(Ω) and t > 0. Hence, in both cases we have t ≤ C(Ω).

Using (12) and

C(Ω)δ(x) ≤ ϕ1(x) ≤ C ′(Ω)δ(x) for all x ∈ Ω,
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we get

C(Ω)‖f‖1,δ ≤ ‖u‖1,δ ≤ C ′(Ω)‖f‖1,δ,
C(Ω)‖g‖1,δ ≤ ‖v‖1,δ ≤ C ′(Ω)‖g‖1,δ.

(14)

In this part of the proof, we estimate
∫

Ω
frδ dx,

∫
Ω
gsδ dx for r, s ≥ 1. Let (u, v) be a very weak

solution of (4), u ∈ Lkδ (Ω), v ∈ Llδ(Ω) for k, l ≥ 1, u, v ≥ 0. Then it holds∫
Ω

frδ dx ≤ C(r)

(∫
Ω

ar|x|−κrvqrδ dx+

∫
Ω

((t u)r + (t ϕ1)r)δ dx

)
≤ C(Ω, a, r, θ1)

(
1 +

∫
Ω

|x|−
κr
θ1

+1 dx+

∫
Ω

(v
qr

1−θ1 + ur)δ dx

)(15)

for all θ1 ∈ (0, 1), where we have successively used boundedness of function a, the Young inequality,
boundedness of t and the assumption 0 ∈ ∂Ω (then it holds δ(x) ≤ |x|). Similarly it holds∫

Ω

gsδ dx ≤ C(Ω, b, s, θ2)

(∫
Ω

|x|−
λs
θ2

+1 dx+

∫
Ω

u
ps

1−θ2 δ dx

)
(16)

for all θ2 ∈ (0, 1). We will show that if k, l are large enough, then the right-hand sides in (15), (16)
can be estimated by ‖u‖k,δ, ‖v‖l,δ for some r, s ≥ 1.

Now we determine the dependence r, s on k, l. If

r < r̃(l) :=
(n+ 1)l

κl + (n+ 1)q
,

then there exists θ1 ∈ (0, 1) such that

−κr
θ1

+ 1 > −n, qr

1− θ1
≤ l.
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If moreover r ≤ k, then estimate (15) implies f ∈ Lrδ(Ω). Thus

‖f‖r,δ ≤ C(Ω, a, κ, q, r, ‖u‖k,δ, ‖v‖l,δ) if r < min{r̃(l), k}.(17)

Similarly,

s < s̃(k) :=
(n+ 1)k

λk + (n+ 1)p

implies the existence of θ2 ∈ (0, 1) such that

−λs
θ2

+ 1 > −n, ps

1− θ2
≤ k.

Then estimate (16) implies g ∈ Lsδ(Ω). Thus

‖g‖s,δ ≤ C(Ω, b, λ, s, p, ‖u‖k,δ) if s < s̃(k).(18)

On the other hand, Lemma 2.1 gives us estimates for ‖u‖k,δ, ‖v‖l,δ, k, l ≥ 1. If f ∈ Lrδ(Ω), then
u ∈ Lkδ (Ω) and it holds

‖u‖k,δ ≤ C(Ω, k, r)‖f‖r,δ,(19)

where 1 ≤ r ≤ k ≤ ∞ satisfy 1
r −

1
k <

2
n+1 . In particular, we can take

k < k̃(r) :=
(n+ 1)r

n+ 1− 2r
if r ∈

[
1,
n+ 1

2

)
.

If r = n+1
2 , 1 ≤ k < ∞ can be chosen arbitrarily and if r > n+1

2 , then we can take k = ∞.

Similarly, if g ∈ Lsδ(Ω), then v ∈ Llδ(Ω) and it holds

‖v‖l,δ ≤ C(Ω, l, s)‖g‖s,δ,(20)
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where 1 ≤ s ≤ l ≤ ∞ satisfy

l < l̃(s) :=
(n+ 1)s

n+ 1− 2s
if s ∈

[
1,
n+ 1

2

)
.

If s = n+1
2 , 1 ≤ l <∞ can be chosen arbitrarily and if s > n+1

2 , then we can take l =∞.

We know that f ∈ L1
δ(Ω). Estimate (19) implies u ∈ Lkδ (Ω) for 1 < k < k0 where k0 := n+1

n−1 =

k̃(1). Given s < s̃(k0) = n+1
λ+(n−1)p , the continuity and the monotonicity of s̃ assures existence

of k < k0 such that s < s̃(k) < s̃(k0). Hence g ∈ Lsδ(Ω) for s ∈
(

1, n+1
λ+(n−1)p

)
(inequality (11)

implies n+1
λ+(n−1)p > 1). If p > 2−λ

n−1 , then v ∈ Llδ(Ω) for l < l0 := l̃(s̃(k0)) = n+1
λ−2+(n−1)p . Finally

we have f ∈ Lrδ(Ω) for r < min
{
r̃
(

n+1
λ−2+(n−1)p

)
, k0

}
= min

{
n+1

κ+(λ+(n−1)p−2)q ,
n+1
n−1

}
=: r0.

Then r0 > 1 due to the assumption α > n − 1. If p ≤ 2−λ
n−1 , then n+1

λ+(n−1)p ≥
n+1

2 and due to

the continuity and the monotonicity of l̃ we have v ∈ Llδ(Ω) for all l < ∞. Thus f ∈ Lrδ(Ω)

for r < min
{
n+1
κ , n+1

n−1

}
=: r′0. The preceding computations show that if k ≤ k0 (l ≤ l0) is close

enough to k0 (l0) or larger, then the right-hand sides in (15), (16) can be estimated by ‖u‖k,δ, ‖v‖l,δ
for some r, s ≥ 1.

We have shown that if f ∈ L1
δ(Ω), then f ∈ Lrδ(Ω) for r < r0 (r < r′0) if p > 2−λ

n−1 (p ≤ 2−λ
n−1 ).

We claim that it holds

if f ∈ Lrδ(Ω) for some r ∈
[
1,
n+ 1

κ

)
then f ∈ LF (r)

δ (Ω)(21)
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for some continuous function F :
[
1, n+1

κ

)
→ R satisfying (9). In the following we give expression

of such function F . For p > 2−λ
n−1 , denote

F̃ (r) :=



min{r̃(l̃(s̃(k̃(r)))), k̃(r)}

= min

{
n+1

κ+(λ+(n+1
r −2)p−2)q

, (n+1)r
n+1−2r

}
, r ∈

[
1, (n+1)p

2p+2−λ

)
,

min
{
n+1
κ , (n+1)r

n+1−2r

}
, r ∈

[
(n+1)p
2p+2−λ ,

n+1
2

)
,

n+1
κ , r ∈

[
n+1

2 , n+1
κ

)
(for such p, (n+1)p

2p+2−λ > 1 holds). For p ≤ 2−λ
n−1 , denote

F̃ (r) :=


(n+1)r
n+1−2r , r ∈

[
1, n+1

2+κ

)
if n+1

2+κ > 1,

n+1
κ , r ∈

[
max

{
1, n+1

2+κ

}
, n+1

κ

)
.

Function F̃ :
[
1, n+1

κ

)
→ R is continuous and due to the assumption α > n− 1, (9) holds. Define

F (r) := F̃ (r)+r
2 . Then r < F (r) < F̃ (r) for all r ∈

[
1, n+1

κ

)
. Observe that F̃ (1) = r0 (F̃ (1) = r′0)

for p > 2−λ
n−1 (p ≤ 2−λ

n−1 ), hence claim (21) has already been proved for r = 1. For r > 1 fixed,

the same monotonicity and continuity argument is used. If p > 2−λ
n−1 and r < (n+1)p

2p+2−λ , then

u ∈ Lkδ (Ω) for k < k̃(r) due to (19). Consequently from (18), we get g ∈ Lsδ(Ω) for s < s̃(k̃(r))

and then (20) implies v ∈ Llδ(Ω) for l < l̃(s̃(k̃(r))). Finally, (17) implies f ∈ Lr
′

δ (Ω) for r′ <

min{r̃(l̃(s̃(k̃(r)))), k̃(r)} = F̃ (r), hence f ∈ LF (r)
δ (Ω). Claim (21) in the remaining cases can be

proved similarly.
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The assumptions of Lemma 2.3 are satisfied for F , hence there exists j ∈ N such that

F (j)(1) >
n+ 1

2
+ ε(22)

for ε > 0 small. Using (21) j-times we get f ∈ LF
(j)(1)

δ (Ω), thus f ∈ L
n+1
2 +ε

δ (Ω) from (22). Lemma

2.1 then implies u ∈ L∞(Ω). From (18) we get g ∈ L
n+1
2 +ε

δ (Ω) and consequently, v ∈ L∞(Ω).
Now we prove

‖u‖∞ + ‖v‖∞ ≤ C(Ω, p, q, κ, λ, a, b, ‖u‖1,δ, ‖v‖1,δ).(23)

Using (17), (18), (19), (20), we have

‖f‖F (r),δ ≤ C(Ω, a, b, κ, λ, p, q, k, l, r, s, ‖f‖r,δ, ‖g‖s,δ).(24)

Iterating (24) j-times and using (22), (14), we have

‖f‖n+1
2 +ε,δ ≤ C(Ω)‖f‖F (j)(1),δ ≤ C(Ω, a, b, κ, λ, p, q, ‖u‖1,δ, ‖v‖1,δ).

Lemma 2.1 and (18) then imply assertion (23).
Now we turn to prove uniform boundedness of ‖u‖1,δ and ‖v‖1,δ. Due to Lemma 2.2,

u ≥ C(Ω) δ

∫
Ω

a|x|−κvqδ + t(u+ ϕ1)δ dx,

v ≥ C(Ω) δ

∫
Ω

b|x|−λupδ dx.
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holds. This implies∫
Ω

a|x|−κvqδ + t(u+ ϕ1)δ dx ≥ C(Ω, q)

∫
Ω

a|x|−κδq+1 dx

(∫
Ω

b|x|−λupδ dx

)q
≥ C(Ω, q, a, κ)

(∫
Ω

b|x|−λupδ dx

)q
(25)

and ∫
Ω

b|x|−λupδ dx ≥ C(Ω, p, b, λ)

(∫
Ω

a|x|−κvqδ + t(u+ ϕ1)δ dx

)p
.(26)

Using (25), (26) and the assumption pq > 1, we get

‖f‖1,δ + ‖g‖1,δ ≤ C(Ω, p, q, a, b, κ, λ).

The estimate ‖u‖1,δ + ‖v‖1,δ ≤ C(Ω, p, q, a, b, κ, λ) then follows from (14). Inequality (23) then
implies the last assertion of the theorem. �

Proof of Theorem 1.2. Suppose first α ≥ β. As in proof of Theorem 1.1, it is enough to deal
with system (4) in the following. Again, the case β ≥ α can be treated similarly dealing with
system (5).

Denote now f(x, v) = a(x)|x|−κ|v|q, g(x, u) = b(x)|x|−λ|u|p. Set X := L∞(Ω)× L∞(Ω). Given
(u, v) ∈ X and t ≥ 0, let St(u, v) = (w,w′) be the unique solution of the linear problem −∆w = f + t(|u|+ ϕ1), x ∈ Ω,

−∆w′ = g, x ∈ Ω,
w = w′ = 0, x ∈ ∂Ω.

(27)

We will prove that there exists a nontrivial fixed point of operator S0. Since f ∈ Lk(Ω) for
k < n

κ and g ∈ Ll(Ω) for l < n
λ , we have St(u, v) ∈ W 2,r(Ω) × W 2,r(Ω) for r ∈ (n2 ,min{nκ ,

n
λ}).
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Therefore, St : X → X is compact. Observe that the right-hand sides in (27) are nonnegative for
every (u, v) ∈ X, hence w,w′ are nonnegative. Thus St has no fixed point beyond the nonnegative
cone K = {(u′, v′) ∈ X : u′, v′ ≥ 0} for any t ≥ 0.

Let ‖(u, v)‖X = ε for ε > 0 small, θ ∈ [0, 1]. Assume (u, v) = θS0(u, v). Using Lp-estimates
(see [8, Chapter 9]), we have

‖u‖∞ ≤ C‖u‖2,r ≤ C‖f‖r ≤ C‖a|x|−κ‖r‖v‖q∞ ≤ C‖v‖q∞,

where ‖ · ‖2,r denotes the norm in W 2,r(Ω). Similarly, we obtain ‖v‖∞ ≤ C‖u‖p∞. Combining the
last two estimates, we have

‖u‖∞ ≤ C‖u‖pq∞ ≤ Cεpq−1‖u‖∞.

This is a contradiction for ε sufficiently small due to the assumption pq > 1. Hence (u, v) 6=
θS0(u, v) and the homotopy invariance of the topological degree implies

deg(I − S0, 0, Bε) = deg(I, 0, Bε) = 1,(28)

where I denotes the identity and Bε := {(u, v) ∈ X : ‖(u, v)‖X < ε}.
Theorem 1.1 immediately implies ST (u, v) 6= (u, v) for T large and (u, v) ∈ BR∩K and St(u, v) 6=

(u, v) for t ∈ [0, T ] and (u, v) ∈ (BR rBR) ∩K (where R > 0 is large enough), hence we have

deg(I − S0, 0, BR) = deg(I − ST , 0, BR) = 0.(29)

Equalities (28) and (29) imply deg(I−S0, 0, BRrBε) = −1, hence there exist u, v ∈ (BRrBε)∩K
such that S0(u, v) = (u, v). Finally, the maximum principle implies the positivity of u, v. �

Proof of Theorem 1.3. Basic ideas used in the proof are from [13]. Lemma 2.4 assures the
existence of sets Σφ, Σψ such that φ := χΣφ |x|−(α+2), ψ := χΣψ |x|−(β+2) belong to L1

δ(Ω), where
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α, β are defined by (6). Let (u, v) be the (positive) very weak solution of −∆u = φ, x ∈ Ω,
−∆v = ψ, x ∈ Ω,

u = v = 0, x ∈ ∂Ω.

Lemma 2.4 then implies

u ≥ C|x|−αχΣφ , v ≥ C|x|−βχΣψ ,(30)

hence u, v /∈ L∞(Ω). Observe that (30) and (10) imply a′, b′ ∈ L∞(Ω), where a′ := |x|κφ
vq , b′ :=

|x|λψ
up are nonnegative functions and (u, v) is a very weak solution of (1) with a = a′, b = b′. �
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