CONCERNING THE CESÀRO MATRIX AND ITS IMMEDIATE OFFSPRING

H. C. RHALY JR.

Abstract. For the Cesàro matrix $C \in B\left(\ell^{2}\right)$ and the unilateral shift U, it is known that C and its immediate offspring $U^{*} C U$ are both hyponormal and noncompact, and they have the same norm and the same spectrum. Here we investigate similarity and unitary equivalence for C and $U^{*} C U$, as well as further generations of offspring.

Necessary conditions are found for a lower triangular factorable matrix to be unitarily equivalent to its immediate offspring. A specialized result is obtained for factorable matrices having a constant main diagonal. Along the way, a more general result is also obtained: necessary conditions are found for two lower triangular factorable matrices to be unitarily equivalent.

1. Introduction

A lower triangular infinite matrix $M=\left[m_{i j}\right]$, acting through multiplication to give a bounded linear operator on ℓ^{2}, is factorable if its entries are

$$
m_{i j}= \begin{cases}a_{i} c_{j} & \text { if } j \leq i \\ 0 & \text { if } j>i\end{cases}
$$

Go back
where a_{i} depends only on i and c_{j} depends only on j. If $c_{j}=1$ for all j, then M is a terraced matrix (see [3], [5]). The Cesàro matrix C is the terraced matrix that occurs when $a_{i}=\frac{1}{i+1}$ for

[^0]all i. In [1] it is shown that $C \in B\left(\ell^{2}\right)$, the set of all bounded linear operators on ℓ^{2}, and that C is noncompact and hyponormal. Recall that an operator T on a Hilbert space H is hyponormal if it satisfies $\left\langle\left(T^{*} T-T T^{*}\right) f, f\right\rangle \geq 0$ for all $f \in H$.

Recalling the notation and terminology of [2] with an appropriate adjustment, the immediate offspring of M, denoted M^{\prime}, is the factorable matrix that occurs when the first row and the first column are deleted from M. Note that if U denotes the unilateral shift on ℓ^{2}, then $M^{\prime}=U^{*} M U$.

$$
M=\left[\begin{array}{cccc}
c_{0} a_{0} & 0 & 0 & \ldots \\
c_{0} a_{1} & c_{1} a_{1} & 0 & \ldots \\
c_{0} a_{2} & c_{1} a_{2} & c_{2} a_{2} & \ldots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right] \quad M^{\prime}=\left[\begin{array}{cccc}
c_{1} a_{1} & 0 & 0 & \ldots \\
c_{1} a_{2} & c_{2} a_{2} & 0 & \ldots \\
c_{1} a_{3} & c_{2} a_{3} & c_{3} a_{3} & \ldots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right]
$$

We recall that operators $T_{1}, T_{2} \in B(H)$ are similar if there exists an invertible operator $Q \in$ $B(H)$ such that $T_{2}=Q^{-1} T_{1} Q$. The operators T_{1}, T_{2} are unitarily equivalent if $Q^{-1}=Q^{*}$.

Proposition 1.1. C and C^{\prime} are similar operators.

Go back

Full Screen

In [2] it is demonstrated that the infinite Hilbert matrix A and its immediate offspring A^{\prime} (obtained by deleting the first row or the first column of A) are unitarily equivalent. Note that

* 4 4 \mid • \mid

Go back

Full Screen

Close

$$
A^{\prime}=U^{*} A=A U
$$

$$
A=\left[\begin{array}{ccccc}
1 & \frac{1}{2} & \frac{1}{3} & \frac{1}{4} & \cdots \\
\frac{1}{2} & \frac{1}{3} & \frac{1}{4} & & \\
\frac{1}{3} & \frac{1}{4} & & & \\
\frac{1}{4} & & & & \\
\vdots & & & \ddots
\end{array}\right] \quad A^{\prime}=\left[\begin{array}{ccccc}
\frac{1}{2} & \frac{1}{3} & \frac{1}{4} & \frac{1}{5} & \ldots \\
\frac{1}{3} & \frac{1}{4} & \frac{1}{5} & & \\
\frac{1}{4} & \frac{1}{5} & & \\
\frac{1}{5} & & & \\
\vdots & & & \ddots
\end{array}\right]
$$

In view of Proposition 1.1, together with the fact that C^{\prime} is also known to be hyponormal (see [6], $[9]$), it now seems natural to ask whether C and C^{\prime} are unitarily equivalent. The next section will provide the answer.

2. Necessary Conditions for Unitary Equivalence of Factorable Matrices

Throughout this section, we continue to assume that $M=\left[a_{i} c_{j}\right] \in B\left(\ell^{2}\right)$ is a lower triangular factorable matrix and $\left\{a_{i}\right\},\left\{c_{j}\right\}$ are strictly positive sequences.
2.1. For a factorable matrix and its immediate offspring

The following two lemmas are useful in obtaining a necessary condition for M and M^{\prime} to be unitarily equivalent. They also provide some information about what is required for similarity.

Lemma 2.1. If $\left\{a_{i}\right\}$ and $\left\{c_{j}\right\}$ are strictly positive sequences and $T: \equiv\left[t_{i j}\right] \in B\left(\ell^{2}\right)$ satisfies $T M=M^{\prime} T$, then for each $i, t_{i, i+1}=\sum_{k=0}^{i} \frac{c_{k+1}}{c_{k}}\left(1-\frac{c_{k} a_{k}}{c_{k+1} a_{k+1}}\right) t_{k k}$ and $t_{i j}=0$ when $j \geq i+2$.

Proof. Assume $X=\left[x_{i j}\right]: \equiv T M$ and $Y=\left[y_{i j}\right]: \equiv M^{\prime} T$. Observe that

$$
x_{i j}=c_{j}\left(\sum_{k=0}^{\infty} t_{i, j+k} a_{j+k}\right) \quad \text { and } \quad y_{i j}=a_{i+1}\left(\sum_{k=0}^{i} c_{k+1} t_{k, j}\right) \quad \text { for all } i, j .
$$

Then

$$
\frac{c_{1}}{c_{0}} x_{00}-x_{01}=\frac{c_{1}}{c_{0}} y_{00}-y_{01}
$$

yields

$$
t_{01}=\frac{c_{1}}{c_{0}}\left(1-\frac{c_{0} a_{0}}{c_{1} a_{1}}\right) t_{00} .
$$

Similarly,

$$
\frac{c_{2}}{c_{1}} x_{01}-x_{02}=\frac{c_{2}}{c_{1}} y_{01}-y_{02}
$$

yields $t_{02}=0$. By induction on the subscript j,

$$
\frac{c_{n+1}}{c_{n}} x_{0, n}-x_{0, n+1}=\frac{c_{n+1}}{c_{n}} y_{0, n}-y_{0, n+1}
$$

yields $t_{0, n+1}=0$ for all $n \geq 1$. Next,

$$
\frac{c_{2}}{c_{1}} x_{11}-x_{12}=\frac{c_{2}}{c_{1}} y_{11}-y_{12}
$$

yields

$$
t_{12}=\sum_{k=0}^{1} \frac{c_{k+1}}{c_{k}}\left(1-\frac{c_{k} a_{k}}{c_{k+1} a_{k+1}}\right) t_{k k}
$$

and

$$
\frac{c_{3}}{c_{2}} x_{12}-x_{13}=\frac{c_{3}}{c_{2}} y_{12}-y_{13}
$$

yields $t_{13}=0$. By induction,

$$
\frac{c_{n+1}}{c_{n}} x_{1, n}-x_{1, n+1}=\frac{c_{n+1}}{c_{n}} y_{1, n}-y_{1, n+1}
$$

yields $t_{1, n+1}=0$ for all $n \geq 2$. Now assume that

$$
t_{i, i+1}=\sum_{k=0}^{i} \frac{c_{k+1}}{c_{k}}\left(1-\frac{c_{k} a_{k}}{c_{k+1} a_{k+1}}\right) t_{k k}
$$

and $t_{i j}=0$ when $j \geq i+2$ for $i=0,1, \ldots, m$. Then

$$
\frac{c_{m+2}}{c_{m+1}} x_{m+1, m+1}-x_{m+1, m+2}=\frac{c_{m+2}}{c_{m+1}} y_{m+1, m+1}-y_{m+1, m+2}
$$

yields

$$
t_{m+1, m+2}=\sum_{k=0}^{m+1} \frac{c_{k+1}}{c_{k}}\left(1-\frac{c_{k} a_{k}}{c_{k+1} a_{k+1}}\right) t_{k k}
$$

and

$$
\frac{c_{m+3}}{c_{m+2}} x_{m+1, m+2}-x_{m+1, m+3}=\frac{c_{m+3}}{c_{m+2}} y_{m+1, m+2}-y_{m+1, m+3}
$$

yields $t_{m+1, m+3}=0$. By strong induction,

$$
\frac{c_{m+1+n}}{c_{m+n}} x_{m+1, m+n}-x_{m+1, m+1+n}=\frac{c_{m+1+n}}{c_{m+n}} y_{m+1, m+n}-y_{m+1, m+1+n}
$$

yields $t_{m+1, m+1+n}=0$ for all $n \geq 2$. This completes the proof.

44 4 | \bullet •
Go back

Full Screen
Lemma 2.2. If $\left\{a_{i}\right\}$ and $\left\{c_{j}\right\}$ are strictly positive sequences and $T: \equiv\left[t_{i j}\right] \in B\left(\ell^{2}\right)$ satisfies $M T=T M^{\prime}$, then $t_{i i}=\frac{c_{i+1} a_{i}}{c_{1} a_{0}} t_{00}$ for all i and for all $j>i$,

$$
t_{i j}=\frac{c_{j+1} a_{i}}{c_{1} a_{0}}\left[\prod_{m=i+1}^{j}\left(1-\frac{c_{m} a_{m}}{c_{0} a_{0}}\right)\right] t_{00} .
$$

Proof. Assume $X=\left[x_{i j}\right]: \equiv M T$ and $Y=\left[y_{i j}\right]: \equiv T M^{\prime}$. Observe that

$$
x_{i j}=a_{i}\left(\sum_{k=0}^{i} c_{k} t_{k, j}\right) \quad \text { and } \quad y_{i j}=c_{j+1}\left(\sum_{k=0}^{\infty} t_{i, j+k} a_{j+k+1}\right) \quad \text { for all } i, j .
$$

Then

$$
\frac{c_{2}}{c_{1}} x_{00}-x_{01}=\frac{c_{2}}{c_{1}} y_{00}-y_{01}
$$

yields

$$
t_{01}=\frac{c_{2}}{c_{1}}\left(1-\frac{c_{1} a_{1}}{c_{0} a_{0}}\right) t_{00} .
$$

Similarly,

$$
\frac{c_{3}}{c_{2}} x_{01}-x_{02}=\frac{c_{3}}{c_{2}} y_{01}-y_{02}
$$

yields

$$
t_{02}=\frac{c_{3}}{c_{2}}\left(1-\frac{c_{2} a_{2}}{c_{0} a_{0}}\right) t_{01}=\frac{c_{3}}{c_{1}}\left(1-\frac{c_{1} a_{1}}{c_{0} a_{0}}\right)\left(1-\frac{c_{2} a_{2}}{c_{0} a_{0}}\right) t_{00} .
$$

By induction on the subscript j,

$$
\frac{c_{n+2}}{c_{n+1}} x_{0, n}-x_{0, n+1}=\frac{c_{n+2}}{c_{n+1}} y_{0, n}-y_{0, n+1}
$$

yields

$$
t_{0, n+1}=\frac{c_{n+2}}{c_{1}}\left[\prod_{m=1}^{n+1}\left(1-\frac{c_{m} a_{m}}{c_{0} a_{0}}\right)\right] t_{00}
$$

for all $n \geq 0$. Next,

$$
\frac{c_{2}}{c_{1}} x_{10}-x_{11}=\frac{c_{2}}{c_{1}} y_{10}-y_{11}
$$

yields

$$
t_{11}=\frac{c_{2} a_{1}}{c_{1} a_{0}} t_{00}
$$

Then

$$
\frac{c_{3}}{c_{2}} x_{11}-x_{12}=\frac{c_{3}}{c_{2}} y_{11}-y_{12}
$$

yields

$$
t_{12}=\frac{c_{3} a_{1}}{c_{1} a_{0}}\left(1-\frac{c_{2} a_{2}}{c_{0} a_{0}}\right) t_{00}
$$

Again by induction,

$$
\frac{c_{n+2}}{c_{n+1}} x_{1, n}-x_{1, n+1}=\frac{c_{n+2}}{c_{n+1}} y_{1, n}-y_{1, n+1}
$$

yields

$$
t_{1, n+1}=\frac{c_{n+2} a_{1}}{c_{1} a_{0}}\left[\prod_{m=2}^{n+1}\left(1-\frac{c_{m} a_{m}}{c_{0} a_{0}}\right)\right] t_{00}
$$

for all $n \geq 1$. Now assume that $t_{i i}=\frac{c_{i+1} a_{i}}{c_{1} a_{0}} t_{00}$ for $i=0,1,2, \ldots, n$, and

$$
t_{i j}=\frac{c_{j+1} a_{i}}{c_{1} a_{0}}\left[\prod_{m=i+1}^{j}\left(1-\frac{c_{m} a_{m}}{c_{0} a_{0}}\right)\right] t_{00}
$$

for all $j \geq i+1$. Then

$$
\frac{c_{n+2}}{c_{n+1}} x_{n+1, n}-x_{n+1, n+1}=\frac{c_{n+2}}{c_{n+1}} y_{n+1, n}-y_{n+1, n+1}
$$

gives

$$
\begin{aligned}
& a_{n+1}\left[\sum_{l=0}^{n-1}\left(\frac{c_{n+2}}{c_{n+1}} c_{l} t_{l, n}-c_{l} t_{l, n+1}\right)\right. \\
& \left.\quad \quad+\frac{c_{n+2}}{c_{n+1}} c_{n} t_{n, n}-c_{n} t_{n, n+1}+c_{n+2} t_{n+1, n}-c_{n+1} t_{n+1, n+1}\right] \\
& \quad=c_{n+2} a_{n+1} t_{n+1, n}
\end{aligned}
$$

then

$$
\begin{aligned}
& {\left[\frac{c_{n+2} c_{n+1} a_{n+1}}{c_{0} c_{1} a_{0}^{2}} \sum_{l=0}^{n-1}\left(c_{l} a_{l} \prod_{m=l+1}^{n}\left(1-\frac{c_{m} a_{m}}{c_{0} a_{0}}\right)\right)\right.} \\
& \left.\quad+\frac{c_{n+2} c_{n} a_{n}}{c_{1} a_{0}}-\frac{c_{n} c_{n+2} a_{n}}{c_{1} a_{0}}\left(1-\frac{c_{n+1} a_{n+1}}{c_{0} a_{0}}\right)\right] t_{00} \\
& \quad=c_{n+1} t_{n+1, n+1}
\end{aligned}
$$

SO

$$
\begin{aligned}
& {\left[\frac{c_{n+2} c_{n+1} a_{n+1}}{c_{1} a_{0}}\left(1-\frac{c_{n} a_{n}}{c_{0} a_{0}}\right)+\left(\frac{c_{n} c_{n+2} a_{n}}{c_{1} a_{0}}\right)\left(\frac{c_{n+1} a_{n+1}}{c_{0} a_{0}}\right)\right] t_{00}} \\
& \quad=c_{n+1} t_{n+1, n+1}
\end{aligned}
$$

or

Next,

$$
t_{n+1, n+1}=\frac{c_{n+2} a_{n+1}}{c_{1} a_{0}} t_{00}
$$

$$
\frac{c_{n+3}}{c_{n+2}} x_{n+1, n+1}-x_{n+1, n+2}=\frac{c_{n+3}}{c_{n+2}} y_{n+1, n+1}-y_{n+1, n+2}
$$

leads to

$$
\begin{aligned}
& a_{n+1}\left[\sum_{l=0}^{n}\left(\frac{c_{n+3}}{c_{n+2}} c_{l} t_{l, n+1}-c_{l} t_{l, n+2}\right)\right. \\
& \left.\quad+\frac{c_{n+3}}{c_{n+2}} c_{n+1} t_{n+1, n+1}-c_{n+1} t_{n+1, n+2}\right] \\
& =c_{n+3} a_{n+2} t_{n+1, n+1} .
\end{aligned}
$$

Then

$$
\begin{aligned}
c_{n+1} t_{n+1, n+2}= & \frac{c_{n+3} c_{n+2} a_{n+2}}{c_{0} c_{1} a_{0}^{2}}\left[\sum_{l=0}^{n} c_{l} a_{l} \prod_{m=l+1}^{n+1}\left(1-\frac{c_{m} a_{m}}{c_{0} a_{0}}\right) t_{00}\right] \\
& +\frac{c_{n+3}}{c_{1} a_{0}}\left(c_{n+1} a_{n+1}-c_{n+2} a_{n+2}\right) t_{00} \\
= & {\left[\frac{c_{n+3} c_{n+2} a_{n+2}}{c_{1} a_{0}}\left(1-\frac{c_{n+1} a_{n+1}}{c_{0} a_{0}}\right)\right.} \\
& \left.+\frac{c_{n+3}}{c_{1} a_{0}}\left(c_{n+1} a_{n+1}-c_{n+2} a_{n+2}\right)\right] t_{00}
\end{aligned}
$$

so

$$
t_{n+1, n+2}=\frac{c_{n+3} a_{n+1}}{c_{1} a_{0}}\left(1-\frac{c_{n+2} a_{n+2}}{c_{0} a_{0}}\right) t_{00}
$$

Now assume that

$$
t_{n+1, n+k}=\frac{c_{n+k+1} a_{n+1}}{c_{1} a_{0}} \prod_{m=n+2}^{n+k}\left(1-\frac{c_{m} a_{m}}{c_{0} a_{0}}\right) t_{00}
$$

for some $k \geq 2$. Then

$$
\frac{c_{n+k+2}}{c_{n+k+1}} x_{n+1, n+k}-x_{n+1, n+k+1}=\frac{c_{n+k+2}}{c_{n+k+1}} y_{n+1, n+k}-y_{n+1, n+k+1}
$$

yields

$$
\begin{aligned}
& a_{n+1}\left[\sum_{l=0}^{n}\left(\frac{c_{n+k+2}}{c_{n+k+1}} c_{l} t_{l, n+k}-c_{l} t_{l, n+k+1}\right)\right. \\
& \left.\quad+\frac{c_{n+k+2}}{c_{n+k+1}} c_{n+1} t_{n+1, n+k}-c_{n+1} t_{n+1, n+k+1}\right] \\
& \quad=c_{n+k+2} a_{n+k+1} t_{n+1, n+k}
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
c_{n+1} & t_{n+1, n+k+1} \\
= & \frac{c_{n+k+2} c_{n+k+1} a_{n+k+1}}{c_{1} a_{0}} \prod_{m=n+1}^{n+k}\left(1-\frac{c_{m} a_{m}}{c_{0} a_{0}}\right) t_{00} \\
& \quad+\frac{c_{n+k+2}}{c_{1} a_{0}}\left[\prod_{m=n+2}^{n+k}\left(1-\frac{c_{m} a_{m}}{c_{0} a_{0}}\right)\right]\left(c_{n+1} a_{n+1}-c_{n+k+1} a_{n+k+1}\right) t_{00} \\
= & \frac{c_{n+k+2}}{c_{1} a_{0}}\left[\prod_{m=n+2}^{n+k}\left(1-\frac{c_{m} a_{m}}{c_{0} a_{0}}\right)\right] \\
& \times\left[c_{n+k+1} a_{n+k+1}\left(1-\frac{c_{n+1} a_{n+1}}{c_{0} a_{0}}\right)+c_{n+1} a_{n+1}-c_{n+k+1} a_{n+k+1}\right] t_{00}
\end{aligned}
$$

SO

$$
t_{n+1, n+k+1}=\frac{c_{n+k+2} a_{n+1}}{c_{1} a_{0}}\left[\prod_{m=n+2}^{n+k+1}\left(1-\frac{c_{m} a_{m}}{c_{0} a_{0}}\right)\right] t_{00}
$$

This completes the proof.
$\langle 4| \ggg$
Go back

Full Screen

Close
Suppose that we wish to determine an invertible operator $Q \in B\left(\ell^{2}\right)$ such that $M^{\prime}=Q^{-1} M Q$; that is, we wish to show that M and M^{\prime} are similar operators. Since it is required that $M^{\prime} Q^{-1}=$ $Q^{-1} M$, Lemma 2.1 specifies some of the entries of Q^{-1}, and since it is required that $M Q=Q M^{\prime}$, Lemma 2.2 specifies some of the entries of Q. That still leaves infinitely many entries of the two matrices Q and Q^{-1} undetermined. Consequently, we see that the somewhat serendipitous success of Proposition 1.1 may not be that easy to duplicate in other examples. However, if Q is unitary, then all of its entries are determined by Lemmas 2.1 and 2.2 once q_{00} is specified. This observation leads to the following result.

Proposition 2.3. Suppose $M=\left[a_{i} c_{j}\right] \in B\left(\ell^{2}\right)$ is a lower triangular factorable matrix. If $V \in B\left(\ell^{2}\right)$ is a unitary operator such that $M^{\prime}=V^{*} M V$, then V must have the form $V=$

where the entries on the first subdiagonal satisfy $s_{i+1, i}=\sum_{k=0}^{i} \frac{c_{k+1}}{c_{k}}\left(1-\frac{c_{k} a_{k}}{c_{k+1} a_{k+1}}\right) \frac{c_{k+1} a_{k}}{c_{1} a_{0}}$ for each i.
Proof. This result is an immediate consequence of two facts:
(1) $T=V^{*}$ satisfies Lemma 2.1 and
(2) $T=V$ satisfies Lemma 2.2.

Theorem 2.4. Suppose $M=\left[a_{i} c_{j}\right] \in B\left(\ell^{2}\right)$ is a lower triangular factorable matrix with a constant main diagonal. Then M and M^{\prime} are unitarily equivalent if and only if $M^{\prime}=M$.

* 4 4 \mid • \mid

Go back

Full Screen
Proof. Suppose $V \in B\left(\ell^{2}\right)$ is a unitary operator such that $M^{\prime}=V^{*} M V$. Then V must have the form specified in Proposition 2.3. Since $\left\{c_{n} a_{n}\right\}$ is a constant sequence, the non-diagonal entries of V are all 0 . For M and M^{\prime} to be unitarily equivalent in this case, it is necessary that $V=v_{00} I$ where $\left|v_{00}\right|=1$.

Remark 2.5. We note that in the above proof it can be verified that $V=\frac{c_{0}}{c_{1}} v_{00} \operatorname{diag}\left\{\frac{c_{n+1}}{c_{n}}\right.$: $n \geq 0\}$; so, for M and M^{\prime} to be unitarily equivalent, it is necessary that $c_{n+1}=\frac{c_{1}}{c_{0}} c_{n}$ for all n.

All of the matrices that satisfy the condition in Remark 2.5 in reference to Theorem 2.4 are scalar multiples of the following example.

Example 2.6 (Toeplitz matrix). Suppose $M=\left[a_{i} c_{j}\right] \in B\left(\ell^{2}\right)$ is the lower triangular factorable matrix given by $c_{j}=\lambda^{-j}$ and $a_{i}=\lambda^{i}$ for $0 \leq j \leq i$ and $0<\lambda<1$. Since $M^{\prime}=M$, we know that M and M^{\prime} must be unitarily equivalent. Clearly the condition in Remark 2.5 is satisfied.

For similarity, it turns out that with appropriate modifications, the serendipitous success of Proposition 1.1 can be repeated in the following situation.

Theorem 2.7. Suppose $M=\left[a_{i} c_{j}\right] \in B\left(\ell^{2}\right)$ is a lower triangular factorable matrix such that $\left\{\frac{c_{n+1}}{c_{n}}\right\}$ is a bounded sequence and $c_{n} a_{n}=\alpha$ (constant) for all n. Then M and M^{\prime} are similar operators.

Proof. Take $Q: \equiv \operatorname{diag}\left\{\frac{c_{n+1}}{c_{n}}: n \geq 0\right\}-U$. Suppose that the entries of $T=\left[t_{i j}\right]$ are given by

$$
t_{i j}= \begin{cases}\frac{c_{j}}{c_{i+1}} & \text { if } i \geq j \\ 0 & \text { if } i<j\end{cases}
$$

Note that $T \in B\left(\ell^{2}\right)$ since $T=\frac{1}{\alpha} U^{*}(M-\alpha I)$. It can be verified that

$$
M Q=\operatorname{diag}\left\{c_{n+1} a_{n}: n \geq 0\right\}=Q M^{\prime}
$$

and $Q T=I=T Q$; so $Q^{-1}=T$, and M and M^{\prime} are similar operators.
Example 2.8. Suppose $M=\left[a_{i} c_{j}\right] \in B\left(\ell^{2}\right)$ is the lower triangular factorable matrix given by $c_{j}=\sum_{k=0}^{j} 2^{k}$ and $a_{i}=\frac{1}{\sum_{k=0}^{i} 2^{k}}$ for all i, j. Then $c_{2}=7$ but $\frac{c_{1}}{c_{0}} c_{1}=9$, so $c_{2} \neq \frac{c_{1}}{c_{0}} c_{1}$. So by Remark 2.5, M^{\prime} cannot be unitarily equivalent to M. However, M and M^{\prime} are similar operators by Thereom 2.7. Moreover, we note that it was proved in [8] that M is hyponormal, so M^{\prime} is also hyponormal (by [6]).

Let $\left\{e_{n}: n=0,1,2, \ldots\right\}$ denote the standard orthonormal basis for ℓ^{2}.
Theorem 2.9. Suppose $M=\left[a_{i} c_{j}\right] \in B\left(\ell^{2}\right)$ is a lower triangular factorable matrix. In order for M and M^{\prime} to be unitarily equivalent, it is necessary that

$$
\sum_{n=1}^{\infty}\left|\frac{c_{n+1}}{c_{1}} \prod_{k=1}^{n}\left(1-\frac{c_{k} a_{k}}{c_{0} a_{0}}\right)\right|^{2}=\left|\frac{c_{1} a_{1}-c_{0} a_{0}}{c_{0} a_{1}}\right|^{2} .
$$

Proof. If $V \in B\left(\ell^{2}\right)$ is a unitary operator such that $M^{\prime}=V^{*} M V$, then V must have the form specified in Proposition 2.3. Since $\left\|V e_{0}\right\|^{2}=1=\left\|V^{*} e_{0}\right\|^{2}$, the result is immediate.

Remark 2.10. To see that the necessary condition of Theorem 2.9 is not sufficient for unitary equivalence, note that the condition is satisfied by all lower triangular factorable matrices M having a constant main diagonal. However, Example 2.8 presents such a matrix M for which it was shown that M and its immediate offspring M^{\prime} are not unitarily equivalent.

In the following proposition, $C^{\prime \prime}: \equiv U^{*} C^{\prime} U=\left(U^{*}\right)^{2} C U^{2}$. Recall that it was shown in the introduction that C and C^{\prime} are similar operators.

Proposition 2.11.

(a) C and C^{\prime} are not unitarily equivalent.
$44|4 \rightarrow|$
Go back

Full Screen

Close
(b) C^{\prime} and $C^{\prime \prime}$ are similar operators, but they are not unitarily equivalent.

Proof. (a) The necessary condition in Theorem 2.9 is not satisfied since $\frac{\pi^{2}}{6}-1 \neq 1$, so C and C^{\prime} are not unitarily equivalent.
(b) Suppose the entries of $Q=\left[q_{i j}\right]$ are given by

$$
q_{i j}= \begin{cases}\frac{2(i+1)}{(j+1)(j+2)} & \text { if } i \leq j \\ -1 & \text { if } i=j+1 \\ 0 & \text { if } i>j+1\end{cases}
$$

A direct calculation shows that Q is invertible and $Q^{-1}=2 C^{\prime \prime}-W^{*}$, where W is the unilateral weighted shift with weights $\left\{\frac{n+1}{n+3}: n \geq 0\right\}$. If $Y=\left[y_{i j}\right]$ is defined by

$$
y_{i j}= \begin{cases}\frac{i+1}{(j+1)(j+2)} & \text { if } i \leq j ; \\ 0 & \text { if } i>j,\end{cases}
$$

then it can be verified that $C^{\prime} Q=Y=Q C^{\prime \prime}$, so C^{\prime} and $C^{\prime \prime}$ are similar.
Since $\frac{1}{9}+\frac{1}{36}+4\left(\sum_{k=4}^{\infty} \frac{1}{k^{2}(k+1)^{2}}\right)<\frac{1}{4}$, the necessary condition in Theorem 2.9 is not satisfied, so C^{\prime} and $C^{\prime \prime}$ are not unitarily equivalent.

2.2. A more general result

Since some of the most useful information in the previous subsection emerged from considering the first row and first column of the unitary operator V (see Theorem 2.9), we employ the same approach here in a more general setting.

Theorem 2.12. Suppose $M_{1}: \equiv\left[a_{i} c_{j}\right] \in B\left(\ell^{2}\right)$ and $M_{2}: \equiv\left[b_{i} d_{j}\right] \in B\left(\ell^{2}\right)$ are lower triangular factorable matrices associated with strictly positive sequences $\left\{a_{i}\right\},\left\{c_{j}\right\},\left\{b_{i}\right\},\left\{d_{j}\right\}$. In order for

* 4 \& \mid | \mid

Go back

Full Screen

Close
M_{1} and M_{2} to be unitarily equivalent, it is necessary that

$$
\sum_{n=0}^{\infty}\left|\frac{c_{n+1}}{c_{0}} \prod_{k=0}^{n}\left(1-\frac{c_{k} a_{k}}{d_{0} b_{0}}\right)\right|^{2}=\sum_{n=0}^{\infty}\left|\frac{d_{n+1}}{d_{0}} \prod_{k=0}^{n}\left(1-\frac{d_{k} b_{k}}{c_{0} a_{0}}\right)\right|^{2}
$$

Proof. Suppose that $V \in B\left(\ell^{2}\right)$ is a unitary operator satisfying $M_{2}=V^{*} M_{1} V$. We note that $V M_{2}=M_{1} V$. Assume $X=\left[x_{i j}\right]: \equiv V M_{2}$ and $Y=\left[y_{i j}\right]: \equiv M_{1} V$. Observe that $x_{0 j}=$ $d_{j} \sum_{n=j}^{\infty} b_{n} v_{0 n}$ and $y_{0 j}=c_{0} a_{0} v_{0 j}$ for all j. Then

$$
x_{00}-\frac{d_{0}}{d_{1}} x_{01}=y_{00}-\frac{d_{0}}{d_{1}} y_{01}
$$

yields

$$
v_{01}=\frac{d_{1}}{d_{0}}\left(1-\frac{d_{0} b_{0}}{c_{0} a_{0}}\right) v_{00}
$$

Similarly,

$$
x_{01}-\frac{d_{1}}{d_{2}} x_{02}=y_{01}-\frac{d_{1}}{d_{2}} y_{02}
$$

yields

$$
v_{02}=\frac{d_{2}}{d_{0}}\left(1-\frac{d_{0} b_{0}}{c_{0} a_{0}}\right)\left(1-\frac{d_{1} b_{1}}{c_{0} a_{0}}\right) v_{00}
$$

By induction on the second subscript,

$$
x_{0, n}-\frac{d_{n}}{d_{n+1}} x_{0, n+1}=y_{0, n}-\frac{d_{n}}{d_{n+1}} y_{0, n+1}
$$

yields

$$
v_{0, n+1}=\frac{d_{n+1}}{d_{0}} \prod_{k=0}^{n}\left(1-\frac{d_{k} b_{k}}{c_{0} a_{0}}\right) v_{00}
$$

4	4	\bullet	

Go back

Full Screen

Close
for all $n>0$. By using $V^{*} M_{1}=M_{2} V^{*}$ and similar reasoning, one obtains

$$
\overline{v_{n+1,0}}=\frac{c_{n+1}}{c_{0}} \prod_{k=0}^{n}\left(1-\frac{c_{k} a_{k}}{d_{0} b_{0}}\right) \overline{v_{00}}
$$

for all $n>0$. Since $\left\|V e_{0}\right\|^{2}=1=\left\|V^{*} e_{0}\right\|^{2}$, the result is now immediate.
Note that Theorem 2.9 is the special case of Theorem 2.12 that occurs when $b_{i}=a_{i+1}$ and $d_{j}=c_{j+1}$ for all i, j.

Corollary 2.13. In order for terraced matrices $M_{1}: \equiv\left[a_{i} \cdot 1\right]$ and $M_{2}: \equiv\left[b_{i} \cdot 1\right]$ to be unitarily equivalent, it is necessary that

$$
\sum_{n=0}^{\infty}\left|\prod_{k=0}^{n}\left(1-\frac{a_{k}}{b_{0}}\right)\right|^{2}=\sum_{n=0}^{\infty}\left|\prod_{k=0}^{n}\left(1-\frac{b_{k}}{a_{0}}\right)\right|^{2}
$$

Remark 2.14. It is worth noting that the condition in Theorem 2.12 is satisfied whenever $c_{0} a_{0}=d_{0} b_{0}$, but that is not sufficient to guarantee unitary equivalence. To see this, consider the terraced matrices determined by $a_{i}=\frac{1}{(i+1)^{2}}$ and $b_{i}=\frac{1}{i+1}$ for all i. These matrices cannot be unitarily equivalent since the first matrix is not hyponormal (see [4]), but the second matrix is the Cesàro matrix, which is known to be hyponormal.

We already know that C and C^{\prime} are not unitarily equivalent. Corollary 2.13 will allow us to settle the question of unitary equivalence for C and its non-immediate offspring $C^{\prime \prime}$.

Proposition 2.15. C and $C^{\prime \prime}$ are similar operators, but they are not unitarily equivalent.
Proof. Similarity can be justified by pairing Propositions 1.1 and 2.11(b) and using transitivity. Next, suppose that $a_{i}=\frac{1}{i+3}$ and $b_{i}=\frac{1}{i+1}$ for all i. Note that $C^{\prime \prime}=\left[a_{i} \cdot 1\right], C=\left[b_{i} \cdot 1\right]$ and
$b_{2}=a_{0}$. Since $\frac{2}{3} \pi^{2}-5 \neq 5$, the necessary condition for unitary equivalence in Corollary 2.13 is not satisfied.

In investigating further generations of offspring of C, we find it convenient to depart from the traditional usage of the prime symbol and introduce alternative notation. For a fixed positive integer m, consider

$$
C_{m}: \equiv\left(U^{*}\right)^{m-1} C U^{m-1} .
$$

Note that $C_{1}=C, C_{2}=C^{\prime}$ and $C_{3}=C^{\prime \prime}$. It is known that all of these operators have the same norm and the same spectrum and are hyponormal.

Proposition 2.16. If $m>1$ is a positive integer, then C_{m} and C_{m+1} are similar operators.
Proof. If $Y=\left[y_{i j}\right] \in B\left(\ell^{2}\right)$ is defined by

$$
y_{i j}= \begin{cases}\frac{\prod_{k=1}^{m-1}(i+k)}{\prod_{k=1}^{m=1}(j+k)} & \text { if } i \leq j ; \\ 0 & \text { if } i>j,\end{cases}
$$

and $Q: \equiv m Y-U$, then Q is invertible and $Q^{-1}=m C_{m+1}-W^{*}$ where W is the unilateral weighed shift with weights $\left\{\frac{n+1}{n+m+1}: n \geq 0\right\}$. It can be verified that

$$
C_{m} Q=Y=Q C_{m+1},
$$

so C_{m} and C_{m+1} are similar operators.
Proposition 2.17. If $m>1$ is a fixed positive integer, then C and C_{m} are similar operators, but they are not unitarily equivalent.

Proof. Similarity is a consequence of Propositions 1.1 and 2.16 (and induction), so our attention turns to the question of unitary equivalence. In preparation for an application of Corollary 2.13,

Go back
consider $C_{m}=M_{1}=\left[a_{i} \cdot 1\right]$, where $a_{i}=\frac{1}{i+m}$ and $C=M_{2}=\left[b_{i} \cdot 1\right]$, where $b_{i}=\frac{1}{i+1}$ for each nonnegative integer i. Note that $b_{m-1}=a_{0}$. The necessary condition in the corollary requires that

$$
(m-1)^{2}\left(\frac{\pi^{2}}{6}-\sum_{n=1}^{m-1} \frac{1}{n^{2}}\right)=\sum_{n=0}^{m-2} \prod_{k=0}^{n}\left(\frac{m-k-1}{k+1}\right)^{2},
$$

but this is clearly impossible since the right side is a rational number while the left side is irrational.

We close with a proposition that presents a non-terraced factorable matrix M with all entries nonnegative that is unitarily equivalent to C. A double dose of serendipity seems to be required here since (1) there is no general procedure available for identifying a good candidate M and (2) there is no analogue of Proposition 2.3 available to help supply the associated unitary operator V.

Regarding the choice for M here, it should be noted that (1) the nonzero entries of M are strictly smaller than the corresponding entries of C, (2) the main diagonal of M is exactly the same as the main diagonal of $U^{*} C U$, and (3) M is known to be hyponormal (see [7]).

Proposition 2.18. If $a_{i}=\frac{1}{\sqrt{(i+1)(i+2)}}$ and $c_{j}=\sqrt{\frac{j+1}{j+2}}$ for all i, j, then the lower triangular factorable matrix $M=\left[a_{i} c_{j}\right] \in B\left(\ell^{2}\right)$ is unitarily equivalent to C.

Proof. Suppose $V: \equiv Z^{*}-W$ where Z is the terraced matrix $Z: \equiv\left[a_{i} \cdot 1\right]$ and W is the unilateral weighted shift with weights $\left\{\sqrt{\frac{n+1}{n+2}}: n \geq 0\right\}$. Straightforward computations demonstrate that V is unitary and $M=V^{*} C V$.

One may easily verify that the operators M and C from Proposition 2.18 satisfy Theorem 2.12.

Go back

Full Screen

Close

Quit

1. Brown A., Halmos P. R., and Shields A. L., Cesàro operators, Acta Sci. Math. (Szeged) 26 (1965), 125-137.
2. Choi M., Tricks or treats with the Hilbert matrix, Amer. Math. Monthly 90(5) (1983), 301-312.
3. Leibowitz G., Rhaly matrices, J. Math. Anal. Appl. 128(1) (1987), 272-286.
4. Rhaly Jr. H. C., p-Cesàro matrices, Houston Math. J. 15(1) (1989), 137-146.
5. \qquad , Terraced matrices, Bull. Lond. Math. Soc. 21(4) (1989), 399-406.
6. \qquad , Heredity for triangular operators, Bol. Soc. Parana. Mat. 31(2) (2013), 231-234.
7. \qquad , A comment on coposinormal operators, Matematiche (Catania) 68(1) (2013), 83-86.
8. Rhaly Jr. H. C. and Rhoades B. E., Posinormal factorable matrices with a constant main diagonal, Rev. Un. Mat. Argentina, in press.
9. Rhoades B. E., Generalized Hausdorff matrices bounded on ℓ^{p} and c, Acta Sci. Math. 43(3-4) (1981), 333-345.
H. C. Rhaly Jr., 1081 Buckley Drive, Jackson, MS 39206, U.S.A., e-mail: rhaly@member.ams.org

[^0]: Received November 17, 2013; revised January 15, 2014.
 2010 Mathematics Subject Classification. Primary 47B99.

