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PERTURBATION ANALYSIS OF BOUNDED HOMOGENEOUS

GENERALIZED INVERSES ON BANACH SPACES

JIANBING CAO and YIFENG XUE

Abstract. Let X,Y be Banach spaces and T : X → Y be a bounded linear operator. In this paper,

we initiate the study of the perturbation problems for bounded homogeneous generalized inverse Th

and quasi-linear projector generalized inverse TH of T . Some applications to the representations and
perturbations of the Moore-Penrose metric generalized inverse TM of T are also given. The obtained
results in this paper extend some well-known results for linear operator generalized inverses in this
field.

1. Introduction

The expression and perturbation analysis of the generalized inverses (resp., the Moore-Penrose
inverses) of bounded linear operators on Banach spaces (resp., Hilbert spaces) have been widely
studied since Nashed’s book [18] was published in 1976. Ten years ago, Chen and Xue [8] proposed
a notation so-called the stable perturbation of a bounded operator instead of the rank-preserving
perturbation of a matrix. Using this new notation, they established the perturbation analyses for
the Moore-Penrose inverse and the least square problem on Hilbert spaces in [6, 9, 26]. Meanwhile,
Castro-González and Koliha established the perturbation analysis for Drazin inverse by using of
the gap-function in [4, 5, 14]. Later, some of their results were generalized by Chen and Xue
[27, 28] in terms of stable perturbation.
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Throughout this paper, X,Y are always Banach spaces over real field R and B(X,Y ) is the
Banach space consisting of bounded linear operators from X to Y . For T ∈ B(X,Y ), let N (T )
(resp., R(T )) denote the null space (resp., range) of T . It is well-known that if N (T ) and R(T ) are
topologically complemented in the spaces X and Y , respectively, then there exists a (projector)
generalized inverse T+ ∈ B(Y,X) of T such that

TT+T = T, T+TT+ = T+, T+T = IX − PN (T ), TT+ = QR(T ),

where PN (T ) and QR(T ) are the bounded linear projectors from X and Y onto N (T ) and R(T ),
respectively, (cf. [6, 18, 25]). But, in general, not every closed subspace in a Banach space is
complemented. Thus the linear generalized inverse T+ of T may not exist. In this case, we may
seek other types of generalized inverses for T . Motivated by the ideas of linear generalized inverses
and metric generalized inverses (cf. [18, 20]), by using the so-called homogeneous (resp., quasi-
linear) projector in Banach space, Wang and Li [22] defined the homogeneous (resp., quasi-linear)
generalized inverse. Then, some further study on these types of generalized inverses in Banach space
was given in [1, 17]. More importantly, from results in [17, 20], we know that in some reflexive
Banach spaces X and Y , for an operator T ∈ B(X,Y ) there may exists a bounded quasi-linear
(projector) generalized inverse of T , which is generally neither linear nor metric generalized inverse
of T . So, from this point of view, it is important and necessary to study bounded homogeneous
and quasi-linear (projector) generalized inverses in Banach spaces.

Since the homogeneous (or quasi-linear) projector in Banach space are no longer linear, the
linear projector generalized inverse and the homogeneous (or quasi-linear) projector generalized
inverse in Banach spaces are quite different. Motivated by the new perturbation results of closed
linear generalized inverses [12], in this paper, we initiate the study of the following problems for
bounded homogeneous (resp., quasi-linear projector) generalized inverse: Let T ∈ B(X,Y ) with
a bounded homogeneous (resp., quasi-linear projector) generalized inverse Th (resp., TH), what
conditions on the small perturbation δT can guarantee that the bounded homogeneous (resp.,
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quasi-linear projector) generalized inverse T̄h (resp. T̄H) of the perturbed operator T̄ = T + δT
exists? Furthermore, if it exists, when does T̄h (resp., T̄H) have the simplest expression (IX +
ThδT )−1Th (resp., (IX +THδT )−1TH? With the concept of the quasi-additivity and the notation
of stable perturbation in [8], we present some perturbation results on homogeneous generalized
inverses and quasi-linear projector generalized inverses in Banach spaces. Explicit representation
and perturbation for the Moore-Penrose metric generalized inverse of the perturbed operator are
also given.

2. Preliminaries

Let T ∈ B(X,Y ) r {0}. The reduced minimum module γ(T ) of T is given by

γ(T ) = inf{‖Tx‖ | x ∈ X,dist(x,N (T )) = 1},(2.1)

where dist(x,N (T )) = inf{‖x − z‖ | z ∈ N (T )}. It is well-known that R(T ) is closed in Y iff
γ(T ) > 0 (cf. [16, 28]). From (2.1), we can obtain useful inequality as follows:

‖Tx‖ ≥ γ(T ) dist(x,N (T )) for all x ∈ X.

Recall from [1, 23] that a subset D in X is called to be homogeneous if λx ∈ D whenever
x ∈ D and λ ∈ R; a mapping T : X → Y is called to be a bounded homogeneous operator if T
maps every bounded set in X into a bounded set in Y and T (λx) = λT (x) for every x ∈ X and
every λ ∈ R.

Let H(X,Y ) denote the set of all bounded homogeneous operators from X to Y . Equipped with
the usual linear operations on H(X,Y ) and norm on T ∈ H(X,Y ) defined by ‖T‖ = sup{‖Tx‖ |
‖x‖ = 1, x ∈ X}, we can easily prove that (H(X,Y ), ‖ · ‖) is a Banach space (cf. [20, 23]).
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Definition 2.1. Let M be a subset of X and T : X → Y be a mapping. We call T is quasi-
additive on M if T satisfies

T (x+ z) = T (x) + T (z) for all x ∈ X and z ∈M.

Now we give the concept of quasi-linear projector in Banach spaces.

Definition 2.2 (cf. [17, 20]). Let P ∈ H(X,X). If P 2 = P , P is called a homogeneous
projector. In addition, if P is also quasi-additive on R(P ), i.e., for any x ∈ X and any z ∈ R(P ),

P (x+ z) = P (x) + P (z) = P (x) + z,

then P is called a quasi-linear projector.

Clearly, from Definition 2.2, we see that the bounded linear projectors, orthogonal projectors
in Hilbert spaces are all quasi-linear projectors.

Let P ∈ H(X,X) be a quasi-linear projector. Then by [17, Lemma 2.5], R(P ) is a closed linear
subspace of X and R(IX − P ) = N (P ). Thus, we can define “the quasi-linearly complement” of
a closed linear subspace as follows. Let V be a closed subspace of X. If there exists a bounded
quasi-linear projector P on X such that V = R(P ), then V is said to be bounded quasi-linearly
complemented in X and N (P ) is the bounded quasi-linear complement of V in X. In this case, as
usual, we may write X = V uN (P ), where N (P ) is a homogeneous subset of X and “u” means
that V ∩N (P ) = {0} and X = V +N (P ).

Definition 2.3. Let T ∈ B(X,Y ). If there is Th ∈ H(Y,X) such that

TThT = T, ThTTh = Th,

then we call Th is a bounded homogeneous generalized inverse of T . Furthermore, if Th is also
quasi-additive on R(T ), i.e., for any y ∈ Y and any z ∈ R(T ), we have

Th(y + z) = Th(y) + Th(z),
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then Th is called a bounded quasi-linear generalized inverse of T .

Obviously, the concept of bounded homogeneous (or quasi-linear) generalized inverse is a gen-
eralization of bounded linear generalized inverse.

Definition 2.3 was first given in paper [1] for linear transformations and bounded linear oper-
ators. The existence of a homogeneous generalized inverse of T ∈B(X,Y ) is also given in [1]. In
the following proposition, we will give a new proof of the existence of a homogeneous generalized
inverse of a bounded linear operator.

Proposition 2.4. Let T ∈ B(X,Y ) r {0}. Then T has a homogeneous generalized inverse
Th ∈ H(Y,X) iff R(T ) is closed and there exist a bounded quasi-linear projector PN (T ) : X → N (T )
and a bounded homogeneous projector QR(T ) : Y → R(T ).

Proof. Suppose that there is Th ∈ H(Y,X) such that TThT = T and ThTTh = Th. Put
PN (T ) = IX − ThT and QR(T ) = TTh. Then PN (T ) ∈ H(X,X), QR(T ) ∈ H(Y, Y ) and

P 2
N (T ) = (IX − ThT )(IX − ThT ) = IX − ThT − ThT (IX − ThT ) = PN (T ),

Q2
R(T ) = TThTTh = TTh = QR(T ).

From TThT = T and ThTTh = Th, we can get that N (T ) = R(PN (T )) and R(T ) = R(QR(T )).
Since for any x ∈ X and any z ∈ N (T ),

PN (T )(x+ z) = x+ z − ThT (x+ z) = x+ z − ThTx

= PN (T )x+ z = PN (T )x+ PN (T )z,

it follows that PN (T ) is quasi-linear. Obviously, we see that QR(T ) : Y → R(T ) is a bounded
homogeneous projector.

Now for any x ∈ X,

dist(x,N (T )) ≤ ‖x− PN (T )x‖ = ‖ThTx‖ ≤ ‖Th‖‖Tx‖.
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Thus, γ(T ) ≥ 1

‖Th‖
> 0 and hence R(T ) is closed in Y .

Conversely, for x ∈ X, let [x] stand for equivalence class of x in X/N (T ). Define mappings

φ : R(IX − PN (T ))→ X/N (T ) and T̂ : X/N (T )→ R(T ), respectively, by

φ(x) = [x] for all x ∈ R(IX − PN (T )) and T̂ ([z]) = Tz for all z ∈ X.

Clearly, T̂ is bijective. Noting that, the quotient spaceX/N (T ) with the norm ‖[x]‖=dist(x,N (T ))
is a Banach space (cf. [25]) and ‖Tx‖ ≥ γ(T ) dist(x,N (T )) with γ(T ) > 0 for all x ∈ X, we have

‖T̂ [x]‖ ≥ γ(T )‖[x]‖ for all x ∈ X. Therefore, ‖T̂−1y‖ ≤ 1

γ(T )
‖y‖, for all y ∈ R(T ).

Since PN (T ) is a quasi-linear projector, it follows that φ is bijective and φ−1([x]) = (IX−PN (T ))x

for all x ∈ X. Obviously, φ−1 is homogeneous and for any z ∈ N (T ),

‖φ−1([x])‖ = ‖(IX − PN (T ))(x− z)‖ ≤ (1 + ‖PN (T )‖)‖x− z‖

which implies that ‖φ−1‖ ≤ 1 + ‖PN (T )‖. Put T0 = T̂ ◦ φ : R(IX − PN (T )) → R(T ). Then

T−1
0 = φ−1◦T̂−1 : R(T )→ R(IX−PN (T )) is homogeneous and bounded with ‖T−1

0 ‖ ≤ γ(T )−1(1+

‖PN (T )‖). Set Th = (IX − PN (T ))T
−1
0 QR(T ). Then Th ∈ H(Y,X) and

TThT = T, ThTTh = Th, TTh = QR(T ), ThT = IX − PN (T ).

This finishes the proof. �

Recall that a closed subspace V in X is Chebyshev if for any x ∈ X, there is a unique x0 ∈ V
such that ‖x−x0‖ = dist(x, V ). Thus, for the closed Chebyshev space V , we can define a mapping
πV : X → V by πV (x) = x0. πV is called the metric projector from X onto V . From [20], we know
that πV is a quasi-linear projector with ‖πV ‖ ≤ 2. Then by Proposition 2.4, we have the following
corollary.
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Corollary 2.5 ([19, 20]). Let T ∈ B(X,Y ) r {0} with R(T ) closed. Assume that N (T ) and
R(T ) are Chebyshev subspaces in X and Y , respectively. Then there is Th ∈ H(Y,X) such that

TThT = T, ThTTh = Th, TTh = πR(T ), ThT = IX − πN (T ).(2.2)

The bounded homogeneous generalized inverse Th in (2.2) is called the Moore-Penrose metric
generalized inverse of T . Such Th in (2.2) is unique and is denoted by TM (cf. [20]).

Corollary 2.6. Let T ∈ B(X,Y )r {0} such that the bounded homogeneous generalized inverse
Th exists. Assume that N (T ) and R(T ) are Chebyshev subspaces in X and Y , respectively. Then
TM = (IX − πN (T ))T

hπR(T ).

Proof. Since N (T ) and R(T ) are Chebyshev subspaces, it follows from Corollary 2.5 that T has
the unique Moore-Penrose metric generalized inverse TM which satisfies

TTMT = T, TMTTM = TM , TTM = πR(T ), TMT = IX − πN (T ).

Set T \ = (IX − πN (T ))T
hπR(T ). Then T \ = TMTThTTM = TMTTM = TM . �

3. Perturbations for bounded homogeneous generalized inverse

In this section, we extend some perturbation results of linear generalized inverses to bounded ho-
mogeneous generalized inverses. We start our investigation with some lemmas which are prepared
for the proof of our main results. The following result is well-known for bounded linear operators,
we generalize it to the bounded homogeneous operators in the following form.

Lemma 3.1. Let T ∈ H(X,Y ) and S ∈ H(Y,X) such that T is quasi-additive on R(S) and S
is quasi-additive on R(T ), then IY +TS is invertible in H(Y, Y ) if and only if IX +ST is invertible
in H(X,X).
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Proof. If there is a Φ ∈ H(Y, Y ) such that (IY + TS)Φ = Φ(IY + TS) = IY , then

IX = IX + ST − ST = IX + ST − S((IY + TS)Φ)T

= IX + ST − ((S + STS)Φ)T (S quasi-additive on R(T ))

= IX + ST − ((IX + ST )SΦ)T

= (IX + ST )(IX − SΦT ) (T quasi-additive on R(S)).

Similarly, we also have IX = (IX − SΦT )(IX + ST ). Thus, IX + ST is invertible on X with
(IX + ST )−1 = (IX − SΦT ) ∈ H(X,X).

The converse can also be proved by using the above argument. �

Lemma 3.2. Let T ∈ B(X,Y ) such that Th ∈ H(Y,X) exists and let δT ∈ B(X,Y ) such that
Th is quasi-additive on R(δT ) and (IX +ThδT ) is invertible in B(X,X). Then IY +δTTh : Y → Y
is invertible in H(Y, Y ) and

Φ = Th(IY + δTTh)−1 = (IX + ThδT )−1Th(3.1)

is a bounded homogeneous operator with R(Φ) = R(Th) and N (Φ) = N (Th).

Proof. By Lemma 3.1, IY + δTTh : Y → Y is invertible in H(Y, Y ).
Clearly, IX +ThδT is a linear bounded operator and IY + δTTh ∈ H(Y, Y ). From the equation

(IX + ThδT )Th = Th(IY + δTTh)

and Th ∈ H(Y,X), we get that Φ is a bounded homogeneous operator. Finally, from (3.1), we can
obtain that R(Φ) = R(Th) and N (Φ) = N (Th). �

Recall from [8] that for T ∈ B(X,Y ) with bounded linear generalized inverse T+ ∈ B(Y,X),
we say that T̄ = T + δT ∈ B(X,Y ) is a stable perturbation of T if R(T̄ )∩N (T+) = {0}. Now for
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T ∈ B(X,Y ) with Th ∈ H(Y,X), we also say that T̄ = T + δT ∈ B(X,Y ) is a stable perturbation
of T if R(T̄ ) ∩N (Th) = {0}.

Lemma 3.3. Let T ∈ B(X,Y ) such that Th ∈ H(Y,X) exists. Suppose that δT ∈ B(X,Y )
such that Th is quasi-additive on R(δT ) and IX +ThδT is invertible in B(X,X). Put T̄ = T +δT .
If R(T̄ ) ∩N (Th) = {0}, then

N (T̄ ) = (IX + ThδT )−1N (T ) and R(T̄ ) = (IY + δTTh)R(T ).

Proof. Set P = (IX + ThδT )−1(IX − ThT ). We first show that P 2 = P and R(P ) = N (T̄ ).
Since ThTTh = Th, we get (IX − ThT )ThδT = 0 and then

(IX − ThT )(IX + ThδT ) = IX − ThT,(3.2)

and so

IX − ThT = (IX − ThT )(IX + ThδT )−1.(3.3)

Now, by using (3.2) and (3.3), it is easy to get P 2 = P .
Since Th is quasi-additive on R(δT ), we see IX − ThT = (IX + ThδT ) − ThT̄ . Then for any

x ∈ X, we have

Px = (IX + ThδT )−1(IX − ThT )x

= (IX + ThδT )−1[(IX + ThδT )− ThT̄ ]x

= x− (IX + ThδT )−1ThT̄ x.

(3.4)

From (3.4), we get that if x ∈ N (T̄ ), then x ∈ R(P ). Thus, N (T̄ ) ⊂ R(P ).
Conversely, let z∈R(P ), then z=Pz. From (3.4), we get (IX+ThδT )−1ThT̄ x=0. Therefore, we

have T̄ x ∈ R(T̄ ) ∩N (Th) = {0}. Thus, x ∈ N (T̄ ) and then R(P ) = N (T̄ ).
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From the Definition of Th, we have N (T ) = R(IX − ThT ). Thus,

(IX + ThδT )−1N (T ) = (IX + ThδT )−1R(IX − ThT ) = R(P ) = N (T̄ ).

Now, we prove that R(T̄ ) = (IY + δTTh)R(T ). From (IY + δTTh)T = T̄ ThT , we get that
(IY + δTTh)R(T ) ⊂ R(T̄ ). On the other hand, since Th is quasi-additive on R(δT ) and R(P ) =
N (T̄ ) for any x ∈ X we have

0 = T̄Px = T̄ (IX + ThδT )−1(IX − ThT )x

= T̄ x− T̄ (IX + ThδT )−1(ThδTx+ ThTx)

= T̄ x− T̄ (IX + ThδT )−1ThT̄ x = T̄ x− T̄ Th(IY + δTTh)−1T̄ x

= T̄ x− (IY + δTTh − IY + TTh)(IY + δTTh)−1T̄ x

= (IY − TTh)(IY + δTTh)−1T̄ x.

(3.5)

Since N (IY − TTh) = R(T ), it follows (3.5) that (IY + δTTh)−1R(T̄ ) ⊂ R(T ), that is, R(T̄ ) ⊂
(IY + δTTh)R(T ). Consequently, R(T̄ ) = (IY + δTTh)R(T ). �

Now we can present the main perturbation result for bounded homogeneous generalized inverse
on Banach spaces.

Theorem 3.4. Let T ∈ B(X,Y ) such that Th ∈ H(Y,X) exists. Suppose that δT ∈ B(X,Y )
such that Th is quasi-additive on R(δT ) and IX +ThδT is invertible in B(X,X). Put T̄ = T +δT .
Then the following statements are equivalent:

(1) Φ = Th(IY + δTTh)−1 is a bounded homogeneous generalized inverse of T̄ ;
(2) R(T̄ ) ∩N (Th) = {0};
(3) R(T̄ ) = (IY + δTTh)R(T );
(4) (IX + ThδT )N (T̄ ) = N (T );
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(5) (IY + δTTh)−1T̄N (T ) ⊂ R(T ).

Proof. We prove our theorem by showing that

(3)⇒ (5)⇒ (4)⇒ (2)⇒ (3)⇒ (1)⇒ (3).

(3)⇒ (5) This is obvious since (IY + δTTh) is invertible and N (T ) ⊂ X.
(5) ⇒ (4). Let x ∈ N (T̄ ), then we see (IX + ThδT )x = x − ThTx ∈ N (T ). Hence (IX +

ThδT )N (T̄ ) ⊂ N (T ). Now for any x ∈ N (T ), by (5), there exists z ∈ X such that T̄ x =
(IY + δTTh)Tz = T̄ ThTz. So x− ThTz ∈ N (T̄ ), and hence

(IX + ThδT )(x− ThTz) = (IX − ThT )(x− ThTz) = x.

Consequently, (IX + ThδT )N (T̄ ) = N (T ).
(4) ⇒ (2). Let y ∈ R(T ) ∩ N(Th), then there exists x ∈ X such that y = T̄ x and ThT̄ x = 0.

We can check that

T (IX + ThδT )x = Tx+ TThδTx = Tx+ TThT̄ x− TThTx = 0.

Thus, (IX + ThδT )x ∈ N (T ). By (4), x ∈ N (T̄ ) and so that y = T̄ x = 0.
(2)⇒ (3) follows from Lemma 3.3.
(3)⇒ (1). From Lemma 3.2, we see that

Φ = Th(IY + δTTh)−1 = (IX + ThδT )−1Th

is a bounded homogeneous operator with R(Φ) = R(Th) and N (Φ) = N (Th). Now we need to
prove that ΦT̄Φ = Φ and T̄ΦT̄ = T̄ . We first prove ΦT̄Φ = Φ. Since Th is quasi-additive on
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R(δT ), we have ThT̄ = ThT + ThδT . Therefore,

ΦT̄Φ = (IX + ThδT )−1ThT̄ (IX + ThδT )−1Th

= (IX + ThδT )−1[(IX + ThδT )− (IX − ThT )](IX + ThδT )−1Th

= (IX + ThδT )−1Th − (IX + ThδT )−1(IX − ThT )(IX + ThδT )−1Th

= Φ− (IX + ThδT )−1(IX − ThT )Th(IY + δTTh)−1

= Φ.

Now we prove T̄ΦT̄ = T̄ . The identity R(T̄ ) = (IY + δTTh)R(T ) means that (IY − TTh)(IY +
δTTh)−1T̄ = 0. So

T̄ΦT̄ = (T + δT )Th(IY + δTTh)−1T̄

= (IY + δTTh + TTh − IY )(IY + δTTh)−1T̄

= T̄ .

(1)⇒ (3) Since T̄ΦT̄ = T̄ , we have (IY − TTh)(IY + δTTh)−1T̄ = 0 by the proof of (3)⇒ (1).
Thus, (IY + δTTh)−1R(T̄ ) ⊂ R(T ). From (IY + δTTh)T = T̄ ThT , we get (IY + δTTh)R(T ) ⊂
R(T̄ ). So (IY + δTTh)R(T ) = R(T̄ ). �

Corollary 3.5. Let T ∈ B(X,Y ) such that Th ∈ H(Y,X) exists. Suppose that δT ∈ B(X,Y )
such that Th is quasi-additive on R(δT ) and ‖ThδT‖ < 1. Put T̄ = T + δT . If N (T ) ⊂ N (δT ) or
R(δT ) ⊂ R(T ), then T̄ has a homogeneous bounded generalized inverse

T̄h = Th(IY + δTTh)−1 = (IX + ThδT )−1Th.

Proof. If N(T ) ⊂ N(δT ), then N(T ) ⊂ N(T̄ ). So Condition (5) of Theorem 3.4 holds. If
R(δT ) ⊂ R(T ), then R(T̄ ) ⊂ R(T ). So R(T̄ ) ∩ N (Th) ⊂ R(T ) ∩ N (Th) = {0} and consequently,
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T̄ has the homogeneous bounded generalized inverse Th(IY + δTTh)−1 = (IX + ThδT )−1Th by
Theorem 3.4. �

Proposition 3.6. Let T ∈ B(X,Y ) with R(T ) closed. Assume that N (T ) and R(T ) are
Chebyshev subspaces in X and Y , respectively. Let δT ∈ B(X,Y ) such that TM is quasi-additive

on R(δT ) and ‖TMδT‖ < 1. Put T̄ = T + δT . Suppose that N (T̄ ) and R(T̄ ) are Chebyshev
subspaces in X and Y , respectively. If R(T̄ )∩N (TM ) = {0}, then R(T̄ ) is closed in Y and T̄ has
the Moore-Penrose metric generalized inverse

T̄M = (IX − πN (T̄ ))(IX + TMδT )−1TMπR(T̄ )

with ‖T̄M‖ ≤ 2‖TM‖
1− ‖TMδT‖

.

Proof. TM exists by Corollary 2.5. Since TMδT is R-linear and ‖TMδT‖ < 1, we have IX +
TMδT is invertible in B(X,X). By Theorem 3.4 and Proposition 2.4, R(T̄ ) ∩ N (TM ) = {0}
implies that R(T̄ ) is closed and T̄ has a bounded homogeneous generalized inverse T̄h = (IX +
TMδT )−1TM . Then by Corollary 2.6, T̄M has the form

T̄M = (IX − πN (T̄ ))(IX + TMδT )−1TMπR(T̄ ).

Note that ‖x− πN (T̄ )x‖ = dist(x,N (T̄ )) ≤ ‖x‖ for all x ∈ X. So ‖IX − πN (T̄ )‖ ≤ 1. Therefore,

‖T̄M‖ ≤ ‖IX − πN (T̄ )‖‖(IX + TMδT )−1TM‖‖πR(T̄ )‖ ≤
2‖TM‖

1− ‖TMδT‖
.

This completes the proof. �
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4. Perturbation for quasi-linear projector generalized inverse

It is well-known that the range of a bounded qausi-linear projector on a Banach space is closed
(see [17, Lemma 2.5]). Thus, from Definition 2.3 and the proof of Proposition 2.4, the following
result is obvious.

Proposition 4.1. Let T ∈ B(X,Y ) r {0}. Then T has a bounded quasi-linear generalized
inverse Th ∈ H(Y,X) iff there exist a bounded linear projector PN (T ) : X → N (T ) and a bounded
quasi-linear projector QR(T ) : Y → R(T ).

Motivated by Proposition 4.1, related results in [1, 17, 22] and the definition of oblique projec-
tions of generalized inverses on Banach spaces (see [18, 25]), we introduce the notion of quasi-linear
projector generalized inverse of a bounded linear operator on Banach spaces as follows.

Definition 4.2. Let T ∈ B(X,Y ). Let TH ∈ H(Y,X) be a bounded homogeneous operator.
If there exist a bounded linear projector PN (T ) from X onto N (T ) and a bounded quasi-linear
projector QR(T ) from Y onto R(T ), respectively, such that

(1) TTHT = T ;
(2) THTTH = TH ;
(3) THT = IX − PN (T );

(4) TTH = QR(T );

then TH is called a quasi-linear projector generalized inverse of T .

For T ∈ B(X,Y ), if TH exists, then from Proposition 4.1 and Definition 2.3, we see that R(T )
is closed and TH is quasi-additive on R(T ). In this case, we may call TH is a quasi-linear operator.
Choose δT ∈ B(X,Y ) such that TH is also quasi-additive on R(δT ), then IX +THδT is a bounded
linear operator and IY + δTTH is a bounded linear operator on R(T̄ ).
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Lemma 4.3. Let T ∈ B(X,Y ) such that TH exists and let δT ∈ B(X,Y ) such that TH is quasi-
additive on R(δT ). Put T̄ = T + δT . Assumes that X = N (T̄ )uR(TH) and Y = R(T̄ )uN (TH).
Then

(1) IX + THδT : X → X is a invertible bounded linear operator;
(2) IY + δTTH : Y → Y is a invertible quasi-linear operator;
(3) Υ = TH(IY + δTTH)−1 = (IX + THδT )−1TH is a bounded homogeneous operator.

Proof. Since IX + THδT ∈ B(X,X), we only need to show that N (IX + THδT ) = {0} and
R(IX + THδT ) = X under the assumptions.

We first show that N (IX + THδT ) = {0}. Let x ∈ N (IX + THδT ), then

(IX + THδT )x = (IX − THT )x+ TH T̄ x = 0

since TH is quasi-linear. Thus (IX − THT )x = 0 = TH T̄ x, and hence T̄ x ∈ R(T̄ ) ∩ N (TH).
Noting that Y = R(T̄ ) u N (TH), we have T̄ x = 0, and hence x ∈ R(TH) ∩ N (T̄ ). From
X = N (T̄ )uR(TH), we get that x = 0.

Now, we prove that R(IX + THδT ) = X. Let x ∈ X and put x1 = (IX − THT )x, x2 = THTx.
Since Y = R(T̄ ) u N (TH), we have R(TH) = THR(T̄ ). Therefore, from X = N (T̄ ) u R(TH),
we get that R(TH) = THR(T̄ ) = TH T̄R(TH). Consequently, there is z ∈ Y such that TH(Tx2 −
T̄ x1) = TH T̄ THz. Set y = x1 + THz ∈ X. Noting that TH is quasi-additive on R(T ) and R(δT ),
respectively. we have

(IX + THδT )y = (IX − THT + TH T̄ )(x1 + THz)

= x1 + TH T̄ x1 + TH T̄ THz

= x1 + TH T̄ x1 + TH(Tx2 − T̄ x1)

= x.
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Therefore, X = R(IX + THδT ).
As in Lemma 3.2, we have Υ = TH(IY + δTTH)−1 = (IX + THδT )−1TH is a bounded homo-

geneous operator. �

Theorem 4.4. Let T ∈ B(X,Y ) such that TH exists and let δT ∈ B(X,Y ) such that TH is
quasi-additive on R(δT ). Put T̄ = T + δT . Then the following statements are equivalent:

(1) IX + THδT is invertible in B(X,X) and R(T̄ ) ∩N (TH) = {0};
(2) IX + THδT is invertible in B(X,X) and Υ = TH(IY + δTTH)−1 =

(IX + THδT )−1TH is a quasi-linear projector generalized inverse of T̄ ;
(3) X = N (T̄ ) uR(TH) and Y = R(T̄ ) u N (TH), i.e., N (T̄ ) is topological complemented in

X and R(T̄ ) is quasi-linearly complemented in Y .

Proof. (1)⇒ (2) By Theorem 3.4, Υ = TH(IY + δTTH)−1 = (IX + THδT )−1TH is a bounded
homogeneous generalized inverse of T . Let y ∈ Y and z ∈ R(T̄ ). Then z = Tx + δTx for some
x ∈ X. Since TH is quasi-additive on R(T ) and R(δT ), it follows that

TH(y + z) = TH(y + Tx+ δTx) = TH(y) + TH(Tx) + TH(δTx) = THy + THz,

i.e., TH is quasi-additive on R(T̄ ), and hence Υ is quasi-linear. Set

P̄ = (IX + THδT )−1(IX − THT ), Q̄ = T̄ (IX + THδT )−1TH .

Then, by the proof of Lemma 3.3, P̄ ∈ H(X,X) is a projector with R(P̄ ) = N (T̄ ). Note that
(IX + THδT )−1 and IX − THT are all linear. So P̄ is linear. Furthermore,

ΥT̄ = (IX + THδT )−1TH(T + δT )

= (IX + THδT )−1(IX + THδT + THT − IX)

= IX − P̄ .
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Since TH is quasi-additive on R(T̄ ), it follows that Q̄ = T̄ (I+THδT )−1TH = T̄Υ is quasi-linear
and bounded with R(Q̄) ⊂ R(T̄ ). Note that

Q̄ = T̄ TH(IY + δTTH)−1 = (IY + δTTH + TTH − IY )(IY + δTTH)−1

= IY − (IY − TTH)(IY + δTTH)−1.

According to Lemma 3.3, (IY + δTTH)−1R(T̄ ) = R(T ), so we have R(T̄ ) = Q̄(R(T̄ )) ⊂ R(Q̄).
Thus, R(Q̄) = R(T̄ ). From ΥT̄ = IX − P̄ and R(P̄ ) = N (T̄ ), we see that ΥT̄Υ = Υ. Then we
have

Q̄2 = T̄ (IX + THδT )−1TH T̄ (IX + THδT )−1TH = T̄ΥT̄Υ = Q̄.

Therefore, by Definition 4.2, we get T̄H = Υ.
(2)⇒ (3) From T̄H = TH(IY +δTTh)−1 = (IX+THδT )−1TH , we obtain thatR(T̄H) = R(TH)

and N (T̄H) = N (TH). From T̄ T̄H T̄ = T̄ and T̄H T̄ T̄H = T̄H , we get that

R(IX − T̄H T̄ ) = N (T̄ ), R(T̄H T̄ ) = R(T̄H),

R(T̄ T̄H) = R(T̄ ), R(IY − T̄ T̄H) = N (T̄H).

Thus R(T̄H) = R(TH) and R(IY − T̄ T̄H) = N (TH). Therefore,

X = R(IX − T̄H T̄ )uR(T̄H T̄ ) = N (T̄ )uR(TH),

Y = R(T̄ T̄H)uR(IY − T̄ T̄H) = R(T̄ )uN (TH).

(3)⇒ (1) By Lemma 4.3, IX +THδT is invertible in H(X,X). Now from Y = R(T̄ )uN (TH),
we get R(T̄ ) ∩N (TH) = {0}. �

Lemma 4.5 ([2]). Let A ∈ B(X,X). Suppose that there exist two constants λ1, λ2 ∈ [0, 1) such
that

‖Ax‖ ≤ λ1‖x‖+ λ2‖(IX +A)x‖ for all x ∈ X.
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Then IX +A : X → X is bijective. Moreover, for any x ∈ X,

1− λ1

1 + λ2
‖x‖ ≤ ‖(IX +A)x‖ ≤ 1 + λ1

1− λ2
‖x‖,

1− λ2

1 + λ1
‖x‖ ≤ ‖(IX +A)−1x‖ ≤ 1 + λ2

1− λ1
‖x‖.

Let T ∈ B(X,Y ) such that TH exists. Let δT ∈ B(X,Y ) such that TH is quasi-additive on
R(δT ) and satisfies

‖THδTx‖ ≤ λ1‖x‖+ λ2‖(IX + THδT )x‖ for all x ∈ X,(4.1)

where λ1, λ2 ∈ [0, 1).

Corollary 4.6. Let T ∈ B(X,Y ) such that TH exists. Suppose that δT ∈ B(X,Y ) such that
TH is quasi-additive on R(δT ) and satisfies (4.1). Put T̄ = T +δT . Then IX +THδT is invertible
in H(X,X) and T̄H = (IX + THδT )−1TH is well-defined with

‖T̄H − TH‖
‖TH‖

≤ (2 + λ1)(1 + λ2)

(1− λ1)(1− λ2)
.

Proof. By using Lemma 4.5, we get that IX + THδT is invertible in H(X,X) and

‖(IX + THδT )−1‖ ≤ 1 + λ2

1− λ1
, ‖IX + THδT‖ ≤ 1 + λ1

1− λ2
.(4.2)
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From Theorem 4.4, we see T̄H = TH(IY + δTTH)−1 = (IX +THδT )−1TH is well-defined. Now
we can compute

‖T̄H − TH‖
‖TH‖

≤ ‖(IX + THδT )−1TH − TH‖
‖TH‖

≤ ‖(IX + THδT )−1[IX − (IX + THδT )]TH‖
‖TH‖

≤ ‖(IX + THδT )−1‖‖THδT‖.

(4.3)

Since λ2 ∈ [0, 1), then from the second inequality in (4.2), we get that ‖THδT‖ ≤ 2 + λ1

1− λ2
. Now,

by using (4.3) and (4.2), we can obtain

‖T̄H − TH‖
‖TH‖

≤ (2 + λ1)(1 + λ2)

(1− λ1)(1− λ2)
.

This completes the proof. �

Corollary 4.7. Let T ∈ B(X,Y ) with R(T ) closed. Assume that R(T ) and N (T ) are Cheby-
shev subspaces in Y and X, respectively. Let δT ∈ B(X,Y ) such that R(δT ) ⊂ R(T ), N (T ) ⊂
N (δT ) and ‖TMδT‖ < 1. Put T̄ = T + δT . If TM is quasi-additive on R(T ), then T̄M =
TM (IY + δTTM )−1 = (IX + TMδT )−1TM with

‖T̄M − TM‖
‖TM‖

≤ ‖TMδT‖
1− ‖TMδT‖

.

Proof. From R(δT ) ⊂ R(T ) and N (T ) ⊂ N (δT ), we get that πR(T )δT = δT and δTπN (T ) = 0,

that is, TTMδT = δT = δTTMT . Consequently,

T̄ = T + δT = T (IX + TMδT ) = (IY + δTTM )T(4.4)
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Since TM is quasi-additive on R(T ) and ‖TMδT‖ < 1, we get that IX + TMδT and IY + δTTM

are all invertible in H(X,X). So from (??), we have R(T̄ ) = R(T ) and N (T̄ ) = N (T ), and hence
T̄H = TM (IY + δTTM )−1 = (IX + TMδT )−1TM by Theorem 4.4. Finally, by Corollary 2.6,

T̄M = (IX − πN (T̄ ))T̄
HπR(T̄ ) = (IX − πN (T ))T

M (IY + δTTM )−1πR(T )

= (IX + TMδT )−1TMπR(T ) = (IX + TMδT )−1TM = TM (IY + δTTM )−1

and then

‖T̄M − TM‖ ≤ ‖(IX − TMδT )−1 − IX‖‖TM‖ ≤ ‖T
MδT‖‖TM‖

1− ‖TMδT‖
.

The proof is completed. �
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