ACTA MATHEMATICA UNIVERSITATIS COMENIANAE 
 
Vol. 61,   2   (1992) 
pp.   263-276
 
GEOMETRY OF THE NONLINEAR REGRESSION WITH PRIOR 
 
A. PAZMAN 
Abstract. 
In a nonlinear regression model with a given prior distribution, the estimator maximizing the posterior proba% bility density is considered (a certain kind of Bayes estimator). It is shown that the prior influences essential% ly, but in a comprehensive way, the geometry of the model, including the intrinsic curvature measure of nonlinearity which is derived in the paper. The obtained geometrical results are used to present the modified Gauss-Newton method of computation of the estimator, and to obtain the exact and an approximate probability density of the estimator. 
AMS subject classification. 
62J02; Secondary 62F15, 62F11 
Keywords. 
nonlinear regression, Bayes estimator, distribu% tions of estimators, geometry in statistics, curvatures 
   Download:         Adobe PDF         Compressed  Postscript
         Compressed  Postscript   
     
      
 Acta Mathematica Universitatis Comenianae
 Institute of Applied
Mathematics 
Faculty of Mathematics,
Physics and Informatics
 Comenius University
842 48 Bratislava, Slovak Republic  
Telephone: + 421-2-60295111 Fax: + 421-2-65425882 
 
e-Mail: amuc@fmph.uniba.sk
   Internet: www.iam.fmph.uniba.sk/amuc
© Copyright 2001, ACTA MATHEMATICA
UNIVERSITATIS COMENIANAE