ACTA MATHEMATICA UNIVERSITATIS COMENIANAE

Vol. 63,   2   (1994)
pp.   303-308

ON SWELL-COLORED COMPLETE GRAPHS
C. WARD and S. SZABO


Abstract.  An edge-colored graph is said to be swell-colored if each triangle contains exactly 1 or 3 colors but never 2 colors and if the graph contains more than one color. It is shown that a swell-colored complete graph with n vertices contains at least $ \sqrt n + 1 $ colors. The complete graph with $n^2$ vertices has a swell coloring using $n + 1$ colors if and only if there exists a finite affine plane of order $n$.

AMS subject classification
Keywords.  Complete graphs, finite affine planes, finite fields

Download:     Adobe PDF     Compressed Postscript      

Acta Mathematica Universitatis Comenianae
Institute of Applied Mathematics
Faculty of Mathematics, Physics and Informatics
Comenius University
842 48 Bratislava, Slovak Republic  

Telephone: + 421-2-60295111 Fax: + 421-2-65425882  
e-Mail: amuc@fmph.uniba.sk   Internet: www.iam.fmph.uniba.sk/amuc

© Copyright 2001, ACTA MATHEMATICA UNIVERSITATIS COMENIANAE