ACTA MATHEMATICA UNIVERSITATIS COMENIANAE

Vol. 64,   1   (1995)
pp.   77-81

A NOTE ON THE HAMILTONIAN GENUS OF A COMPLETE BIPARTITE GRAPH
A. DEMOVIC


Abstract.  The Hamiltonian genus of a graph $G$ (denoted by $\gamma_H(G)$) is the smallest number $g$ such that the graph $G$ is embeddable in the orientable surface with genus $g$ and there is some face-boundary $b$ which is a Hamiltonian cycle of $G$. In this paper we show that \lceil (n-2)(n-1)/4 \rceil \leq \gamma_H(K_n,n) \leq \lceil n/2 \rceil^2 + \lceil n/2 \rceil.

AMS subject classification
Keywords

Download:     Adobe PDF     Compressed Postscript      

Acta Mathematica Universitatis Comenianae
Institute of Applied Mathematics
Faculty of Mathematics, Physics and Informatics
Comenius University
842 48 Bratislava, Slovak Republic  

Telephone: + 421-2-60295111 Fax: + 421-2-65425882  
e-Mail: amuc@fmph.uniba.sk   Internet: www.iam.fmph.uniba.sk/amuc

© Copyright 2001, ACTA MATHEMATICA UNIVERSITATIS COMENIANAE