ACTA MATHEMATICA UNIVERSITATIS COMENIANAE

Vol. 64,   1   (1995)
pp.   141-152

MIXING FOR DYADIC EQUIVALENCE
J. R. HASFURA-BUENAGA


Abstract.  The notion of dyadic orbit equivalence for measure-preserving actions of $\Gamma =\oplus_1^\infty Z_2$ on non-atomic probability spaces is introduced and it is shown that every dyadic equivalence class contains a mixing action. Also, a direct proof of a theorem of Stepin's characterizing the values of entropy across an equivalence class is given.

AMS subject classification.  28D05, 28D20
Keywords

Download:     Adobe PDF     Compressed Postscript      

Acta Mathematica Universitatis Comenianae
Institute of Applied Mathematics
Faculty of Mathematics, Physics and Informatics
Comenius University
842 48 Bratislava, Slovak Republic  

Telephone: + 421-2-60295111 Fax: + 421-2-65425882  
e-Mail: amuc@fmph.uniba.sk   Internet: www.iam.fmph.uniba.sk/amuc

© Copyright 2001, ACTA MATHEMATICA UNIVERSITATIS COMENIANAE