ACTA MATHEMATICA UNIVERSITATIS COMENIANAE
Vol. 64,   1   (1995)
pp.   99-111
SUPER-GEOMETRIC QUANTIZATION
I. VAISMAN
Abstract. 
Let $K$ be the complex line bundle where the Kostant-Souriau geometric quantization operators are defined. We discuss possible prolongations of these operators to the linear superspace of the $K$-valued differential forms, such that the Poisson bracket is represented by the supercommutator of the corresponding operators. We also discuss the possibility to obtain such super-geometric quantizations by (anti)Hermitian operators on a Hilbert superspace. We apply our general considerations to Kahler manifolds and to cotangent bundles of Riemannian manifolds.
AMS subject classification. 
58F06
Keywords. 
Geometric quantization, linear superspace, supercommutator
Download:     Adobe PDF     Compressed Postscript      
Acta Mathematica Universitatis Comenianae
Institute of Applied
Mathematics
Faculty of Mathematics,
Physics and Informatics
Comenius University
842 48 Bratislava, Slovak Republic
Telephone: + 421-2-60295111 Fax: + 421-2-65425882
e-Mail: amuc@fmph.uniba.sk
  Internet: www.iam.fmph.uniba.sk/amuc
© Copyright 2001, ACTA MATHEMATICA
UNIVERSITATIS COMENIANAE