ACTA MATHEMATICA UNIVERSITATIS COMENIANAE

Vol. 64,   1   (1995)
pp.   99-111

SUPER-GEOMETRIC QUANTIZATION
I. VAISMAN


Abstract.  Let $K$ be the complex line bundle where the Kostant-Souriau geometric quantization operators are defined. We discuss possible prolongations of these operators to the linear superspace of the $K$-valued differential forms, such that the Poisson bracket is represented by the supercommutator of the corresponding operators. We also discuss the possibility to obtain such super-geometric quantizations by (anti)Hermitian operators on a Hilbert superspace. We apply our general considerations to Kahler manifolds and to cotangent bundles of Riemannian manifolds.

AMS subject classification.  58F06
Keywords.  Geometric quantization, linear superspace, supercommutator

Download:     Adobe PDF     Compressed Postscript      

Acta Mathematica Universitatis Comenianae
Institute of Applied Mathematics
Faculty of Mathematics, Physics and Informatics
Comenius University
842 48 Bratislava, Slovak Republic  

Telephone: + 421-2-60295111 Fax: + 421-2-65425882  
e-Mail: amuc@fmph.uniba.sk   Internet: www.iam.fmph.uniba.sk/amuc

© Copyright 2001, ACTA MATHEMATICA UNIVERSITATIS COMENIANAE