ACTA MATHEMATICA UNIVERSITATIS COMENIANAE

Vol. 68,   1   (1999)
pp.   77-84

ON FINITE PRINCIPAL IDEAL RINGS
J. CAZARAN and A. V. KELAREV


Abstract.  We find new conditions sufficient for a tensor product $R\otimes S$ and a quotient ring $Q/I$ to be a finite commutative principal ideal ring, where $Q$ is a polynomial ring and $I$ is an ideal of $Q$ generated by univariate polynomials.

AMS subject classification.  13F10, 13F20
Keywords

Download:     Adobe PDF     Compressed Postscript      

Acta Mathematica Universitatis Comenianae
Institute of Applied Mathematics
Faculty of Mathematics, Physics and Informatics
Comenius University
842 48 Bratislava, Slovak Republic  

Telephone: + 421-2-60295111 Fax: + 421-2-65425882  
e-Mail: amuc@fmph.uniba.sk   Internet: www.iam.fmph.uniba.sk/amuc

© Copyright 2001, ACTA MATHEMATICA UNIVERSITATIS COMENIANAE