ACTA MATHEMATICA UNIVERSITATIS COMENIANAE
Vol. LXXIV, 1 (2005)
p. 71 - 78
On bounded module maps
between Hilbert modules over locally C*-algebras
M. Joita
Abstract. 
Let $A$ be a locally $C^{*}$-algebra and let $E$ be a Hilbert $A$-module.
We show that the algebra $B_A(E)$ of all bounded $A$-module maps on $E$ is a
locally \hbox{$m$-c}on\-vex algebra which is algebraically and topologically
isomorphic to $LM(K_A(E))$, the algebra of all left multipliers of $K_A(E)$,
where $K_A(E)$ is the locally $C^{*}$-algebra of all ''compact`` $A$-module
maps on $E$. Also we show that $b(B_A(E))$, the algebra of all bounded
elements in $B_A(E)$, is a Banach algebra which is isometrically isomorphic
to $B_{b(A)}(b(E))$.
Keywords:
Hilbert modules over locally C*-algebras,
bounded module maps, locally m-convex algebras.  
AMS Subject classification:  46L08, 46L05, 46A13.
Download:    
Adobe PDF    
Compressed Postscript      
Version to read:    
Adobe PDF
Acta Mathematica Universitatis Comenianae
Institute of Applied Mathematics
Faculty of Mathematics, Physics and Informatics
Comenius University
842 48 Bratislava, Slovak Republic
Telephone: + 421-2-60295755 Fax: + 421-2-65425882
e-Mail: amuc@fmph.uniba.sk
  Internet: www.iam.fmph.uniba.sk/amuc
©
Copyright 2005, ACTA MATHEMATICA UNIVERSITATIS COMENIANAE