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CONTINUOUS SELECTIONS FOR LIPSCHITZ MULTIFUNCTIONS

I. KUPKA

Abstract. In [11] an example presented a Hausdorff continuous, u.s.c. and l.s.c. multifunction from 〈−1, 0〉 to R which
had no continuous selection. The multifunction was not locally Lipschitz. In this paper we show that a locally Lipschitz
multifunction from R to a Banach space, which has ”locally finitely dimensional“ closed values does have a continuous

selection.

1. Introduction

The research in the selection theory was started by Michael in 1956 (see for example [15], [16]) by proving several
continuous selection theorems. Then, the problem of the existence of selections of various types – linear e. g.
[7], measurable [13], Carathéodory [8], quasicontinuous [10], [14], Lipschitz [3], [6] etc. – was studied in many
papers. A Lipschitz selection theorem for compact-valued multifunctions defined on a closed interval, with values
in a metric space, was proved in [5]. Recent results concerning selections are listed in [18].

In general, there is no guarantee that a ”nice“ multifunction will have a continuous selection. Even closed-
valued continuous multifunctions defined on compact interval and with values in R need not have a continuous
selection (see[11]). In this paper, we show, in particular, that if such a multifunction is locally Lipschitz, it does
have a continuous selection. This will be a consequence of a more general assertion, Theorem 3.
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2. Notation and terminology

For definiton of basic notions: multifunction, selection, l.s.c. u.s.c. and Hausdorff continuous multifunction,
Hausdorff metric etc see e.g. [12] and [17].

In what follows we denote by N the set of all positive integers, by R the real line with its usual topology and by
B an arbitrary Banach space over R. If X is a metric space, x ∈ X and r is a positive real number, we denote the
closed ball with the center x and diameter r by B(x, r). Throughout this paper we consider only multifinctions
with nonvoid values.

If K is a positive real number, and (X, d), (Y, %) are metric spaces, we say that a multifunction F from X to
Y is K-Lipschitz if for every x1, x2 from X the inequality H%(F (x1), F (x2)) ≤ Kd(x1, x2) is true. (By H% we
denote a Hausdorff metric on 2Y − {∅} derived in a natural way from %).

Before proving our main results we need the following technical lemma:

Lemma 1. Let Y be a Banach space over R. Let a ∈ R, let m be a positive real number. Let I = 〈a, a + m〉
(I = 〈a − m,a〉) ⊂ R. Let F : I → Y be a K-Lipschitz multifunction. Let r > 0, r < K. Let b ∈ F (a). Then
there exists an M -Lipschitz function f : I → Y such that M = (K + r), f(a) = b and for each x in I

d(f(x), F (x)) = inf{d(f(x), t); t ∈ F (x)} < r.

Moreover f(I) ⊆ B(b, 2Km) holds.

Proof. Let us consider the case I = 〈a, a + m〉. The case I = 〈a−m,a〉 is symmetrical.
Let n ∈ N be such that K m

n < r
6 and m

n < 1
3 . Let us define xi = a + m

n i for i = 0, 1, 2, . . . n. Denote b = y0.
Since F is K-Lipschitz, there exists a point y1 ∈ F (x1) such that

d(y0, y1) 5 H(F (x0), F (x1)) +
rm

2n

5 Kd(x0, x1) +
rm

2n
5 K

m

n
+

rm

2n
5

(
K +

r

2

) m

n
.
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By final induction we can find a set {y0, y1, . . . , yn} such that ∀i = 0, 1, 2, . . . , n, yi ∈ F (xi) and

d(yi, yi+1) 5
(
K +

r

2

) m

n
for i 5 n− 1.

Let us define a continuous function f : 〈a, a + m〉 → Y in this way: f(xi) = yi, i = 0, 1, 2, . . . , n

f(x) =
1
m

[n(x− xi)yi+1 + n(xi+1 − x)yi] if x ∈ (xi, xi+1).

We will prove that f is (K + r
2 )-Lipschitz on 〈a, a + m〉.

(I) Let x, x′ ∈ 〈xi, xi+1〉, for some i ∈ {0, 1, . . . , n} , x < x′. We obtain

d(f(x), f(x′))

=
1
m
‖n(x′ − xi)yi+1 + n(xi+1 − x′)yi − n(x− xi)yi+1 − n(xi+1 − x)yi‖

=
n

m
‖(x′ − x)yi+1 − (x′ − x)yi‖ 5

n

m
|x′ − x| · ‖(yi+1 − yi)‖

5
n

m
|(x′ − x)|

(
K +

r

2

) m

n
5

(
K +

r

2

)
|x′ − x|.

(II) In general, if x < xi < xi+1 . . . , xi+k < x′ for some i, k ∈ {0, 1, . . . , n}, i + k < n then, because of (I)

d(f(x), f(x′))

5 d(f(x), f(xi)) + d(f(xi), f(xi+1)) + . . . + d(f(xi+k−1), f(xi+k))

+ d(f(xi+k), f(x′))

5
((

K +
r

2

)
|xi − x|+

(
K +

r

2

)
|xi+1 − xi|+ . . . +

(
K +

r

2

)
|x′ − xi+k|

)
=

(
K +

r

2

)
|x′ − x|.



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Now, let x ∈ 〈a, a + m〉, then x ∈ 〈xi, xi+1〉 for some i ∈ {0, 1, . . . , n}. So

d(f(x), F (x)) = inf{d(f(x), t), t ∈ F (x)}

= inf
{∥∥∥ n

m
(x− xi)yi+1 +

n

m
(xi+1 − x)yi − t

∥∥∥ ; t ∈ F (x)
}

Since F is K-Lipschitz there exists a point p from F (x) such that d(p, yi+1) 5 (K + r
2 )(xi+1 − x) therefore

d(f(x), p) 5 d(f(x), yi) + d(yi, yi+1) + d(yi+1, p)

5
(
K +

r

2

)
(x− xi) +

(
K +

r

2

) m

n
+

(
K +

r

2

)
(xi+1 − x)

5
(
K +

r

2

)
(xi+1 − xi) +

(
K +

r

2

) m

n
5 2

(
K +

r

2

) m

n
5 2

r

6
+ r

m

n
< r.

so d(f(x), F (x)) < r for each x from 〈a, a + m〉.
Now, since f(a) = b and f is a (K +r)-Lipschitz function, for r such that r < K and for each x from 〈a, a+m〉

we have
d(b, f(x)) = d(f(a), f(x)) 5 (K + r)|x− a| 5 2K|a + m− a| 5 2Km

so f(〈a, a + m〉) ⊆ B(b, 2Km). �

Theorem 1. Let B be a finitely dimensional Banach space. Let a ∈ R, let l be a positive real number. Let
I = 〈a, a + l〉 (〈a − l, a〉). Let F : I → B be a K-Lipschitz multifunction with closed values. Then F has a
K-Lipschitz selection on I.

Proof. We will prove the Theorem only for the case I = 〈a, a+l〉. According to Lemma 1 there exists a sequence
{fi}∞i=1 of functions fi : 〈a, a+l〉 → B such that for each index i from N and each x from 〈a, a+l〉 d(fi(x), F (x)) < 1

i

is true. Moreover each function fi is
(
K + 1

i

)
-Lipschitz and fi(〈a, a+ l〉) ⊂ B(b, 2Kl). This implies that for every

x from X the set {fi(x); i = 1, 2, . . .} is precompact.
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Since B is finitely dimensional, according to Arzela-Ascoli theorem the set M = {fi; i ∈ 1, 2, . . .} is precompact.
So there exists a continuous function f : 〈a, a + l〉 → B such that f is a uniform limit of a sequence {fij}∞j=1 (a
subsequence of {fi}∞i=1) of functions from M .

Let us consider an ε > 0. As we have proved above there exists an index k such that fij
is (K + ε)-Lipschitz

for each j = k. That means that the function f is also (K + ε)-Lipschitz. f is proved to be K-Lipschitz.
Now it is simple to realize that f is a selection of F . For each ε > 0 there exists an index m such that for each

x from X

d(fim
(x), F (x)) < ε and sup

x∈〈a,a+l〉
|fim

(x)− f(x)| < ε.

So for every x from X d(f(x), F (x)) < 2ε. Since ε was an arbitrary positive real number, for each x from X
d(f(x), F (x)) = 0 is true. F has closed values so f is a selection of F . �

3. Main results

Theorem 2. Let B be a finitely dimensional Banach space over R. Let F : R → B be a K-Lipschitz multi-
function with closed values. Then F has a K-Lipschitz selection on R.

Proof. This is a simple consequence of Theorem 1 so we will only give an outline of the proof. Let b be an
element of the set F (0). Using Theorem 1, we can define by induction K-Lipschitz selections f1, f2, . . . f2i, f2i+1, . . .
of F such that for each nonnegative integer i the function f2i (f2i+1) is defined on 〈2i, 2i + 2〉 (〈−2i − 2,
−2i〉) and f2i(2i + 2) = f2(i+1)(2i + 2) (f2i+1(−2i − 2) = f2(i+1)+1(−2i − 2)) and such that f1(0) = f2(0) = b.
It is easy to see that a function f : R → B defined by f(x) = f2i(x) if x ∈ 〈2i, 2i + 2〉 and f(x) = f2i+1(x) if
x ∈ 〈−2i− 2,−2i〉 is correctly defined and it is a K-Lipschitz selection of F . �

Theorem 2 is true for certain multifunctions with non-convex and non-compact values. It is a generalization
of a result, obtained for multifunctions with convex compact values:
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Corollary 1. [6, Corollary 2] Let n be a positive integer, let B = Rn. Let F : R → B be a K-Lipschitz
multifunction with convex compact (and nonvoid) values. Then F has a K-Lipschitz selection on R.

In the following lemma we shall use the following assumption concerning a multifunction F from R to a Banach
space B:

Assumption LFD. For every x from R there exists an open neighborhood Ox ⊂ R and a finitely dimensional
set Bx ⊂ B such that F (Ox) ⊂ Bx.

We say that a multifunction F : R → B is locally Lipschitz if for every real x there exists an open interval Ux

and a positive real constant Kx such that x ∈ Ux and F is Kx-Lipschitz on Ux.

Lemma 2. Let B be a Banach space. Let F : R → B be a locally Lipschitz mutifunction with closed values.
Let F satisfy the assumption LFD. Let a ∈ R and b ∈ F (a). Then for every real c, d, c < d satifying c ≤ a ≤ d
there exists a Lipschitz selection f : 〈c, d〉 → B of F such, that f(a) = b.

Proof. It suffices to show that F is Lipschitz on 〈c, d〉 and that there exists a finitely dimensional subset Z of
B such that F (〈c, d〉) ⊂ Z. After that we can apply Theorem 1.

We proceed by a usual ”locally on compact implies globally on compact“ procedure. Obviously for every x
from 〈c, d〉 there exists an open interval Ux, a positive real number Kx and a finitely dimensional subset Bx of B
such that x ∈ Ux, F (Ux) ⊂ Bx and F is Kx-Lipschitz on Ux.

Consider the following open cover C of 〈c, d〉: C = {Ux;x ∈ 〈c, d〉} . There exists a finite subcover S of C and
a positive integer n such that S = {Ux1 , Ux2 , . . . , Uxn

}. Let us denote M = max{Kx1 ,Kx2 , . . . ,Kxn
}. Then F is

M -Lipschitz on each interval Uxi for i ∈ {1, 2, . . . , n}. The fact 〈c, d〉 ⊂ U :=
⋃n

i=1 Uxi implies F is M -Lipschitz
on 〈c, d〉.

Moreover, F (〈c, d〉) ⊂ F (U) ⊂ Z :=
⋃n

i=1 Bxi
, and we can see that Z is finitely dimensional.

If c < a < d Theorem 1 implies F has an M -Lipschitz selection h ( g ) on 〈c, a〉 (〈a, d〉) such that g(a) =
h(a) = b. So if c < a < d the function f : 〈c, d〉 → B defined by f(x) = g(x) on 〈c, a〉 and f(x) = h(x) on 〈a, d〉 is
a Lipschitz selection of F on 〈c, d〉. The proof for the cases a = c, a = d is even easier. �
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To realize that the assumptions of our final result, Theorem 3, can hardly be weakened let us compare the
following three assertions:

(1) There exists a finitely valued Lipschitz multifunction from a unit circle into R2 that has no continuous
selection. (See Example 1. Of course, each multifunction with values in R2 or R automatically satisfies
the assumption LFD.)

(2) There exists a Hausdorff continuous multifunction from the compact interval 〈−1, 0〉 to R with closed values,
which is locally Lipschitz in every point of 〈−1, 0) and has no continuous selection (See Example 2).

(3) Each locally Lipschitz multifunction with closed values from R to a Banach space, satisfying the assumption
LFD has a continuous selection. (See Theorem 3).

The examples presented below are based on ideas, used in examples published in [4] and [11].

Example 1. Let K = cos(t) + i · sin(t); t ∈ 〈0, 2π) be the unit circle in the complex plane.
For each t from 〈0, 2π) let us denote

at = cos(t) + i · sin(t), bt = cos
(

t

2

)
+ i · sin

(
t

2

)

ct = cos
(

π +
t

2

)
+ i · sin

(
π +

t

2

)
Let us define a two-valued multifunction F : K → K by F (at) = {bt, ct} for every t from 〈0, 2π).

This multifunction has compact (even finite) values and is Lipschitz.This can be seen by two ways.
An intuitive way is the easier one. If we draw a picture of our circle, we realize, that with t ”moving“ from

0 towards 2π the point at is moving from the point [1, 0] to [0, 1], then [−1, 0] and finally to [1, 0] again. In this
time the two-tuple [bt, ct] travels around the circle too, but its speed is the half of the speed of at.
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Now we show in an exact way that F is 1-Lipschitz. Let t1, t2 be from 〈0, 2π), t1 > t2. We have

|at1 − at2 | =
√

(cos(t1)− cos(t2))2 + (sin(t1)− sin(t2))2

=
√

2− 2 cos(t1) cos(t2)− 2 sin(t1) sin(t2) =
√

2(1− cos(t1 − t2))

=
√

2
√

1− cos(t1 − t2)).

Similarly

|bt1 − bt2 | =
√

2

√
1− cos

(
t1 − t2

2

)
.

And, of course,
|ct1 − ct2 | = |bt1 − bt2 |.

Moreover

|bt1 − ct2 | = |ct1 − bt2 | =
√

2

√
1− cos

(
t1 − t2

2
− π

)
=
√

2

√
1 + cos

(
t1 − t2

2

)
.

Therefore
H(F (at1), F (at2)) = H({bt1 , ct1}, {bt2 , ct2}) ≤ min{|bt1 − bt2 |, |bt1 − ct2 |}

= min

{
√

2

√
1− cos

(
t1 − t2

2

)
,
√

2

√
1 + cos

(
t1 − t2

2

)}
Now it is sufficient to show that

min

{√
1− cos

(
t1 − t2

2

)
,

√
1 + cos

(
t1 − t2

2

)}
≤

√
1− cos(t1 − t2) =

1√
2
|at1 − at2 |

for all t1, t2, 2π > t1 > t2 ≥ 0.
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So the last thing we need to verify is that for all l ∈ 〈0, 2π)

min
{

1− cos
(

l

2

)
, 1 + cos

(
l

2

)}
≤ 1− cos(l)

or equivalently ∀l ∈ 〈0, 2π):

cos
(

l

2

)
− cos(l) ≥ 0 or cos

(
l

2

)
+ cos(l) ≤ 0.(∗)

Since

cos
(

l

2

)
− cos(l) = 2 sin

(
3
4
l

)
sin

(
l

4

)
cos

(
l

2

)
+ cos(l) = 2 cos

(
3
4
l

)
cos

(
l

4

)
it is easy to verify that

cos
(

l

2

)
− cos(l) ≥ 0 ∀l ∈

〈
0,

4
3
π

〉
cos

(
l

2

)
+ cos(l) ≤ 0 ∀l ∈

〈
2
3
π, 2π

〉
Therefore (∗) is verified and for all t1, t2 from 〈0, 2π), t1 > t2,

H(F (at1), F (at2)) ≤ |at1 − at2 |.

F is proved to be 1-Lipschitz.
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Nevertheless, F has no continuous selection on K. It has two natural continuous selections on each Kε ⊂ K
where the set Kε is defined by Kε = {at; t ∈ 〈0, 2π−ε)} for every positive ε < 2π. These selections are: f(at) = bt

and g(at) = ct for each at from Kε.
However, no of these selections can be prolonged to K, For example f(a0) = b0 = [1, 0] , but lim

t→2π−
f(at) =

lim
t→2π−

bt = [−1, 0].

Example 2. [11] Let F : 〈−1, 0〉 → R be defined as follows:

F (0) = R

F (x) =
{

n(n + 1)
2

x +
k

2n
; k ∈ Z

}
∪

{
n(n + 1)

2n + 1
2n+1

x +
n + 1
2n+1

+
k

2n
; k ∈ Z

}

for every positive integer n and every x ∈
〈
− 1

n ,− 1
n+1

〉
.

In other words: the intersection of the graph of F with the set
〈
− 1

n ,− 1
n+1

〉
×R is a system of segments joining

the following couples of points: the point
[−1

n , m
2n

]
with the point

[
− 1

n+1 , m
2n + 1

2

]
and

[
− 1

n , m
2n

]
with the point[

− 1
n+1 , m

2n + 1
2 + 1

2n+1

]
where m is an arbitrary integer.

To show that F is locally Lipschitz on 〈−1, 0) it is sufficient to show that it is n(n + 1)-Lipschitz on In =〈
−1
n , −1

n+1

〉
for every n ∈ N, n > 0.

Let x1, x2 ∈ In. Let y1 ∈ F (x1). Then there exists an integer k such that

y1 =
n(n + 1)

2
x1 +

k

2n
or y1 = n(n + 1)

2n + 1
2n+1

x1 +
n + 1
2n+1

+
k

2n
.
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There exists also y2 from F (x2) such that

y2 =
n(n + 1)

2
x2 +

k

2n
or y2 = n(n + 1)

2n + 1
2n+1

x2 +
n + 1
2n+1

+
k

2n

so |y1 − y2| equals
n(n + 1)

2
|x1 − x2| or

n(n + 1)(2n + 1)
2n+1

|x1 − x2|.
In both cases we have

|y1 − y2| ≤ Kn|x1 − x2|, where Kn = n(n + 1).(∗∗)
In the same way we can pick an y2 from F (x2) first and find a y1 from F (x1) such that the inequality (∗∗) is

true.
This means that for each x1, x2 from In H(F (x1), F (x2)) ≤ Kn|x1 − x2| is true.
We have just proved that F is locally Lipschitz on 〈−1, 0). The Hausdorff continuity of F on 〈−1, 0〉 is proved

in [11].
F has no continuous selection on 〈−1, 0〉 : every continuous selection f of F defined on the set 〈−1, 0) has the

property lim
t→0−

f(t) = +∞.

Next we will prove our main theorem:

Theorem 3. Let B be a Banach space over R. Let F : R → B be a locally Lipschitz mutifunction with closed
values. Let F satisfy the assumption LFD. Let a ∈ R and b ∈ F (a). Then F has a continuous selection f on R
such that f(a) = b.

Proof. For n = 1, 2, 3 . . . denote In = 〈−n, n〉. In what follows we procced by induction. Let us suppose,
without loss of generality, that a = 0.
(1) According to Lemma 2 there exists a Lipschitz selection f1 : T1 → B of F on the interval I1 such that
f(a) = b. Let us denote f1(−1) = b1 and f1(1) = c1.
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(2) Let us suppose that for n in N, n = 1, 2, . . . k there exist Lipschitz selections fn of F on In such that if
l,m ∈ {1, 2, . . . k}, l > m then fl(x) = fm(x) for each x from Im.

For each of the n considered let us denote fn(−n) = bn andfn(n) = cn.
Since bk ∈ F (−k) there exists a Lipschitz selection gk of F on 〈−k − 1,−k〉 such that gk(−k) = bk. Since

ck ∈ F (k) there exists a Lipschitz selection hk of F on 〈k, k + 1〉 such that hk(k) = ck.
Let us define a function fk on Ik by

fk(x) = gk(x) for x from 〈−k − 1,−k〉

fk(x) = fk−1(x) for x from 〈−k, k〉

fk(x) = hk(x) for x from 〈k, k + 1〉.

We have just constructed by induction a sequence of Lipschitz selections fk of F on the intervals Ik such that if
k1 < k2 then fk2(x) = fk1(x) for all x from Ik1 . All functions fk are continuous selections of F on their domains.

Let us define a function f : R → B by

f(x) = f1(x) for x ∈ 〈−1, 1〉,

f(x) = fk(x) for x ∈ 〈−k − 1,−k〉 ∪ 〈k, k + 1〉, k = 1, 2, . . .

The function f is a selection of F on R. It is continuous because all functions fk are continuous. �
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