ACTA MATHEMATICA UNIVERSITATIS COMENIANAE

Vol. LXXIV, 1 (2005)
p. 25 - 36

On (m, n)-quasi-injective modules
Z. M. Zhu, J. L. Chen and X. X. Zhang


Abstract.  Let $R$ be a ring. For two fixed positive integers $m$ and $n$, an $R$-module $M$ is called {\it\bfseries $(m,n)$-quasi-injective} if each $R$-homomorphism from an $n$-generated submodule of $M^{m}$ to $M$ extends to one from $M^{m}$ to $M$. It is showed that $M_R$ is $(m,n)$-quasi-injective if and only if the right $R^{n\times n}$-module $M^{m\times n}$ is principally quasi-injective. Many properties of $(m,n)$-injective rings and principally quasi-injective modules are extended to these modules. Moreover, some properties of $(m,n)$-quasi-injective Kasch modules are investigated.
In particular, some other well-known results are also obtained.

Keywords: (m, n)-quasi-injective modules, Kasch modules.  

AMS Subject classification:  16D50, 16D90.

Download:     Adobe PDF     Compressed Postscript      

Version to read:     Adobe PDF

Acta Mathematica Universitatis Comenianae
Institute of Applied Mathematics
Faculty of Mathematics, Physics and Informatics
Comenius University
842 48 Bratislava, Slovak Republic  

Telephone: + 421-2-60295755 Fax: + 421-2-65425882  
e-Mail: amuc@fmph.uniba.sk   Internet: www.iam.fmph.uniba.sk/amuc

© Copyright 2005, ACTA MATHEMATICA UNIVERSITATIS COMENIANAE