ACTA MATHEMATICA UNIVERSITATIS COMENIANAE

Vol. LXXV, 2 (2006)
p. 233 - 240

On a nonlinear integral equation without compactness
F. Isaia


Abstract.  The purpose of this paper is to obtain an existence result for the integral equation
u(t) = j(t, u(t))
+
b
ò
a
y(t, s, u(s))ds, t Î[a, b].
where j : [a, b] ´ R ® R and y : [a, b] ´ [a, b] ´ R ® R are continuous functions which satisfy some special growth conditions. The main idea is to transform the integral equation into a fixed point problem for a condensing map T : C[a, b] ® C[a, b]. The "a priori estimate method" (which is a consequence of the invariance under homotopy of the degree defined for a-condensing perturbations of the identity) is used in order to prove the existence of fixed points for T. Note that the assumptions on functions j and y do not generally assure the compactness of operator T, therefore the Leray-Schauder degree cannot be used (see K. Deimling).

Keywords. Nonlinear integral equation, condensing map, topological degree, a priori estimate method.  

AMS Subject classification.  45G10, 47H09, 47H10, 47H11.

Download:     Adobe PDF     Compressed Postscript      

Version to read:     Adobe PDF

Acta Mathematica Universitatis Comenianae
Faculty of Mathematics, Physics and Informatics
Comenius University
842 48 Bratislava, Slovak Republic  

Telephone: + 421-2-60295755 Fax: + 421-2-65425882  
e-Mail: amuc@fmph.uniba.sk   Internet: www.iam.fmph.uniba.sk/amuc

© Copyright 2006, ACTA MATHEMATICA UNIVERSITATIS COMENIANAE