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ON SOLUTIONS OF A SYSTEM
OF RATIONAL DIFFERENCE EQUATIONS

YU YANG, LI CHEN and YONG-GUO SHI

Abstract. In this paper we investigate the system of rational difference equations

xn =
a

yn−p
, yn =

byn−p

xn−qyn−q
, n = 1, 2, . . . ,

where q is a positive integer with p < q, p - q, p is an odd number and p ≥ 3, both a and b are
nonzero real constants and the initial values x−q+1, x−q+2, . . . , x0, y−q+1, y−q+2, . . . , y0 are nonzero
real numbers. We show all real solutions of the system are eventually periodic with period 2pq (resp.
4pq) when (a/b)q = 1 (resp. (a/b)q = −1) and characterize the asymptotic behavior of the solutions

when a 6= b, which generalizes Özban’s results [Appl. Math. Comput. 188 (2007), 833–837].

1. Introduction

Consider the system of rational difference equations

xn =
a

yn−p
, yn =

byn−p

xn−qyn−q
, n = 1, 2, . . . ,(1.1)
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where q is a positive integer with p < q, p is a positive integer, both a and b are nonzero real con-
stants and the initial values x−q+1, x−q+2, . . . , x0, y−q+1, y−q+2, . . . , y0 are nonzero real numbers.

The system of equations (1.1) is equivalent to the single rational equation of order p + q

xn =
cxn−pxn−p−q

xn−q
, c =

a

b
.(1.2)

This is obtained by eliminating the variable yn = a/xn+p as follows:

a

xn+p
=

ab/xn

xn−q(a/xxn+p−q
)

=
bxn+p−q

xnxn−q
.

Taking the reciprocal and shifting all indices back p units gives (1.2). Equations (1.1) belong to
a class of “homogeneous equations of degree one” (cf. [9, 10] and references therein). By the
substitution tn = xn/xn−p, system (1.1) can be written as a “triangular vector map or system”
where one equation is independent of the other:

tn =
c

tn−q
, sn = tnsn−p.

Dynamics of triangular maps have been studied by several other people (see a nice survey [12] and
a beautiful result [1]).

In particular, Çinar in [3] proved that all positive solutions of the system of rational difference
equations

xn =
1

yn−1
, yn =

yn−1

xn−2yn−2
, n = 1, 2, . . .

with the period four. That such a nonlinear rational system has a period so simple as 4 is surprising.
Later, Yang et al in [15] generalized his result and obtained all positive solutions of system (1.1)
with p|q and a = b have period 2q. For the case p|q and a 6= b, they also investigated the behavior
of positive solutions. Similar nonlinear systems of rational difference equations were investigated,
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Figure 1. A positive solution of (1.1) is eventually periodic with period 24 where a = b = 1, p = 3, q = 4. This
result is given in [7] .

for instance, by Clark and Kulenovic [4], Özban [6], Papaschinopoulos and Schinas [8], Camouzis
and Papaschinopoulos [2], Iričanin and Stević [5], Shojaei et al [11], and Yang [13, 14]. Recently,
Özban [7] investigated the behavior of the positive solutions of system (1.1) where p = 3, p - q. For
the case b = a ∈ R+, p = 3, q > 3, p - q, the author obtained all positive solutions of the system
of difference equations (1.1) that are eventually periodic (see the definition below and Figure 1)
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with period 6q. For the case b 6= a ∈ R+, p = 3, q > 3, p - q, he also characterized the asymptotic
behavior of the positive solutions of system (1.1).

In this paper we study the behavior of the real solutions of system (1.1) where p is odd with
p < q, p - q, and so we generalize Özban’s results of [7]. Before stating our main results, we set
the following definition used in this paper.

Definition 1 ([16]). A solution {(xn, yn)}∞n=−(q−1) of (1.1) is eventually periodic if there exist
an integer n0 ≥ −q + 1 and a positive integer w such that

(xn+n0+w, yn+n0+w) = (xn+n0 , yn+n0), n = 1, 2, . . . ,

and w is called a period.

An eventually periodic sequence such as {1, 1, 2, 3, 2, 3, 2, 3, 2, 3, . . .} that is periodic from some
point onwards can serve as an example.

2. Main results

Lemma 1. Let {(xn, yn)}∞n=−(q−1) be an arbitrary solution of (1.1). Then

xnyn = xn+2qyn+2q, n = −q + 1,−q + 2, . . .

Proof. From (1.1) we have

xn+2qyn+2q =
a

yn+2q−p

byn+2q−p

xn+qyn+q
=

ab

xn+qyn+q
(2.1)

and

xn+qyn+q =
a

yn+q−p

byn+q−p

xnyn
=

ab

xnyn
.(2.2)
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Then substituting (2.2) into (2.1), we get

xn+2qyn+2q = xnyn, n = −q + 1,−q + 2, . . .

�

Theorem 1. Let p be odd, c := a/b and {(xn, yn)}∞n=−(q−1) be an arbitrary solution of (1.1).

(i) If |c| < 1, then for each integer l with 1 ≤ l ≤ 2pq, the subsequence {x2pqj+l−p}∞j=0 converges
to zero exponentially and the subsequence {y2pqj+l−p}∞j=0 tends to infinity exponentially.

(ii) If cq = 1, then all solutions of the system of difference equations (1.1) are eventually periodic
with period 2pq; If cq = −1, then all solutions of the system of difference equations (1.1)
are eventually periodic with period 4pq.

(iii) If |c| > 1, then for each integer l with 1 ≤ l ≤ 2pq, the subsequence {x2pqj+l−p}∞j=0 tends to
infinity exponentially and the subsequence{y2pqj+l−p}∞j=0 converges to zero exponentially.

Proof. For each n ≥ 1, substituting xn = a/yn−p into yn+q = byn+q−p/(xnyn), we get

ynyn+q =
1
c
yn−pyn+q−p.(2.3)

Repeated application of (2.3) yields

yn−pyn+q−p = c2yn+pyn+q+p = c3yn+2pyn+q+2p = . . .

or

yn−pyn+q−p = ct+1yn+ptyn+q+pt, t = 0, 1, . . . , n = 1, 2, . . .(2.4)

Since q > p and p - q, it follows that q = pk + m for some positive integer k where m < p. Hence
the last equation turns into

yn−pyn+(pk+m)−p = ct+1yn+ptyn+(pk+m)+pt, t = 0, 1, . . . , n = 1, 2, . . .(2.5)
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For t = k − 1, we have

yn−pyn+(pk+m)−p = ckyn+pk−pyn+(2pk+m)−p, k = 1, 2, . . . , n = 1, 2, . . .(2.6)

Multiplying both sides of Eq. (2.6) by
∏p

i=2 yn+i(pk+m)−p, we obtain

yn−p

p∏
i=1

yn+i(pk+m)−p = ckyn+pk−pyn+(2pk+m)−p

p∏
i=2

yn+i(pk+m)−p.(2.7)

Then, by taking n = n + pk and t = (p− 1)k + m− 1 in (2.5), we get

yn+pk−pyn+(2pk+m)−p = c(p−1)k+m

p+1∏
i=p

yn+i(pk+m)−p(2.8)

which combined with (2.7), leads to

yn−p

p−1∏
i=1

yn+i(pk+m)−p = cpk+m

p+1∏
i=2

yn+i(pk+m)−p.(2.9)

Moreover, taking n = n + j(pk + m), j = 1, 2, . . . ,m− 1 and t = pk + m− 1 in (2.5), we get

1+j∏
i=j

yn+i(pk+m)−p = cpk+m

p+j+1∏
i=p+j

yn+i(pk+m)−p.(2.10)



JJ J I II

Go back

Full Screen

Close

Quit

When p is odd, it follows that
p−1∏
i=1

yn+i(pk+m)−p = c
(pk+m)(p−1)

2

2p−1∏
i=p+1

yn+i(pk+m)−p,

p+1∏
i=2

yn+i(pk+m)−p = c
(pk+m)(p−1)

2

 2p∏
i=p+2

yn+i(pk+m)−p

 yn+(p+1)(pk+m)−p.

These together with (2.9) imply that

yn−p = cpk+myn+2p(pk+m)−p,

or

yn−p = cqyn+2pq−p, n = 1, 2, . . .(2.11)

since q = pk + m. It is clear that repeated application of (2.11) yields

yn+2pqj−p = cqjyn−p, j = 1, 2, . . . , n = 1, 2, . . .(2.12)

Moreover from xn = a/yn−p and yn−p = cqyn+2pq−p, it follows that

xn = cqa/yn+2pq−p or xn = cqxn+2pq,

or

xn+2pq−p = cqxn−p, n = 1, 2, . . .(2.13)

Again repeated application of (2.13) leads to

xn+2pqj−p = cqjxn−p, j = 1, 2, . . . , n = 1, 2, . . .(2.14)
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Consequently: (i) follows from Eqs.(2.12) and (2.14) and the fact that |c| < 1. (iii) follows from
equations Eqs.(2.12) and (2.14), and the fact that |c| > 1.

It remains to show (ii). If cq = 1 (resp. cq = −1), it follows from (2.13) and (2.11) that

xn = xn+2pq, yn = yn+2pq, n = 1, 2, . . .(2.15)

(resp. xn = xn+4pq, yn = yn+4pq, n = 1, 2, . . .).(2.16)

A short computation reveals that

x2pqj−p = x−py−p
x0

a
6= x−p,

j = 1, 2, . . . for arbitrary initial values. In fact, from (2.15) (resp. (2.16)), it suffices to show
that x2pq−p = x−py−px0/b (resp. x4pq−p = x−py−px0/b). From Lemma 1, we have xnyn =
xn+2qyn+2q = · · · = xn+2pqyn+2pq. Thus by taking n = −p, we have

x−py−p = x2pq−py2pq−p, (resp. x−py−p = x4pq−py4pq−p).(2.17)

From (2.3), we have
yn−p

yn
=

yn+q

yn+q−p
= · · · =

yn+(2p−1)q

yn+(2p−1)q−p
.(2.18)

By taking n = q in (2.18), we get
yq−p

yq
=

y2pq

y2pq−p
, (resp.

yq−p

yq
=

y4pq

y4pq−p
).(2.19)

Folloing from (2.17), (2.19) and y2pq = y0, we obtain

x2pq−p =
x−py−p

y2pq−p
= x−py−p

yq−p

yqy2pq
= x−py−p

yq−p

yqy0
,(2.20)

(resp. x4pq−p = x−py−p
yq−p

yqy0
).
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By taking n = q in the second equation of system (1.1), we have

yq−p

yqy0
=

x0

b
.

This together with (2.20) imply that

x2pq−p =
x−py−px0

b
, (resp. x4pq−p =

x−py−px0

b
).

�
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Figure 2. cq = 1, w = 24.
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Figure 3. cq = −1, w = 60.
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Remark 1. Some numerical experiments are carried out by MATLAB software. Choosing
a = −b = 2, p = 3, q = 4, and random initial data, we see that cq = 1 and the solutions of (1.1)
are eventually periodic with period 24 in Fig. 2. Choosing a = −b = 2, p = 3, q = 5 and random
initial data, we see that cq = −1 and the solutions of (1.1) are eventually periodic with period 60
in Fig. 3.

A natural question is what the solutions look like if p is even. We plot Figs. 4–7 with different
c and different q. None of them can tell that the corresponding solution of (1.1) is eventually
periodic even if c = 1.
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Figure 4. p is even, c = −1.
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Figure 5. p is even, c = 1.
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Figure 6. p, q are even, c = −1.5.
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Figure 7. p is even, q is odd, c = 0.5.
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5. Iričanin B. and Stević S., On a class of third-order nonlinear difference equations, Appl. Math. Comput. 213
(2009), 479–483.
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