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Propagation of inhomogeneous plane waves
in isotropic solid crystals

Livia Harabagiu and Olivian Simionescu-Panait

Abstract

In this paper we study the impact of initial mechanical deformation
and electric fields applied to linear elastic isotropic solid, on the prop-
agation of inhomogeneous plane waves in such media. We derive the
decomposition of the propagation condition for particular isotropic di-
rectional bivectors and we show that the specific coefficients are similar
to the case of guided waves propagation in isotropic solids subject to a
bias.

1 Introduction

Last decades, the problems related to electroelastic materials subject to incre-
mental fields superposed on initial mechanical and electric fields have ganied
considerable extension, due to their complexity and to multiple applications.
The basic equations of piezoelectric bodies subject to infinitesimal deforma-
tions and fields, superposed on initial deformation and electric fields, were
given by Eringen and Maugin in the well-known monography [9].

While the concept of bivector is described in [6], the algebra of bivectors is
well established in [3], [5] and [18]. Inhomogeneous plane waves arise in many
areas of continuum mechanics .
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Important examples using this concept may be found in [1] for anisotropic
elasticity, in [2] for electromagnetism, in [4] for wave propagation in porous
materials.

In this paper we investigate the conditions of inhomogeneous plane waves
propagation in isotropic solids subject to initial mechanical and electric fields.
We obtain the components of the electroacoustic tensor for the class 2 and
class m of the monoclinic system with coefficients similar to the case of guided
wave propagation in isotropic solid.

2 Basic equations. Condition of propagation

We assume that the elastic dielectric is nonmagnetizable and conducts neither
heat, nor electricity. We shall use the quasi-electrostatic approximation of
the equations of balance. Furthermore, we assume that the elastic dielectric
is linear and homogeneous, that the initial homogeneous deformations are
infinitesimal and that the initial homogeneous electric field has small intensity.
This problem may be found in the monographic chapter [12].

In this case the homogeneous field equations take the form:

ρ̊ü = divΣ, div∆ = 0, (1)

rot e = 0⇔ e = −gradϕ

where ρ̊ is the mass density, u is the incremental displacement, Σ is the incre-
mental electromechanical nominal stress tensor, ∆ is the incremental electric
displacement vector, e is the incremental electric field and ϕ is the incremen-
tal electric potential. All incremental fields involved into the above equations
depend on the spatial variable x and on time t.

We suppose the following incremental constitutive equations:

Σkl = Ω̊klmnum,n + Λ̊mklϕ,m, (2)

∆k = Λ̊kmnun,m + ε̊klel = Λ̊kmnun,m − ε̊klϕ,l.

In these equations Ω̊klmn are the components of the instantaneous elasticity
tensor, Λ̊kmn are the components of the instantaneous couplig tensor and ε̊kl
are the components of the instantaneous dielectric tensor. The instantaneous
coefficients can be expressed in terms of the classical moduli of the material
and on the initial applied fields as follows:

Ω̊klmn = cklmn + S̊knδlm − ekmnE̊l − enklE̊m − ηknE̊lE̊m, (3)

Λ̊mkl = emkl + ηmkE̊l,
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ε̊kl = δkl + ηkl.

where cklmn are the components of the constant elasticity tensor, ekmn are the
components of the constant piezoelectric tensor, E̊l are the components of the
initial applied electric field and S̊kn are the components of the initial applied
symmetric (Cauchy) stress tensor.

From the relations (3) we find the symmetry relations:

Ω̊klmn = Ω̊nmlk, (4)

ε̊kl = ε̊lk.

From the previous field and constitutive equations we obtain the following
fundamental system of equations:

ρ̊ül = Ω̊klmnum,nk + Λ̊mklϕ,mk, (5)

Λ̊kmnum,nk − ε̊knϕ,nk = 0, i = 1, 3.

We suppose that the incremental displacement is defined by the inhomo-
geneous plane wave:

u(x, t) = Aei(S·x−ωt) (6)

and the incremental electric potential is defined by

ϕ = Φei(S·x−ωt), (7)

where ω defines the frequency of the wave, and is a real parameter.
Here A = A++iA− is a complex vector defining the mechanical amplitude,

φ is the electric amplitude of the wave and S = S+ + iS− is a complex vector
denoting the slowness bivector. We suppose that this kind of wave propagates
in an unbounded domain.

The previous relations represent a train of elliptically polarized plane waves.
The waves travel in the direction of the vector S+ with the slowness |S+| and
are attenuated in the direction of the vector S−. For any fixed position vector
x, the displacement vector u+ describes an ellipse similar to the one found in
[7].

A solution of form (6) defines an ”inhomogeneous plane wave” (IPW) if
the vector S− is not parallel to the vector S+.The phase speed is given by
V = |S+|−1, while |S−| defines the attenuation coefficient. If S− is parallel to
S+ we have an attenuated homogeneous plane wave.

In order to solve the problem of inhomogeneous plane wave propagation in
the described material, we use the directional ellipse method, due to Hayes (see
[7]).The slowness bivector S may be written as S = NC, where the directional
bivector C has form C = qm + in, with m · n = 0, |m| = |n| = 1, |q| ≥ 1.
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N is called the complex scalar slowness.Because the directional bivector C is
prescribed, the main unkown of the inhomogeneous plane wave propagation
problem is the complex scalar slowness N .

We have:

u̇ = −iωu, (8)

ü = −ω2u,

u,i = iωNCiu,

u,ij = −ω2N2CiCju,

ul,ij = −ω2N2CiCjul,

ϕ,i = −ωNCiϕ,

ϕ,ij = −ω2N2CiCjϕ, i, j, l = 1, 3.

Inserting (8) into (5) gives:

ρ̊ω2ul = −ω2Ω̊klmnN
2CnCkum − Λ̊mklω

2N2CmCkϕ, (9)

Λ̊kmnω
2N2CmCkun + ε̊knω

2N2CnCkϕ = 0.

From which we deduce:

Ω̊klmnN
2CnCkum + Λ̊mklN

2CmCkϕ− ρ̊ul = 0, (10)

Λ̊kmnN
2CmCkun − ε̊knN2CnCkϕ = 0.

Thus:

Ω̊klmnCnCkum + Λ̊mklCmCkϕ− ρ̊
ul
N2

= 0, (11)

Λ̊kmnCmCkun − ε̊knCnCkϕ = 0.

Taking V = 1
N and ϕ = u4 we obtain:

Ω̊klmnCnCkum + Λ̊mklCmCku4 − ρ̊v2ul = 0, (12)



PROPAGATION OF INHOMOGENEOUS PLANE WAVES IN ISOTROPIC
SOLID CRYSTALS 59

Λ̊kmnCmCkun − ε̊knCnCku4 = 0,

which gives:
Γ̊11 − ρ̊V 2 Γ̊12 Γ̊13 γ̊1

Γ̊21 Γ̊22 − ρ̊V 2 Γ̊23 γ̊2
Γ̊31 Γ̊32 Γ̊33 − ρ̊V 2 γ̊3
γ̊1 γ̊2 γ̊3 −ε̊




u1
u2
u3
u4

 = 0 (13)

where

Γ̊lm = Ω̊klmnCnCk = cklmn + S̊knδlm − ekmnE̊l − enklE̊m − ηknE̊lE̊mCkCn, (14)

γ̊l = Λ̊mklCmCk = (emkl + ηmkE̊l)CmCk, (15)

ε̊ = ε̊knCkCn = (δkn + ηkn)CkCn. (16)

System (13) represents the propagation condition of the inhomogeneous
plane waves inside the previous materials and is equivalent to:(

Q̊lm Q̊l4

Q̊4m Q̊44

)(
um
u4

)
= 0 , = 1, 3, (17)

where Q is the electroacustic tensor and has the following components:

Q̊lm = N2Ω̊klmnCnCk − ρ̊δlm, (18)

Q̊l4 = N2Λ̊mklCmCk,

Q̊4m = N2Λ̊klmClCk,

Q̊44 = −N2ε̊knCnCk.

Note that the tensor Q is symmetric for the general anisotropy.
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3 .Inhomogeneous plane waves in isotropic solids subject
to initial electro-mechanical fields

In the particular case of an isotropic material, the elasticity tensor contains
two independent components. Using Voight’s convention we have:

c11 c12 c12 0 0 0
c12 c11 c12 0 0 0
c12 c12 c11 0 0 0
0 0 0 c66 0 0
0 0 0 0 c66 0
0 0 0 0 0 c66

 , (19)

with c11 = λ + 2µ, c12 = λ and c66 = (c11 − c12)/2 = µ. Here λ and µ are
Lame’s coefficients.

The dielectric tensor has only one component, hence

η =

 η 0 0
0 η 0
0 0 η

 , (20)

and ε = 1 + η.
From (14) now gives:

Γ̊11 = (̊c11+S̊11)C2
1 +(̊c66+S̊22)C2

2 +(̊c66+S̊33)C2
3−η(C2

1 +C2
2 +C2

3 )E̊2
1+ (21)

+2S̊12C1C2 + +2S̊13C1C3 + 2S̊23C2C3,

Γ̊12 = Γ̊21 = −η(C2
1 + C2

2 + C2
3 )E̊1E̊2 + (̊c12 + c̊66)C1C2

Γ̊13 = Γ̊31 = −η(C2
1 + C2

2 + C2
3 )E̊1E̊3 + (̊c12 + c̊66)C1C3,

Γ̊22 = (̊c66 + S̊11)C2
1 + (̊c11 + S̊22)C2

2 + (̊c66 + S̊33)C2
3 − η(C2

1 + C2
2 + C2

3 )E̊2
2+

+2S̊12C1C2 + +2S̊13C1C3 + 2S̊23C2C3,

Γ̊23 = Γ̊32 = −η(C2
1 + C2

2 + C2
3 )E̊2E̊3 + (̊c12 + c̊66)C2C3,

Γ̊33 = (̊c66 + S̊11)C2
1 + (̊c66 + S̊22)C2

2 + (̊c11 + S̊33)C2
3 − η(c21 + c22 + c23)E̊2

3+
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+2S̊12C1C2 + +2S̊13C1C3 + 2S̊23C2C3.

From (15) we also obtain:

γ̊1 = (1 + η)(C2
1 + C2

2 + C2
3 )E̊1, (22)

γ̊2 = (1 + η)(C2
1 + C2

2 + C2
3 )E̊2,

γ̊3 = (1 + η)(C2
1 + C2

2 + C2
3 )E̊3.

and from (16) we obtain:

ε̊ = (1 + η)(C2
1 + C2

2 + C2
3 ). (23)

3.1 .Direct dyad axis

In this case, we suppose that x3 is a direct dyad axis (this means the plane
0x1x2 is normal to a direct axis of order two). We have A2‖x3 and we are in
the class 2 of the monoclinic system.

If we consider the particular case of isotropic directional bivectors, we may
choose C = (1, i, 0) . In this case, the inhomogeneous wave is circularly polar-
ized in a plane normal to the dyad axis x3.

If E̊1 = E̊2 = 0, we obtain Γ̊13 = Γ̊23 = 0 si γ̊1 = γ̊2 = γ̊3 = ε̊ = 0. The
system (17) reduces to two independent subsystems:

a) The first subsytstem:(
Γ̊11 − ρ̊V 2 Γ̊12

Γ̊12 Γ̊22 − ρ̊V 2

)(
u1
u2

)
= 0, (24)

where
Γ̊11 = (̊c11 + S̊11)− (̊c66 + S̊22) + 2S̊12i,

Γ̊12 = Γ̊21 = (̊c12 + c̊66)i,

Γ̊22 = (̊c66 + S̊11)− (̊c11 + S̊22) + 2S̊12i.

The solution of this subsystem coresponds to P̊2 guided wave. This prob-
lem defines a non-piezoelectric guided wave, polarized in the plane x1x2. P̊2

depends on the initial stress field, only.
b) The solution of this subsystem is a single equation, as follows:
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(̊Γ33 − ρ̊V 2)u3 = 0, (25)

where Γ̊33 = (S̊11 − S̊22) + 2iS̊12.
The solution of this subsystem is a transverse-horizontal wave, with po-

larization after the axis x3. This wave is piezoelectric, depends on the initial

mechanical fields, and is denoted by T̊H.

3.2 Inverse dyad axis (mirror plane)

We now suppose the plane x1x2 is normal to an inverse dyad axis (x3 in our
case), which is equivalent to the fact that the plane x1x2 is parallel to a mirror
plane M .It follows that the material belongs to the class m of the monoclinic
system (M ⊥ x3). In this case, the electroacoustic tensor Q is symmetric with
complex components.

If we consider the particular case of isotropic directional bivectors, we may
choose C = (1, i, 0). In this case, the inhomogeneous wave is circulary polarized
in a normal plane to the inverse dyad axis x3.

Moreover, if E̊3 = 0 we obtain Γ̊13 = Γ̊23 = 0 and γ̊1 = γ̊2 = γ̊3 = ε̊ = 0.
In this case, the system (17) reduces to two independent subsystems:

a) The first subsystem:(
Γ̊11 − ρ̊V 2 Γ̊12

Γ̊12 Γ̊22 − ρ̊V 2

)(
u1
u2

)
= 0, (26)

where
Γ̊11 = (̊c11 + S̊11)− (̊c66 + S̊22) + 2S̊12i,

Γ̊12 = Γ̊21 = (̊c12 + c̊66)i,

Γ̊22 = (̊c66 + S̊11)− (̊c11 + S̊22) + 2S̊12i.

A solution of this system is an inhomogeneous plane wave, polarized into
the plane x1x2 and depending on the initial stress fields. It also corresponds

to ˚̄P2 from the problem of guided wave propagation.
b) The second subsystem reduces to a single equation, as follows:

(̊Γ33 − ρ̊V 2)u3 = 0, (27)

where Γ̊33 = (S̊11 − S̊22) + 2iS̊12.
Its root is linked to a transverse-horizontal wave, with polarization after

the axis x3, non-piezoelectric and influenced by the initial stress field, only. It
corresponds to T̊H from the problem of guided wave propagation.
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4 Conclusions

In this paper, we obtained the condition of inhomogeneous plane wave propa-
gation in isotropic solid crystals subject to initial electromechanical fields. For
particular isotropic directional bivectors we derive the decomposition of the
propagation condition, and we show that the specific coefficients are similar
to the case of guided waves propagation in isotropic solid crystals subject to
a bias.

References

[1] Ph. Boulanger, M. Destrade, M. Hayes, Inhomogeneous ”longitudinal”
circularly-polarized plane waves in anisotropic elastic crystals, Acta Acus-
tica, 92(2006), 247-250.

[2] Ph. Boulanger, M. Hayes, Electromagnetic plane waves in anisotropic
media an approach using bivectors,Phil. Trans. R. Soc. A, 330(1990), 335-
393.

[3] Ph. Boulanger, M. Hayes, Bivectors and waves in Mechanics and Optics
Chapman & Hall, New Delhi, 1993.

[4] S. Chirita, I. Ghiba, Inhomogeneous plane waves in elastic materials with
voids, Wave Motion, 47(2010), 333-342.

[5] J.W. Gibbs, Elements of vector analysis, Scientific papers vol.2, part 2,
Doves Publication, New York, 1961.

[6] W.R. Hamilton, Lectures on quaternions, Hodges and Smith, Dublin,
1853.

[7] M. Hayes, Inhomogeneous plane waves, Arch. Rational Mech. Anal.,
85(1984), 41-79.

[8] D. Royer, E. Dieulesaint, Elastic waves in solids, vol. I, Springer, Berlin,
2000.

[9] A.C. Eringen, G.A. Maugin, Electrodynamics of continua, Springer, New
York, 1990.

[10] O. Simionescu-Panait, The influence of initial fields on wave propagation
in piezoelectric crystals, Int. J. of Appl. Electromagnetics and Mech., 241-
252, 2000.



PROPAGATION OF INHOMOGENEOUS PLANE WAVES IN ISOTROPIC
SOLID CRYSTALS 64

[11] O. Simionescu-Panait, Wave propagation in cubic crystals subject to ini-
tial mechanical and electric fields, ZAMP, 53, 1038-1054, 2002.

[12] O. Simionescu-Panait, Waves in strained polarized media, Special topics
in the theory of piezoelectricity,(Ed. J.Yang) , 169-246, Springer, New
York, 2009.

[13] O. Simionescu-Panait, Propagation of attenuated waves in isotropic solids
subject to initial electro-mechanical fields, Proc. Internat. Conf. New-
Trends in Continuum Mechanics, 267-275, Ed. Theta, Bucharest, 2005.

[14] O. Simionescu-Panait, Initial fields impact on attenuated wave propaga-
tion in isotropic solids, Math. Reports 8(58), 2(2006), 239-250.

[15] O. Simionescu-Panait, Geometry of electroelastic materials subject to bi-
asing fields, Balkan Journal of Geometry and Its Applications, 14(2009),
91-101.

[16] O. Simionescu-Panait, Inhomogeneous plane waves in monoclinic crystals
subject to a bias, PAMM, 11(2011), 637-638.

[17] O. Simionescu-Panait, TH-waves propagation in crystals subject to initial
fields,Bulletin of the Transilvania University of Brasov, vol 5(54) 2012,
259-274.

[18] J.L. Synge, The Petrov classification of gravitation hields, Commun
Dublin Inst. Adv. Stud, A,15/1960.

Livia Harabagiu
Department of Mathematics,University of Bucharest,
Bucharest,Romania
harabagiu livia@yahoo.com


