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Randomized Sparse Block Kaczmarz as
Randomized Dual Block-Coordinate Descent

Stefania Petra

Abstract

We show that the Sparse Kaczmarz method is a particular instance
of the coordinate gradient method applied to an unconstrained dual
problem corresponding to a regularized `1-minimization problem sub-
ject to linear constraints. Based on this observation and recent the-
oretical work concerning the convergence analysis and corresponding
convergence rates for the randomized block coordinate gradient descent
method, we derive block versions and consider randomized ordering of
blocks of equations. Convergence in expectation is thus obtained as a
byproduct. By smoothing the `1-objective we obtain a strongly convex
dual which opens the way to various acceleration schemes.

1 Introduction

Overview. We consider an underdeterimed matrix A ∈ Rm×n, with m < n,
b ∈ Rm and wish to solve the problem

min
x∈Rn

‖x‖1 s.t. Ax = b. (1)
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The minimal `1-norm solution is relevant for many applications and also fa-
vors sparse solutions, provided some assumption on A hold, see [8]. Here we
consider a regularized version of (1)

min
x∈Rn

λ‖x‖1 +
1

2
‖x‖2 s.t. Ax = b. (2)

We note that for a large but finite parameter λ > 0, the solution of (2) gives a
minimal `1-norm solution of Ax = b [9]. The advantage of (2) is the strongly
convex objective function. In [11] this property was used to design an iterative
method employing Bregman projections with respect to f(x) = λ‖x‖1+ 1

2‖x‖
2

on subsets of equations in Ax = b. The convergence of the method was shown
in the framework of the split feasibilty problems [7, 5]. We will follow a dif-
ferent approach and consider a block coordinate gradient descent method ap-
plied to the dual of (2). This dual problem is unconstrained and differentiable
due to the - in particular - strict convexity of f . It will turn out that the
two methods are equivalent. For example, the iterative Bregman projection
method previously mentioned, gives the Sparse Kaczmarz method when Breg-
man projections are performed with respect to f on each single hyperplane
defined by each row of A. On the other had, it is a coordinate gradient descent
method applied on the dual problem of (2).

Contribution and Organization. Beyond the interpretation of the
Sparse Kaczmarz method as a coordinate descent method on the dual prob-
lem, we consider block updates by performing block coordinate gradient de-
scent steps on the dual problem. This will lead to the Block Sparse Kaczmarz
method. The block order is left to a stochastic process in order to exploit
recent results in the field of the randomized block gradient descent methods.
By exploiting this parallelism between primal and dual updates, we obtain
convergence as a byproduct and convergence rates which have not been avail-
able so far. We also consider smoothing techniques for acceleration purposes.

We introduce the Randomized Block Sparse Kaczmarz Algorithm in Section
2. In Section 3 we derive the dual problem of (2) and its smoothed version
and establish the connection between primal and dual variables. We review
the literature on the randomized block gradient descent method for smooth
unconstrained optimization in Section 4. Section 5 presents the link between
the two methods. We conclude with Section 6 where we present numerical
examples on sparse tomographic recovery from few projections.

Notation. For m ∈ N, we denote [m] = {1, 2, . . . ,m}. For some ma-
trix A and a vector z, AJ denotes the submatrix of rows indexed by J , and
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zJ the corresponding subvector. Ai will denote the ith row of A. R(A) de-
notes the range of A. Vectors are column vectors and indexed by superscripts.
A> denotes the transposed of A. 〈x, z〉 denotes the standard scalar product
in Rn and ‖x‖2 =

√
〈x, x〉, while ‖x‖1 =

∑
i∈[n] |xi|. With 〈x, y〉w we de-

note the weighted inner product
∑
i∈[n] wixiyi with x, y ∈ Rn, w ∈ Rn++.

The indicator function of a set C is denoted by δC(x) :=

{
0, if x ∈ C

+∞, if x /∈ C .

σC(x) := supy∈C〈y, x〉 denotes the support function of a nonempty set C.
∂f(x) is the subdifferential and ∇f(x) the gradient of f at x and intC and
rintC denote the interior and the relative interior of a set C. By f∗ we denote
the conjugate function of f . We refer to the Appendix and [19] for related
properties. ∆n denotes the probability simplex ∆n = {x ∈ Rn+ : 〈1, x〉 = 1}.
Ep[·] denotes the expectation with respect to the distribution p; the subscript
p is omitted if p is clear from the context.

2 A Randomized Block Sparse Kaczmarz Method

Consider A ∈ Rm×n and let ∪i∈[c]Si = [m] be a collection of subsets – not nec-
essarily a partition – covering [m]. Further, consider the consistent – possibly
underdetermined – system of equations

Ax = b, (3)

which can be rewritten as

Âx = b̂, Â :=

AS1

...
ASc

 ∈ Rm̂×n̂, b̂ :=

bS1

...
bSc

 ∈ Rm̂, (4)

without changing the solution set, provided b ∈ R(A), which we will further
assume to hold.

We consider the problem (2). A simple method for the solution of (2),
called linearized Bregman method [22, 6], is

z(k+1) = z(k) − tkA>(Ax(k) − b), (5)

x(k+1) = Sλ(z(k+1)), (6)

initialized with z(0) = x(0) = 0. Sλ(x) = sign(x) max(|x| − λ, 0) denotes the
soft shrinkage operator. According to [11], not only the constant stepsize
tk = 1

‖A‖22
, like chosen in [6], leads to convergence, but also the dynamic

stepsize choices (depending on the iterate x(k)), and exact stepsizes obtained
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from a univariate minimization scheme. Here, however, we concentrate on
constant stepsize choices only.

In the general framework of split feasibilty problems [7, 5] and Bregman
projections, convergence of the Sparse Kaczmarz method

z(k+1) = z(k) − tk
(
〈Aik , x(k)〉 − bik

)
A>ik , (7)

x(k+1) = Sλ(z(k+1)), (8)

is shown [11], with z0 = x0 = 0 and ik an appropriate control sequence (e.g.
cyclic) for row selection. Here a single row of A is used, thus Si = {ik}.

In view of [11, Cor. 2.9], one could also work block-wise and consider
groups of equations ASix = bSi to obtain the Block Sparse Kaczmarz scheme

z(k+1) = z(k) − tk(ASik )>(ASikx
(k) − bSik ) (9)

x(k+1) = Sλ(z(k+1)). (10)

Convergence of the scheme would follow by choosing block ASik from (4) in
(any) cyclic order, see the considerations in [11]. Motivated by these results
and by the fact that convergence rates for the above methods are not known,
we introduce the following Randomized Block Sparse Kaczmarz scheme, Alg.
1. We will address next how to choose the probability vector p ∈ ∆c, and

Algorithm 1: Randomized Block Sparse Kaczmarz (RBSK)

Input: Starting vectors x(0) and z(0), covering of [m] = ∪ci=1Si, with
|Si| = mi, i ∈ [c], probability vector p ∈ ∆c

for k = 1, 2, . . . do
Sample ik ∈ [c] due ik ∼ p
Update z(k+1) = z(k) − tk(ASik )>(ASikx

(k) − bSik )

Update x(k+1) = Sλ(z(k))

thus the random choice of blocks of A, along with the stepsize tk in order to
obtain a convergent scheme.

3 Primal and Dual Problems

In this Section we derive the dual problem of (2) and the relation between pri-
mal and dual variables. This will be the backbone of the observed equivalence.
Moreover, we consider a smoothed version of (2) along with its dual.
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3.1 Minimal `1-Norm Solution via the Dual

Primal Problem Consider the primal problem (2). We write (2) in the form
(49a)

minϕ(x), ϕ(x) := 〈0, x〉+ λ‖x‖1 +
1

2
‖x‖2︸ ︷︷ ︸

:=f(x)

+δ{0}(b−Ax). (11)

Denoting g := δ{0}, we get g∗ ≡ 0. On the other hand, we have f∗(y) =
1
2‖Sλ(y)‖2. Indeed, computing the Fenchel conjugate of f we obtain

f∗(y) = sup
x
{y>x− λ‖x‖1 −

1

2
‖x‖2} =

∑
i∈[n]

max
xi
{yixi − λ|xi| −

1

2
x2i }

=
∑
i:yi>λ

(yi(yi − λ)− λ(yi − λ)− 1

2
(yi − λ)2) +

∑
i:|yi|≤λ

0

+
∑

i:yi<−λ

(yi(yi + λ) + λ(yi + λ)− 1

2
(yi + λ)2)

=
1

2
‖y −Π[−λ,λ]n(y)‖2 =

1

2
‖Sλ(y)‖2 .

Dual Problem Now (49b) in A.2 (Fenchel duality formula in the Appendix)
gives the dual problem

inf ψ(y), ψ(y) := −〈b, y〉+
1

2
‖Sλ(A>y)‖2. (12)

Using the subgradient inversion formula ∇f∗ = (∂f)−1 [19] we get ∇f(y) =
Sλ(y) in view of

∂if(x) =

{
λ sign(xi) + xi, xi 6= 0,

[−λ, λ], xi = 0.
(13)

Thus ψ is unconstrained and differentiable with

∇ψ(y) = −b+ASλ(A>y). (14)

Connecting Primal and Dual Variables. In case of a zero duality gap the
solutions of (11) and (12) are connected through

x = Sλ(A>y). (15)

We elaborate on this now. With dom g = 0, dom g∗ = Rn, dom f∗ = Rn
and dom f = Rn, the assumptions (50) become b ∈ intA(Rn) = A(intRn) =



Randomized Sparse Block Kaczmarz as Randomized Dual Block-Coordinate
Descent 134

Figure 1: Envelope of | · | (left). Subgradient and gradient of | · | and its
envelope (middle). Soft shrinkage operator Sλ and its approximation Sλ,ε.

A(Rn) = R(A), compare [19, Prop. 2.44], and 0 = c ∈ intRn = Rn. Thus,
under the assumption b ∈ R(A), we have no duality gap. Moreover both
problems (11) and (12) have a solution.

Theorem 3.1. Denote by xλ and yλ a solution of (11) and (12) respectively.
Then the following statements are equivalent:

(a) b ∈ R(A), thus the feasible set is nonempty.

(b) The duality gap is zero ψ(yλ) = ϕ(xλ).

(c) Solutions xλ and yλ of (11) and (12) exist and are connected through

xλ = Sλ(A>yλ). (16)

Proof. (a) ⇒ (b): holds due to Thm. A.1. On the other hand, (b) implies
solvability of ψ and thus (a), in view of the necessary condition 0 = ∇ψ(yλ) =
−b + ASλ(A>yλ). (a) ⇒ (c): The assumptions of Thm. A.1 hold. Now
∂f∗(y) = {∇f∗(y)} = {Sλ(y)} and the r.h.s. of (52a) gives (c). Now, (c)
implies Axλ = b and thus (a).

The following result shows that for λ → ∞ and under the consistency
assumption, xλ given by (16) approaches the `1-solution of Ax = b (1), if yλ
is a solution of (12). The proof follows along the lines of [21, Prop. 1].

Theorem 3.2. Denote the solution set of (1) by X∗. Assume X∗ 6= ∅ and b ∈
R(A). Then for any sequence of positive scalars (λk) tending to∞ and any se-
quence of vectors (xλk), converging to some x∗, we have x∗ ∈ argminx∈X∗‖x‖2.
If X∗ is a singleton, denoted by x̂, then xλk → x̂.
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3.2 Smoothing and Regularization

Primal Problem In order to obtain a strongly convex unconstrained dual
problem [19, 1], we regularize the objective by replacing the sparse penalty
term through its Moreau envelope so that we obtain a convex differentiable
primal cost function with Lipschitz-continuous gradient. Setting

r(x) := ‖x‖1, (17)

the Moreau envelope reads (cf. (46a))

rε(x) := eεr(x) =
∑
i∈[n]

{
sign(xi)xi − ε

2 , |xi| > ε
1
2εx

2
i , xi ∈ [−ε, ε]

, ε > 0, (18)

see Fig. 3.2. We consider the regularised problem

min
x∈Rn

fε(x), s.t. Ax = b, fε(x) := λrε(x) +
1

2
‖x‖2, (19)

which is strongly convex with convexity parameter 1 and differentiable with
λ+ε
ε -Lipschitz continuous gradient

fε ∈ S
1,1

1,λ+εε
(Rn), ∂ifε(x) =

{
λ sign(xi) + xi, |xi| > ε
λ+ε
ε xi, xi ∈ [−ε, ε]

. (20)

Dual Problem Writing (19) as

min
x∈Rn

fε(x) + δ{0}(b−Ax) (21)

we obtain using (49b) the dual problem

min
y∈Rm

ψε(y), ψε(y) = −〈b, y〉+ f∗ε (A>y). (22)

An elementary computation yields

f∗ε (z) =
∑
i∈[n]

(fε)
∗
i (zi), (fε)

∗
i (zi) =

{
1
2

(
|zi| − λ

)2
+ λε

2 , |zi| > λ+ ε,
1
2

ε
λ+εz

2
i , |zi| ≤ λ+ ε

(23)
and

∂if
∗
ε (z) =

{
sign(zi) (|zi| − λ) , |zi| > λ+ ε,
ε

λ+εzi, |zi| ≤ λ+ ε.
(24)
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We have (fε)
∗ ∈ S

1,1
ε

λ+ε ,1
(Rn). We denote by (Sλ,ε)i = ∂if

∗
ε the approximation

to the soft thresholding operator, which is numerically Sλ, when ε > 0 is
sufficiently small, see Fig. 3.2 left. Thus ψε is unconstrained and differentiable
with

∇ψε(y) = −b+ASλ,ε(A
>y), (25)

and strongly convex with parameter ε
λ+ε . The solutions of (21) and (22) are

connected through
x = Sλ,ε(A

>y). (26)

This can be shown in an analogous way as in the previous section.

4 Block Coordinate Descent Type Methods

Consider the problem

min
y
ψ(y), ψ ∈ F

1,1
L (Rm), (27)

and assume that the solution of (27) is nonempty, denoted by Y ∗, with corre-
sponding optimal value ψ∗.

We will assume that y has the following partition

y = (y(1), y(2), . . . , y(c)),

where y(i) ∈ Rmi and
∑
i∈[c]mi = m, mi ∈ N. Using the notation from [14],

with matrices U(i) ∈ Rm×mi , i ∈ [c] partitioning the identity

I =
(
U(1), U(2), . . . , U(c)

)
,

we get

y(i) = U>(i)y, ∀y ∈ Rm, ∀i ∈ [c], and y =
∑
i∈[c]

U(i)y(i).

Similarly, the vector of partial derivatives corresponding to the variables in
y(i) is

∇(i)ψ(y) = U>(i)∇ψ(y).

We assume the following.

Assumption 4.1. The partial derivatives of ψ are Li-Lipschitz continuous
functions with respect to the block coordinates, that is

‖∇(i)ψ(y + U(i)h(i))−∇(i)ψ(y)‖ ≤ Li‖h(i)‖, ∀y, h(i) ∈ Rmi , i ∈ [c]. (28)
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Lemma 4.1 (Block Descent Lemma). Suppose that ψ is a continuously dif-
ferentiable function over Rm satisfying (28). Then for all h(i) ∈ Rmi , i ∈ [c]
and y ∈ Rn we have

ψ(y + U(i)h(i)) ≤ ψ(y) + 〈∇(i)ψ(y), h(i)〉+
Li
2
‖h(i)‖2. (29)

We denote (similarly to [14])

Rα(y(0)) = max
y∈Rn
{ max
y∗∈Y ∗

‖y − y∗‖α : ψ(y) ≤ ψ(y(0))}, (30)

where α = [0, 1] and

‖y‖α =

∑
i∈[c]

Lαi ‖y(i)‖2
 1

2

. (31)

4.1 Randomized Block Coordinate Gradient Descent

The block coordinate gradient descent (BCGD) [3] method solves in each iter-
ation the over-approximation in (29)

d(k,i) := argminh(i)∈Rni 〈∇(i)ψ(y(k)), h(i)〉+
Li
2
‖h(i)‖2, (32)

which gives

d(k,i) := − 1

Li
∇(i)ψ(y(k)),

and an update of the form

y(k,i) := y(k) + d(k,i). (33)

In the deterministic case the next iterate is usually defined after a full cycle
through the c blocks. For this particular choice (non-asymptotic) conver-
gence rates were only recently derived in [2], although the convergence of the
method was extensively studied in the literature under various assumptions
[13, 3]. Instead of using a deterministic cyclic order, randomized strategies
were proposed in [14, 12, 16] for choosing a block to update at each iteration
of the BCGD method. At iteration k, an index ik is generated randomly ac-
cording to the probability distribution vector p ∈ ∆c. In [14] the distribution
vector was chosen as

pi =
Lαi∑c
j=1 L

α
j

, i ∈ [c], α ∈ [0, 1]. (34)

An expected convergence rate for Alg. 2 was obtained in [14]. We summa-
rize results in the next theorem.
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Algorithm 2: Random Block Coordinate Gradient Descent (RBCGD)

Input: Starting vector y(0), partition of [m], U(i), i ∈ [c],
Lipschitz-constants Li, p ∈ ∆c

for k = 1, 2, . . . do
Sample ik ∈ [c] due ik ∼ p
Update y(k+1) = y(k) − 1

Lik
U(ik)∇(ik)ψ(y(k))

Theorem 4.2. (Sublinear convergence rate of RBCGD) Let (y(k)) be the se-
quence generated by Alg. 2 and p defined as in (34). Then the expected con-
vergence rate is

E[ψ(y(k))]− ψ∗ ≤ 2

k + 4

∑
i∈[c]

Lαi

R2
1−α(y(0)), k = 0, 1, . . . . (35)

In particular, this gives

• Uniform probabilities for α = 0

E[ψ(y(k))]− ψ∗ ≤ 2c

k + 4
R2

1(y(0)), k = 0, 1, . . .

• Probabilities proportional to Li for α = 1, compare also [17, 18, 20]

E[ψ(y(k))]− ψ∗ ≤ 2c

k + 4

1

c

∑
i∈[c]

Li

R2
0(y(0)), k = 0, 1, . . .

As expected, the performance of RBCGD, Alg. 2, improves on strongly convex
functions.

Theorem 4.3. (Linear convergence rate of RBCGD) Let function ψ be strongly
convex with respect to the norm ‖ · ‖1−α, see (31), with modulus µ1−α > 0.
Then, for the (y(k)) be the sequence generated by Alg. 2 and the probability
vector p from (34), we have

E[ψ(y(k))]− ψ∗ ≤

(
1− µ1−α∑

i∈[c] L
α
i

)k
(ψ(y(0))− ψ∗), k = 0, 1, . . . . (36)

In [2] the authors derive for the deterministic cyclic block coordinate gra-
dient descent convergence rates which were not available before. They also
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compare the multiplicative constants in the convergence results above to the
ones obtained for the deterministic cyclic block order. We refer the interested
reader to [2, sec. 3.2].

The above stochastic results from [14] for minimizing convex differentiable
functions were generalized in [16] for minimizing the sum of a smooth convex
function and a block-separable convex function.

5 Block Sparse Kaczmarz as BCGD

Consider the primal problem (2). Without loss of generality, we consider here
a partition of [m] in c blocks, i.e.

∑
i∈[c]mi = m, mi ∈ N and U(i) ∈ Rm×mi ,

i ∈ [c]. We define ASi = U>(i)A and denote A(i) := ASi for simplicity. In the

case of non partition [m] = ∪i∈[c]Si, we would consider the extended system
(4) along with a partition of m̂, see also the beginning of Section 2.

Now recall the iteration of the Randomized Block Sparse Kaczmarz Alg. 1
with stepsize

tk =
1

‖A(ik)‖2
,

where at iteration k, the block (ik) is choosen randomly according to the
probability distribution vector p ∈ ∆c,

pi =
‖A(i)‖2α∑c
j=1 ‖A(j)‖2α

, i ∈ [c], α ∈ [0, 1]. (37)

Further consider the randomized block coordinate gradient descent Alg. 2
applied to the dual problem (12).

Proposition 5.1. The RBSK iteration Alg. 1 where the block A(ik) is chosen
according to p ∈ ∆c from (37) is equivalent to the randomized block coordinate
gradient descent Alg. 2 applied to the dual function ψ from (12) with a stepsize

tk =
1

‖A(ik)‖2
,

where ik is chosen according to p ∈ ∆c from (34), when for both starting
vectors x0 = A>y0 holds.

Proof. Consider the dual problem (12). The block gradient update applied to
ψ from (12) reads

y(k+1) = y(k) − 1

Lψ,i
U(i)

(
A(i)Sλ(A>y(k))− b(i)

)
, (38)
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where Lψ,i are the block Lipschitz constants of ψ from (12). These we can
compute. Indeed, we have

‖∇(i)ψ(y + U(i)h(i))−∇(i)ψ(y)‖ = ‖A(i)Sλ(A>y +A>(i)h(i))−A(i)Sλ(A>y)‖

≤ ‖A(i)‖‖Sλ(A>y +A>(i)h(i))− Sλ(A>y)‖

≤ ‖A(i)‖‖A>(i)h(i)‖ ≤ ‖A(i)‖2︸ ︷︷ ︸
=:Lψ,i

‖h(i)‖,

due to Sλ being 1-Lipschitz continuous in view of Sλ(x) = proxλ‖·‖1(x).

For some starting point y(0), (38) can be written as

z(k) = A>y(k), (39)

x(k) = Sλ(z(k)), (40)

y(k+1) = y(k) − 1

Lψ,ik
U(ik)

(
A(ik)x

(k) − b(ik)
)
. (41)

Thus

z(k+1) = A>y(k+1) = A>y(k) − 1

Lψ,ik
A>(ik)

(
A(ik)x

(k) − b(ik)
)

(42)

= z(k) − 1

Lψ,ik
A>(ik)

(
A(ik)x

(k) − b(ik)
)
. (43)

We note that the set Sik of rows from A defines the indices (ik) of dual vari-
ables y and vice versa. Based on this derivation, the result follows by using
mathematical induction.

Since the sequence generated by the RBCGD method is a sequence of
random variables and the efficiency estimate result from Thm. 4.2 bounds the
difference of the expectation of the function values ψ(y(k)) and ψ∗ we obtain
as a byproduct convergence in expectation.

Theorem 5.2. Suppose b ∈ R(A) holds. Then the randomized RBSK Alg. 1
converges in expectation to the unique solution of (2).

Proof. In view of Thm. 4.2 the sequence of random variables
(
ψ(y(k))

)
is

converging almost surely to ψ∗. The result now follows from Prop. 5.1 and
Thm. 3.1.
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Regularized Block Sparse Kaczmarz Method
The above derivation can be repeated for ψε and the corresponding primal

problem (19). Consider the dual problem (22) and a partition of [m], U(i) ∈
Rm×mi , i ∈ [c]. The block gradient update applied to ψε from (22) reads,

y(k+1) = y(k) − 1

Lψε,i
U(i)

(
A(i)Sλ,ε(A

>y(k))− b(i)
)
,

where A(i) := U>(i)A =: ASi and Lψε,i are the block Lipschitz constants of ψε
from (22). These we can compute in an analogous manner to the Lipschitz
constants for ψ and obtain Lψε,i = ‖A(i)‖2, since Sλ,ε is as well 1-Lipschitz
continuous, see (24).

This leads to the following version of the Block Sparse Kaczmarz Alg. 3.
The counterpart of Prop. 5.1 and Thm. 5.2 corresponding to Alg. 3 and
RBCGD applied to ψε also hold.

Algorithm 3: Regularised RBSK (regRBSK)

Input: Starting vectors x(0) and z(0), covering of [m] = ∪ci=1Si, with
|Si| = mi, i ∈ [c], probability vector p ∈ ∆c, choose ε > 0

for k = 1, 2, . . . do
Sample ik ∈ [c] due ik ∼ p
Update z(k+1) = z(k) − tk(ASik )>(ASikx

(k) − bSik )

Update x(k+1) = Sλ,ε(z
(k))

Alg. 3 converges faster due to the linear rate in view of the strong convexity.
However, for small values of ε > 0 close to zero the estimate in (36) becomes
better than the r.h.s. of (35) in Thm. 4.2 only for very high values of k. The
strong convexity property of ψε allows to obtain convergence rates in terms
of the variables y(k) and x(k). Unfortunately, the tiny value of the convexity
parameter will lead to poor convergence rates estimates for these variables
too.

Despite these observations, the strong convexity of the dual function ψε
opens the way for various accelerations along the lines of [14, 16, 18, 17]. We
omit this here, however.

Expected Descent Due to the choice of the distribution (34) we can estimate
the expected progress in terms of the expected descent of Alg. 2 in view of
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both Algorithms 1 and 3 based on primal updates only. Indeed,

ψ(y(k))− E[ψ(y(k+1))]

=
∑
ik∈[c]

pik

(
ψ(y(k))− ψ(y(k) − 1

Lik
U(ik)∇(ik)ψ(y(k)))

)
≥
∑
ik∈[c]

pik
2Lψ,ik

‖∇(ik)ψ(y(k))‖2 (44)

= ‖∇ψ(y(k))‖2w = ‖ASλ(A>y(k))− b‖2w
= ‖Ax(k) − b‖2w (45)

holds, where w ∈ Rcmi is a positive vector and in view of (34) and for every
j ∈ (i)

wj =
Lα−1i∑c
j=1 L

α
j

, i ∈ [c], α ∈ [0, 1].

We now justify the first inequality (44) in the above reasoning. Recall that

hik = − 1

Lψ,ik
∇(ik)ψ(y(k)).

minimizes the r.h.s. of (29) for y = y(k). Thus

ψ(y(k) + U(ik)hik) ≤ ψ(y(k))− 1

2Lψ,ik
‖∇(ik)ψ(y(k))‖2,

and

ψ(y(k))− ψ(y(k+1)) ≥ 1

2Lψ,ik
‖∇(ik)ψ(y(k))‖2.

This shows (44) and in particular the monotonicity of
(
ψ(y(k))

)
. The same

computation can be done for ψε.

6 Numerical Experiments

We consider a tomographic reconstruction problem. The goal is to recover an
image from line integrals, see Fig. 2 (left). In discretized form, the projection
matrix A encodes the incidence geometry of lines and pixels. Each row of A
corresponds to a discretized line integral, and each column to a pixel.∗ Here
we consider a binary image, see Fig. 2 (right). However, we don’t impose
binary constraints here. We only use the prior knowledge that our image is
sparse. See [8] for a recent textbook on the theory of Compressive Sensing.

∗To build the projection matrix A we used the AIRtools package v1.0 [10] obtained from
http://www2.compute.dtu.dk/~pcha/AIRtools/.
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Figure 2: A 32 × 32 sparse test image (right) is measured from 18 fan beam
projections (left) at equiangular source positions.

We refer the interested reader to [15] for further information about when
a sufficiently sparse solution can be recovered exactly by (1) in the context of
tomography.

6.1 Comparison to Derived Convergence Rates

We first conduct an experiment to illustrate the estimated convergence rates
to the empirical rates for different number of blocks from A. We consider the
partition of A into c blocks, each with m/c rows if c divides m, or with bm/cc
except for the first m mod (c) which will contain bm/cc+ 1 rows. A(i) is the
submatrix of A comprising the rows corresponding to the i-th block. In order
to find the solution of the perturbed dual formulations we used a conventional
unconstrained optimization approach, the Limited Memory BFGS algorithm
[4], which yields accurate solution approximations and scales to large prob-
lem sizes. In all experiments, the perturbation parameters were kept fixed to
λ = 10. We allowed a maximum number of 1000m iterations and stopped
when the weighted residual ‖Ax(k)− b‖2w ≤ 10−8. The results are summarized
in Fig. 3. As expected, a lower number of blocks used leads to fewer itera-
tions. However, more blocks mean cheaper iteration meaning fewer updates
for the dual variable or fewer rows used per iteration. Taking this into account
we conclude that the fully sequential is the fastest option for the considered
example.

6.2 RBSK versus RegRBSK

Having in mind that for ψε the strong convexity parameter equals ε
λ+ε the

convergence is faster the higher the ε is according to (36). However, ε should
be small in order that Sλ,ε really approximates the soft shrinkage operator Sλ,
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Figure 3: Convergence rates for RBSK and comparison between different errors
for different partitions. Here α = 1. The empirical error E[ψ(y(k))]−ψ∗ (black
curve) is upper bounded by the r.h.s. of (35) (black curve) as estimated by 4.2.
We note that both errors E[‖y(k) − y∗‖] (green curve) and E[‖x(k) − x∗‖] (red
curve) are bounded by the r.h.s. of (35) as well. Interestingly, the difference
ψ(y(k+1)) − E[ψ(y(k+1))] (cyan area) is well approximated by ‖Ax(k) − b‖2w
according to (45). The left upper plot considers the entire matrix A, thus
c = 1. The right upper plot considers 10 blocks and c = 10. The lower plots
correspond to c = 100 (left) and c = 710 (right).
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Figure 4: Comparison between RBSK, Alg. 1 and RegRBSK, Alg. 3. RBSK
converges (on average) and reaches the tolerance level of 10−8 in 9126 itera-
tions, while RegRBSK needs only 5865 iterations. The error E[‖x(k) − x∗‖]
(red curve) and the weighted residual E[‖Ax(k) − b‖2w] (blue curve) is illus-
trated along with its variance over 100 runs. The number c of partitions was
10.

see Fig. 3.2. We decided for a compromise: slowly decrease ε→ 0 and choose
ε iteration dependent, by setting ε = εk = (0.99)k. The results are illustrated
in Fig. 4. This simple technique leads to a significant acceleration.

7 Conclusion and Further Work

We introduced the Randomized Block Sparse Kaczmarz method and the Reg-
ularised Randomized Block Sparse Kaczmarz method and showed their ex-
pected convergence by exploiting the intimate connection between Bergman
projection methods on subsets of linear equations and the coordinate descent
method applied on related unconstrained dual problems. The unconstrained
duals are obtained by quadratic perturbation of the `1-objective and of its
Moreau envelope. This connection enables to apply existing convergence anal-
ysis of the randomized coordinate gradient descent to the (Regularised) Ran-
domized Block Sparse Kaczmarz method. Convergence rates in terms of primal
iterates only, are not derived. Experimental results show however that such
rates can be observed. Such derivations are the subject of further research.

A Mathematical Background

We collect few definitions and basic facts from [19].
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A.1 Proximal Mapping, Moreau Envelope

For a proper, lower-semicontinuous (lsc) function f : Rn → R ∪ {+∞} and
parameter value λ > 0, the Moreau envelope function eλf and the proximal
mapping proxλf (x) are defined by

eλf(x) := inf
y
f(y) +

1

2λ
‖y − x‖2, (46a)

proxλf (x) := argmin
y

f(y) +
1

2λ
‖y − x‖2. (46b)

We define by

F(Rn) the class of convex, proper, lsc functions f : Rn → R,
F1(Rn) the class of continuous differentiable functions f ∈ F(Rn),

F
1,1
L (Rn) the class of functions f ∈ F1(Rn) with Lipschitz-continuous

gradient,
S1µ(Rn) the class of functions f ∈ F1(Rn) that are strongly convex with

convexity parameter µ > 0,

S
1,1
µ,L(Rn) the class of functions f ∈ F

1,1
L (Rn) ∩ S1µ(Rn).

For any function f ∈ F, we have

eλf ∈ F
1,1
1
λ

, ∇eλf(x) =
1

λ

(
x− proxλf (x)

)
. (47)

Any function f ∈ F and its (Legendre-Fenchel) conjugate function f∗ ∈ F are
connected through their Moreau envelopes by

(eλf)∗ = f∗ +
λ

2
‖ · ‖2, (48a)

1

2λ
‖x‖2 = eλf(x) + eλ−1f∗(λ−1x), ∀x ∈ Rn, λ > 0. (48b)

A.2 Fenchel-Type Duality Scheme

Theorem A.1 ([19]). Let f : Rn → R ∪ {+∞}, g : Rm → R ∪ {+∞} and
A ∈ Rm×n. Consider the two problems

inf
x∈Rn

ϕ(x), ϕ(x) = 〈c, x〉+ f(x) + g(b−Ax), (49a)

sup
y∈Rm

ψ(y), ψ(y) = 〈b, y〉 − g∗(y)− f∗(A>y − c) . (49b)
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where the functions f and g are proper, lower-semicontinuous (lsc) and convex.
Suppose that

b ∈ int(A dom f + dom g), (50a)

c ∈ int(A> dom g∗ − dom f∗) . (50b)

Then the optimal solutions x, y are determined by

0 ∈ c+ ∂f(x)−A>∂g(b−Ax), 0 ∈ b− ∂g∗(y)−A∂f∗(A>y − c) (51a)

and connected through

y ∈ ∂g(b−Ax), x ∈ ∂f∗(A>y − c), (52a)

A>y − c ∈ ∂f(x), b−Ax ∈ ∂g∗(y) . (52b)
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