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New Exact traveling wave solutions of the

(2+1) dimensional Zakharov-Kuznetsov (ZK)
equation

Mohammed Khalfallah

Abstract

The repeated homogeneous balance method is used to construct
new exact traveling wave solutions of the (2+1) dimensional Zakharov-
Kuznetsov (ZK) equation, in which the homogeneous balance method
is applied to solve the Riccati equation and the reduced nonlinear ordi-
nary differential equation, respectively. Many new exact traveling wave
solutions are successfully obtained. This method is straightforward and
concise, and it can be also applied to other nonlinear evolution equa-
tions.

The nonlinear evolution equations have a wide array in application of many
fields, which described the motion of the isolated waves, localized in a small
part of space, in many fields such as hydrodynamic, plasma physics, nonlinear
optics, etc. The investigation of the exact traveling wave solutions of nonlinear
partial differential equations plays an important role in the study of nonlin-
ear physical phenomena, for example, the wave phenomena observed in fluid
dynamics, elastic media, optical fibers, etc. Since the knowledge of closed-
form solutions of nonlinear evolution equations NEEs

¯
facilitates the testing of

numerical solvers, and aids in the stability analysis.
The ZK equation is another alternative version of nonlinear model describ-

ing two-dimensional modulation of a kdv soliton [1, 2]. If a magnetic field is
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directed along the x -axis, the ZK equation in renormalized variables [3] takes
the form

ut + auux + ∇u2
x = 0, (1)

where ∇2 = ∂2
x + ∂2

y + ∂2
z is the isotropic Laplacian. This means that the ZK

equation is given by

ut + auux + (uxx + uyy)x = 0, (2)

and
ut + auux + (uxx + uyy + uzz)x = 0, (3)

in two-and three-dimensional spaces. The ZK equation governs the behavior
of weakly nonlinear ion-acoustic waves in plasma comprising cold ions and
hot isothermal electrons in the presence of a uniform magnetic field [1, 2].
The ZK equation, which is more isotropic two-dimensional, was first derived
for describing weakly nonlinear ion-acoustic waves in a strongly magnetized
lossless plasma in two dimensions [4]. The ZK equation is not integrable by
the inverse scattering transform method. It was found that the solitary-wave
solutions of the ZK equation are inelastic.

Motivated by the rich treasure of the ZK equations in the literature of
the nonlinear development of ion-acoustic waves in a magnetized plasma, an
analytical study will be conducted on the ZK equation (2) and (3). For more
details about the solitary-wave solutions and the ZK equations, the reader is
advised to read [1-8].

In recent years Wong et al. presented a useful homogeneous balance (HB)
method [1-3] for finding exact solutions of given nonlinear partial differential
equations. Fan [14]used HB method to search for Backlund transformation
and similarity reduction of nonlinear partial differential equations. Also, he
showed that there is a close connection among the HB method, Wiess, Tabor,
Carnevale(WTC)method and Clarkson, Kruskal(CK)method.

In this paper, we use the HB method to solve the Riccati equation φ′ =
αφ2 +β and the reduced nonlinear ordinary differential equation for the (2+1)
ZK equation, respectively. It makes the HB method use more extensively.

For the (2+1) ZK equation [15]

ut + a(u2)x + (buxx + kuyy)x = 0, (4)

where a,b and k are constants. Let us consider the traveling wave solutions

u(x, y, t) = u(ζ), ζ = x + y − dt, (5)

where d is constant.
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Substituting (5) into (4), then (1)is reduced to the following nonlinear
ordinary differential equation

(b + k)u′′′ + a(u2)′ − du′ = 0. (6)

We now seek the solutions of Eq.(6) in the form

u =
m∑

i=0

qiφ
i, (7)

where qi are constants to be determined later and φ satisfy the Riccati equation

φ′ = αφ2 + β, (8)

where α, β are constants. It is easy to show that m = 2, by balancing u′′ with
uu′. Therefore we use the ansatz (auxiliary) equation

u = q0 + q1φ + q2φ
2. (9)

Substituting Eq.(8) and (9) into Eq.(6) and equating the coefficients of
the same powers of φi(i = 0, 1, 2, 3, 4, 5) to zero yield the system of algebraic
equations in q0, q1, q2 and d

2(b + k)q1αβ2 + (2aq0 − d)q1β = 0,

16(b + k)q2αβ2 + 2(aq2
1 − dq2 + 2aq0q2)β = 0,

2(3aq2 + 4α2(b + k))q1β + (2aq0 − d)q1α = 0,

4(aq2 + 10α2(b + k))q2β + 2(aq2
1 − dq2 + 2aq0q2)α = 0,

6(aq2 + α2(b + k))q1α = 0,

4(aq2 + 6α2(b + k))q2α = 0, (10)

for which, with the aid of ”Mathematica”, we get the following solution

q0 =
d − 8(b + k)αβ

2a
, q1 = 0, q2 = −6α2(b + k)

a
. (11)

For the Riccati Eq.(8), we can solve it by using the HB method as follows
(I) Let φ = Σm

i=0bi tanhi ζ. Balancing φ′ with φ2 leads to

φ = b0 + b1 tanh ζ. (12)

Substituting Eq.(12)into Eq.(8) we obtain the following solution of Eq.(8)

φ = β tanh ζ = − 1
α

tanh ζ, αβ = −1. (13)
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From Eq.(9), (11) and (13), we get the following traveling wave solutions
of (2+1) ZK equation (4)

u(x, y, t) =
1
2a

(d − 8(b + k)αβ − 12(b + k) tanh2(x + y − dt)). (14)

Similarly, let φ = Σm
i=0bi cothi ζ, then we obtain the following traveling

wave solutions of (2+1) ZK equation (4)

u(x, y, t) =
1
2a

(d − 8(b + k)αβ − 12(b + k) coth2(x + y − dt)). (15)

(II) From [16], when α = 1, the Riccati equation 8)has the following
solutions

φ =

⎧⎨
⎩

−√−β tanh(
√−βζ), β < 0,

− 1
ζ , β = 0,√
β tan(

√
βζ). β > 0.

(16)

From (9),(11) and (16), we have the following traveling wave solutions of
(2+1) ZK equation (4).

When β < 0, we have

u(x, y, t) =
1
2a

(d − 8(b + k)β + 12(b + k)β tanh2(
√
−β(x + y − dt))). (17)

When β = 0, we have

u(x, y, t) =
d − 8(b + k)β

2a
− 6(b + k)

a(x + y − dt)2
. (18)

When β > 0, we have

u(x, y, t) =
1
2a

(d − 8(b + k)β − 12(b + k)β tan2(
√
−β(x + y − dt))). (19)

(III) We suppose that the Riccati equation (8) has the following solutions of
the form

φ = A0 +
m∑

i=1

(Aif
i + Bif

i−1g), (20)

with
f =

1
cosh ζ + r

, g =
sinh ζ

cosh ζ + r
,

which satisfy

f ′(ζ) = −f(ζ)g(ζ), g′(ζ) = 1 − g2(ζ) − rf(ζ),
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g2(ζ) = 1 − 2rf(ζ) + (r2 − 1)f2(ζ).

Balancing φ′ with φ2 leads to

φ = A0 + A1F + B1g. (21)

Substituting Eq.(21) into (8), collecting the coefficient of the same power f igj

(i = 0, 1, 2; j = 0, 1) and setting each of the obtained coefficients to zero yield
the following set of algebraic equations

αA2
1 + α(r2 − 1)B2

1 + (r2 − 1)B1 = 0,

2αA1B1 + A1 = 0,

2αA0A1 − 2αrB2
1 − rB1 = 0,

2αA0B1 = 0,

αA2
0 + αB2

1 + β = 0, (22)

which have solutions

A0 = 0, A1 = ±
√

(r2 − 1)
4α2

, B1 = − 1
2α

, (23)

where 4αβ = −1. From Eqs.(20),(23), we have

φ =
−1
2α

(
sinh ζ ∓ √

(r2 − 1)
cosh ζ + r

). (24)

From Eqs.(9), (11) and (24), we obtain

u(x, y, t) =
1
2a

((d − 8(b + k)αβ − 3(b + k)(
±√

r2 − 1 − sinh(ζ)
r + cosh(ζ)

)2), (25)

where
ζ = x + y − dt.

(IV) We take φ in the Riccati equation(8) as being of the form

φ = ep1ζρ(z) + p4(ζ), (26)

where
z = ep2ζ + p3, (27)

where p1, p2 and p3 are constants to be determined.
Substituting (26) and (27) into (8), we have

p2e
(p1+p2)ζρ′ − αe2p1ζρ2 + (p1 − 2αp4)ep1ζρ + p′4 − αp2

4 − β = 0. (28)



40 Mohammed Khalfallah

Setting p1+p2 = 2p1, we get p1 = p2. If we assume that p4 = p1
2α and β = − p2

1
4α ,

then Eq.(28) becomes
p2ρ

′ − αρ2 = 0. (29)

By solving Eq.(29), we have

ρ = − p1

αz
= − p1

αep1ζ + p3
. (30)

Substituting (30) and p4 = p1
2α into (26), we have

φ = − p1e
p1ζ

α(ep1ζ + p3)
+

p1

2α
. (31)

If p3 = 1 in (31), we get

φ = − p1

2α
tanh(

1
2
p1ζ). (32)

If p3 = −1 in (31), we get

φ = − p1

2α
coth(

1
2
p1ζ). (33)

From (9), (11) and (31), we obtain the following traveling wave solutions of
(2+1) ZK equation (1)

u(x, y, t) =
1
2a

(d − 8(b + k)αβ − 3p2
1(b + k)(

2ep1(x+y−dt) − 1
ep1(x+y−dt) + p3

)2). (34)

When p3 = 1, we have, from (32),

u(x, y, t) =
1
2a

(d − 8(b + k)αβ − 3p2
1(b + k) tanh2(

p1

2
(x + y − dt)). (35)

Clearly, (14) is the special case of (35) with p1 = 2. When p3 = −1, we have
from (33),

u(x, y, t) =
1
2a

(d − 8(b + k)αβ − 3p2
1(b + k) coth2(

p1

2
(x + y − dt)). (36)

Clearly, (15) is the special case of (36) with p1 = 2.
(V) We suppose that the Riccati equation (8) has the following solutions

of the form

φ = A0 +
m∑

i=1

sinhi−1(Ai sinh ω + Bi coshω),
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where dω/dζ = sinhω or dω/dζ = cosh ω. It is easy to find that m = 1, by
balancing φ′ and φ2. So we choose

φ = A0 + A1 sinh ω + B1 coshω, (37)

when dω/dζ = sinh ω, we substitute (37) and dω/dζ = sinhω, into (8), and set
the coefficient of sinhi ω coshj ω(i = 0, 1, 2; j = 0, 1) to zero. A set of algebraic
equations is obtained as follows

αA2
0 + αB2

1 + β = 0,

2αA0A1 = 0,

αA2
1 + αB2

1 = B1

2αA0B1 = 0,

2αA1B1 = A1, (38)

for which, we have the following solutions

A0 = 0, A1 = 0, B1 =
1
α

, (39)

where c = −1
a , and

A0 = 0, A1 = ± 1
2α

, B1 =
1
2α

, (40)

where β = − 1
4α .

To dω/dζ = sinh ω, we have

sinh ω = −cschζ, coshω = − coth ζ. (41)

From (38)-(41), we obtain

φ = −cothζ

α
, (42)

where β = − 1
α , and

φ =
coth ζ ± cschζ

2α
, (43)

where β = − 1
4α .

Clearly, (42)is the special case of (34)with p1 = 2.
From (9),(11),(42) and (43), we get the exact traveling wave solutions of

(2+1) ZK equation (4) in the following form

u(x, y, t) =
1
2a

((d − 8(b + k)αβ − 12(b + k) coth2(ζ)), (44)
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which is identical with (15).

u(x, y, t) =
1
2a

((d − 8(b + k)αβ − 3(b + k)(coth(ζ) ± csch(ζ))2), (45)

where ζ = x + y − dt.

Similarly, when dω/dζ = coshω, we obtain the following exact traveling
wave solutions of (2+1) ZK equation (4) in the following form

u(x, y, t) =
1
2a

((d − 8(b + k)αβ − 12(b + k) cot2(ζ)), (46)

u(x, y, t) =
1
2a

((d − 8(b + k)αβ − 3(b + k)(cot(ζ) ± csc(ζ))2), (47)

where ζ = x + y − dt.

In this paper, we exhibited the repeated homogeneous balance method to
study the (2+1) dimensional Zakharov-Kuznetsov (ZK) equation. New soli-
tons and periodic solutions were formally derived. These solutions may be
helpful to describe waves features in plasma physics. Moreover, the obtained
results in this work clearly demonstrate the reliability of the repeated homo-
geneous balance method.

We now summarize the key steps as follows
Step1: For a given nonlinear evolution equation

F (u, ut, ux, uxt, utt, . . .) = 0, (48)

we consider its traveling wave solutions u(x, y, t) = u(ζ), ζ = x + y − dt then
Eq.(47) is reduced to a nonlinear ordinary differential equation

Q(u, u′, u′′, u′′′, . . .) = 0, (49)

where a prime denotes d
dζ .

Step2: For a given ansatz equation (for example, the ansatz equation is
φ′ = αφ2 + β in this paper), the form of u is decided and the HB method
is used on Eq.(49) to find the coefficients of u.
Step3: The HB method is used to solve the ansatz equation.
Step4: Finally, the traveling wave solutions of Eq.(48) are obtained by com-
bining Step2 and Step3.
From the above procedure, it is easy to find that the HB method is more effec-
tive and simple than other methods and a lot of solutions can be also applied
to other nonlinear evolution equations.
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