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About some linear operators defined by
infinite sums

Ovidiu T. Pop

Abstract

In this paper we study a general class of linear operators defined by
infinite sum. In particular, we obtain the convergence and the evaluation
for the rate of convergence in therm of the first modulus of smoothness
for the Mirakjan-Favard-Szász, Meyer-König and Zeller operators.

1 Introduction

In this section, we recall some notions and results which we will use in this
paper.

For a given interval I we shall use the following function sets: B(I) =
{f |f : I → R, f bounded on I}, C(I) = {f |f : I → R, f continuous on I}
and CB(I) = B(I) ∩ C(I). For any x ∈ I consider the functions ψx : I → R,
given by ψx(t) = t− x and ei : I → R, ei(t) = ti for any t ∈ I, i ∈ {0, 1, 2}.

For f ∈ CB(I), by the first order modulus of smoothness of f is meant the
function ω(f ; ·) : [0,∞) → R defined for any δ ≥ 0 by

ω(f ; δ) = sup
{|f(x′) − f(x′′)| : x′, x′′ ∈ I, |x′ − x′′| ≤ δ

}
. (1.1)

Let N be the set of positive integer numbers and N0 = N∪{0}. For m ∈ N

consider the operators Sm : C2([0,∞)) → C([0,∞)) defined for any function
f ∈ C2([0,∞)) by

(Smf)(x) = e−mx
∞∑

k=0

(mx)k

k!
f

(
k

m

)
, (1.2)
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x ∈ [0,∞), where C2([0,∞)) =
{
f ∈ C([0,∞)) : lim

x→∞
f(x)

1 + x2
exists and is

finite
}

.
The operators (Sm)m≥1 are named the Mirakjan-Favard-Szász operators

and were introduced in 1941 by G. M. Mirakjan in [6]. They were intensively
studied by J. Favard in 1941 in [3] and O. Szász in 1950 in [11].

W. Meyer-König and K. Zeller have introduced in [5] a sequence of linear
and positive operators.

These operators, Zm : C([0, 1]) → C([0, 1]), defined for any function f ∈
C([0, 1]) and m ∈ N by

(Zmf)(x)=

⎧⎪⎨
⎪⎩

(1−x)m+1
∞∑

k=0

(
m+k
k

)
xkf

(
k

m+k

)
if 0 ≤ x < 1

f(1) if x = 1
(1.3)

are nowadays called the Meyer-König and Zeller operators.
For the following see [10].
Let I, J ⊂ R be intervals with I ∩ J 	= ∅. For m ∈ N and k ∈ N0 consider

the function ϕm,k : J → R with the property that ϕm,k(x) ≥ 0 for any x ∈ J
and the linear positive functional Am,k : E(I) → R.

For m ∈ N, let the operator Lm : E(I) → F (J) be defined by

(Lmf)(x) =
∞∑

k=0

ϕm,k(x)Am,k(f) (1.4)

for any f ∈ E(I) and x ∈ J , where E(I) and F (J) are subsets of the set of
real functions defined on I and J , respectively. These operators are linear and
positive on E(I ∩ J).

For m ∈ N and i ∈ N0 define Ti by

(TiLm)(x) = mi
(
Lmψ

i
x

)
(x) = mi

∞∑
k=0

ϕm,k(x)Am,k

(
ψi

x

)
(1.5)

for any x ∈ I ∩ J .
In what follows s ∈ N0, s is even.

We suppose that the operators (Lm)m≥1 verify the conditions:

Am,k(e0) = 1 (1.6)

for any k ∈ N0 and m ∈ N,
∞∑

k=0

ϕm,k(x) = 1 (1.7)
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for any x ∈ I ∩ J and any m ∈ N, there exist the smallest αs, αs+2 ∈ [0,∞)
such that

lim
m→∞

(TjLm)(x)
mαj

= Bj(x) ∈ R (1.8)

for any x ∈ I ∩ J , j ∈ {s, s+ 2} and

αs+2 < αs + 2. (1.9)

Remark 1.1 By (1.6) and (1.7) it results that

(T0Lm)(x) = 1 (1.10)

for any x ∈ I ∩ J and m ∈ N.

For s = 0 and s = 2 we have the following theorems.

Theorem 1.1 Let f : I → R be a function, f ∈ E(I). If x ∈ I ∩ J and f is
continuous at x, then

lim
m→∞(Lmf)(x) = f(x). (1.11)

Assume that f is continuous on I and there exists an interval K ⊂ I ∩J such
that m(0) ∈ N and k2(K) ∈ R exist, so that for m ≥ m(0) and x ∈ K we have

(T2Lm)(x)
mα2

≤ k2(K). (1.12)

Then the convergence given in (1.11) is uniform on K and

|(Lmf)(x) − f(x)| ≤ (1 + k2(K))ω
(
f ;

1√
m2−α2

)
(1.13)

for any x ∈ K and m ≥ m(0).

Theorem 1.2 Let f : I → R be a function, f ∈ E(I). If x ∈ I ∩ J and f is
a two times differentiable function at x with f (2) continuous at x, then

lim
m→∞m2−α2

[
(Lmf)(x) − f(x) − 1

m
(T1Lm)(x)f (1)(x)

]
(1.14)

=
1
2
B2(x)f (2)(x).

Assume that f is a two times differentiable function on I with f (2) continuous
on I and an interval K ⊂ I ∩J exists such that m(2) ∈ N and kj(K) exist, so
that for any m ≥ m(2) and x ∈ K we have

(TjLm)(x)
mαj

≤ kj(K), (1.15)

where j ∈ {2, 4}. Then the convergence given in (1.14) is uniform on K.
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It is known that (see [10])
(T0Sm)(x) = 1, (1.16)

(T1Sm)(x) = 0, (1.17)

lim
m→∞

(T2Sm)(x)
m

= x (1.18)

for any x ∈ [0,∞),
(T0Sm)(x) = 1 = k0, (1.19)

(T2Sm)(x)
m

≤ b = k2, (1.20)

(T4Sm)(x)
m2

≤ 3b2 + b = k4 (1.21)

for any m ∈ N and x ∈ K = [0, b], where b > 0, and

(T0Zm)(x) = 1, (1.22)

(T1Zm)(x) = 0, (1.23)

lim
m→∞

(T2Zm)(x)
m

= x(1 − x)2 (1.24)

for any x ∈ [0, 1],
(T0Zm)(x) = 1 = k0, (1.25)

(T2Zm)(x)
m

≤ 2 = k2 (1.26)

for any m ∈ N and x ∈ [0, 1].

2 Preliminaries

In this section we construct a general class of linear positive operators. Let
I, J be intervals with I ∩ J 	= ∅.

For m ∈ N let bm : J → R be a indefinitely differentiable function such
that

bm(x) > 0 (2.1)

for any x ∈ J and for any compact K ⊂ J there exists M(K) such that∣∣∣b(k)
m (x)

∣∣∣ ≤M(K) (2.2)

for any x ∈ K and k ∈ N0.
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Then, it is known that

bm(x) =
∞∑

k=0

1
k!
b(k)
m (0)xk (2.3)

for any x ∈ K and m ∈ N.
For m∈N and k∈N0 consider the linear positive functionals Am,k :E(I)→R.

Definition 2.1 For m ∈ N define the operator Lm : E(I) → F (J) by

(Lmf)(x) =
1

bm(x)

∞∑
k=0

1
k!
b(k)
m (0)xkAm,k(f) (2.4)

for any f ∈ E(I) and x ∈ J .

Remark 2.1 The sets E(I), F (J) are subsets of the set of real functions
defined on I and J , respectively such that the series from (2.4) is convergent.

Definition 2.2 For m ∈ N and i ∈ N0 define Ti by

(TiLm)(x) = mi
(
Lmψ

i
x

)
(x) = mi 1

bm(x)

∞∑
k=0

1
k!
b(k)
m (0)xkAm,k

(
ψi

x

)
, (2.5)

where x ∈ I ∩ J .

3 Main results

In this section we study the operators that we introduced in the previous
section.

Proposition 3.1 The operators Lm, m ∈ N are linear and positive on E(I ∩
J).

Proof. The proof follows immediately.
In the following we suppose that the operators (Lm)m≥1 verify the condi-

tions:
Am,k(e0) = 1 (3.1)

for any m ∈ N, k ∈ N0,
Am,0(e1) = 0 (3.2)

for any m ∈ N,
b(k)
m (0)Am,k(e1) = kb(k−1)

m (0) (3.3)
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for any m, k ∈ N,

lim
m→∞m2−α2

[
(Lme2)(x) − x2

]
= B2(x) ∈ R (3.4)

for any x ∈ I ∩ J , where α2 is the smallest and

2 < α2. (3.5)

Lemma 3.1 We have
(Lme0)(x) = 1, (3.6)

(Lme1)(x) = 0 (3.7)

for any x ∈ J and any m ∈ N,

(T0Lm)(x) = 1, (3.8)

(T1Lm)(x) = 0, (3.9)

(T2Lm)(x) = m2
[
(Lme2)(x) − x2

]
(3.10)

for any x ∈ I ∩ J and m ∈ N.

Proof. By (3.1) we have

(Lme0)(x) =
1

bm(x)

∞∑
k=0

1
k!
b(k)
m (0)xk

and from (2.3), (3.6) results. By (3.2) and (3.3) we have

(Lme1)(x) =
1

bm(x)

∞∑
k=0

1
k!
b(k)
m (0)xkAm,k(e1)=

1
bm(x)

∞∑
k=1

1
k!

(0)Am,k(e1)xk

= x
1

bm(x)

∞∑
k=1

1
(k − 1)!

b(k−1)
m (0)xk−1

and (3.7) results. From (3.6) and (3.7) we obtain (3.8) – (3.10).
In the following we suppose that the function B2 : I ∩ J → R is bounded

on any compact interval K, K ⊂ I ∩ J .

Lemma 3.2 We have

lim
m→∞

(T2Lm)(x)
mα2

= B2(x) (3.11)

for any x ∈ I ∩ J and if K ⊂ I ∩ J , K is a compact interval, m(2) ∈ N and
k2(K) ∈ R exist, so that for any m ≥ m(0) and x ∈ K

(T2Lm)(x)
mα2

≤ k2(K). (3.12)
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Proof. From (3.4) and (3.10), (3.11) results. Because the function B2 is
bounded on any compact K, K ⊂ I ∩ J , it results the inequality from (3.12).

Theorem 3.1 Let f : I → R be a function, f ∈ E(I). If x ∈ I ∩ J and f is
continuous at x, then

lim
m→∞(Lmf)(x) = f(x). (3.13)

If f is continuous on I ∩ J , then the convergence given in (3.13) is uniform
on any compact K ⊂ I ∩ J and m(0) ∈ N and k2(K) ∈ R exist, so that for
any m ≥ m(0) and x ∈ K we have

|(Lmf)(x) − f(x)| ≤ (1 + k2(K))ω
(
f ;

1√
m2−α2

)
. (3.14)

Proof. It results from Theorem 1.1, Lemma 3.1 and Lemma 3.2.

Theorem 3.2 Let f : I → R be a function, f ∈ E(I). If the smallest α4 ∈
[0,∞) exists, such that

lim
m→∞

(T4Lm)(x)
mα4

∈ R (3.15)

for any x ∈ I ∩ J and
α4 < α2 + 2, (3.16)

then for x ∈ I ∩ J and f a two times differentiable function at x with f (2)

continuous at x, we have

lim
m→∞m2−α2 [(Lmf)(x) − f(x)] =

1
2
B2(x)f (2)(x). (3.17)

Assume that f is a two times differentiable function on I with f (2) continuous
on I and for K ⊂ I ∩ J , K is a compact interval, m(2) ∈ N and k4(K) ∈ R

exist, so that for any m ≥ m(2) and x ∈ k4(K) we have

(T4Lm)(x)
mα4

≤ k4(K). (3.18)

Then the convergence given in (3.17) is uniform on K.

Proof. It results from Theorem 1.2, Lemma 3.1 and Lemma 3.2.
Now we discuss some particular cases.

Example 3.1 We consider I = J = [0,∞), E(I) = C2([0,∞)), F (J) =

C([0,∞)), bm(x) = emx for any x ∈ [0,∞) and m ∈ N, Am,k(f) = f

(
k

m

)
for

any f ∈ C2([0,∞), m ∈ N and k ∈ N0. Then b(k)
m (0) = mk for any x ∈ [0,∞),

m ∈ N, k ∈ N0 and we obtain the Mirakjan-Favard-Szász operators.
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Theorem 3.3 Let f : [0,∞) → R be a function, f ∈ C2([0,∞)). If f is a s
times differentiable at x ∈ [0,∞) with f (s) continuous at x, then

lim
m→∞(Smf)(x) = f(x) (3.19)

if s = 0 and

lim
m→∞m [(Smf)(x) − f(x)] =

1
2
xf (2)(x) (3.20)

if s = 2.
If f is a s times differentiable function on [0,∞) with f (s) continuous on

[0,∞), then the convergence given in (3.19) and (3.20) are uniform on every
compact [0, b] ⊂ [0,∞), where b > 0.

Moreover

|(Smf)(x) − f(x)| ≤ (1 + b)ω
(
f ;

1√
m

)
(3.21)

for any f ∈ C([0,∞)), m ∈ N and x ∈ [0, b].

Proof. We have α0 = 0, α2 = 1, α4 = 2, k2 = b, k4 = 3b2 + b (see [10]) and
we apply Theorem 3.1 and Theorem 3.2.

Example 3.2 Let I = J = [0, 1], E(I) = F (J) = C([0, 1]), bm(x) = (1 −
x)−m−1 for x ∈ [0, 1) and m ∈ N, Am,k(f) = f

(
k

m+ k

)
for any f ∈ C([0, 1]),

m ∈ N and k ∈ N0. Then b
(k)
m (x) = k!

(
m+ k

k

)
(1 − x)−m−k−1 for any x ∈

[0, 1), m ∈ N, k ∈ N0 and we obtain the Meyer-König and Zeller operators.

Theorem 3.4 Let f : [0, 1] → R be a function, f ∈ C([0, 1]). If f is a s times
differentiable at x ∈ [0, 1] with f (s) continuous at x, then

lim
m→∞(Zmf)(x) = f(x) (3.22)

if s = 0 and

lim
m→∞m [(Zmf)(x) − f(x)] =

1
2
x(1 − x)2f (2)(x) (3.23)

if s = 2.
If f is continuous on [0, 1], then the convergence given in (3.22) is uniform

on [0, 1] and

|(Zmf)(x) − f(x)| ≤ 3ω
(
f ;

1√
m

)
(3.24)

for any x ∈ [0, 1] and m ∈ N.

Proof. We have α0 = 0, α2 = 1, k2 = 2, lim
m→∞

(T2Zm)(x)
m

= x(1−x)2 (see

[10]), and we apply Theorem 3.1 and Theorem 3.2.
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Branch of Satu Mare
26 Mihai Viteazul Street
Satu Mare 440030, Romania
e-mail:ovidiutiberiu@yahoo.com



54 Ovidiu T. Pop


