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Extension of the Kirk-Saliga fixed point
theorem

Mihai Turinici

Abstract

A technical extension is given for the fixed point statement in Kirk
and Saliga [Nonlinear Analysis, 47 (2001), 2765-2778].

1. Introduction
Let (M,d) be a complete metric space; and = - ¢(x), some function from
M to Ry := [0, 00[ with

@ is Isc from above on M:
xn, — x and (p(x,)) descending imply lim ¢(z,) > p(z). (1.1)
n

Further, let x = Tz be a selfmap of M. The following 1975 statement in
Caristi and Kirk [6] (referred to as the Caristi-Kirk fixed point theorem; in
short: CK-fpt) is our starting point.

Theorem 1. Assume that (in addition)
d(z,Tz) < p(z) —p(Tx), for eachz € M. (1.2)

Then, T has at least one fized point in M.
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[As a matter of fact, the quoted result is with (1.1) substituted by

¢ is1sc on M (liminf p(z,) > ¢(x), whenever z,, — x). (1.3)
n

But the authors’ argument also works in this relaxed setting].

The original proof of Theorem 1 is by transfinite induction; see also Wong
[17]. Note that, in terms of the associated (to ¢) order on M

(z,y e M) x <y iff d(z,y) <o) - ¢(y)
the contractivity condition (1.2) becomes
x < Tz, for each x € M (i.e.: T is progressive on M). (1.4)

So, by the Bourbaki ”duality” principle [3], Theorem 1 is logically equivalent
with Zorn’s maximality result [19] subsumed to this order; i.e., with Ekeland’s
variational principle [7]. Hence, the sequential type argument used by the
quoted author to get his statement is also working in our precised setting; see
also Pasicki [12]. A proof of Theorem 1 involving the chains of the structure
(M, <) may be found in Turinici [16]. Further aspects (involving the general
case) may be found in Brunner [5]; see also Taskovic [14].

Now, CK-fpt found (especially via Ekeland’s approach) some basic appli-
cations to control and optimization, generalized differential calculus, critical
point theory and normal solvability; see the above references for details. As
a consequence, many extensions of Theorem 1 were proposed. Here, we shall
concentrate on the 2001 statement obtained in Kirk and Saliga [10] (referred
to as the Kirk-Saliga fixed point theorem; in short: KS-fpt).

Theorem 2. Assume that (in addition to (1.1))
o(x) > p(Tz), for eachx € M (1.5)

d(z,Tz) < p(z) — o(T?x), for each x € M and some p > 1. (1.6)
Then T has at least one fized point in M.

The argument used by the authors is (again) the transfinite induction.
A direct analysis of its mechanism reveals certain possibilities of extending
Theorem 2; this will be done in Section 3. The preliminaries for our approach
are given in Section 2. Finally, Section 4 is devoted to some particular versions
of our main result.

2. Preliminaries

(A) Let W stand for the class of ordinal numbers, introduced in a ”fac-
torial” way; cf. Kuratowski and Mostowski [11, Ch 7, Sect 2]. Precisely, call
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the partially ordered structure (P, <), well ordered if each part of P admits a
first element. Given a couple (P, <), (@, <) of such objects, put

(P, <) = (Q, <) if there exists a strictly increasing bijection:P — Q.

This is an equivalence relation; the order type of (P, <) (denoted ord(P, <))
is just its equivalence class; also referred to as an ordinal.

Note that W is not a set, as results from the Burali-Forti paradox; cf.
Sierpinski [13, Ch 14, Sect 2]. However, when one restricts to a Grothendieck
universe G (taken as in Hasse and Michler [8, Ch 1, Sect 2]) this contradictory
character is removed for the class W(G) of all admissible (modulo G) ordinals
(generated by (non-contradictory) well ordered parts of G). In the following,
we drop any reference to this universe, for simplicity. So, by an ordinal in
W one actually means a G-admissible ordinal with respect to a ”sufficiently
large” Grothendieck universe G. Clearly,

&=admissible ordinal and n < £ imply n=admissible ordinal.
Hence, in the formulae
W(a) ={{eW;f<a}, W] ={{cW;{<al,

the symbol W in the brackets is the ”absolute” class of all ordinals.
Now, an enumeration of W is realized via the immediate successor map

suc(M) =min{{ €e W; M < ¢}, M C W (hence suc(a) = a+ 1,Va € W).

(Here, M < & means: A < £,VYA € M). It begins with the natural numbers
N ={0,1,...}. Their immediate successor is w = suc(N) (the first transfinite
ordinal); the next in this enumeration is w + 1, and so on.

In parallel to this, we may (construct and) enumerate the class of all ad-
missible cardinals. Let P and @) be nonempty sets; we put

P < Q(P ~ Q) iff there exists an injection (bijection):P — Q.
The former is a quasi-order; while the latter is an equivalence. Denote also
P < Q if and only if P < @ and =(P ~ Q).

This relation is irreflexive (—(P < P), for each P) and transitive; hence a strict
order. Let oo > 0 be an (admissible) ordinal; we say that it is an (admissible)
cardinal it W (&) < W(a), for each € < a. The class of all these will be denoted
by Z. Now, the enumeration we are looking for is realized via the immediate
successor (in Z) map

SUC(M) =min{n € Z; M <n}, MCZ.
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Precisely, this begins with the natural numbers 0, 1, .... The immediate succes-
sor (in Z) of all these is (again) w = SUC(N) (the first transfinite cardinal).
To describe the remaining ones, we may introduce via transfinite recursion the
function A F Ny from W to Z as

Ny =w; and, for each A > 0,
Ny = SUC(Ry_1), if A—1 exists
Ry = SUC{N¢; & < A}, if A —1 does not exist.

Note that, in such a case, the order structure of Z(w,<) = {£ € Z;w < &}
is completely reducible to the one of W3 further details may be found in
Sierpinski [op. cit., Ch 15, Sect 7].

Any nonempty part P with P < W(w) (P ~ W(w)) is termed finite
(effectively countable); the union of these (P <X W(w)) is referred to as P is
countable. When P = W (), all such properties will be transferred to &.

Now, the immediate successor in Z of w = Rg is Q = Xy (the first uncount-
able ordinal). The motivation of our convention comes from

£ is countable, for each £ < ; but € is not countable. (2.1)

A basic consequence of this is precised in the statement below (to be found,
e.g., in Alexandrov [1, Ch 3, Sect 4]):

Proposition 1. The following are valid:
i) The ordinal Q cannot be attained via sequential limits of countable ordi-
nals. That is: if (aw,) s an ascending sequence of countable ordinals then

o = sup(a,) (= lim(as,)) (2.2)

is countable too.

ii) Fach second kind countable ordinal is attainable via such sequences. In
other words: if a < Q is of second kind then, there exists a strictly ascending
sequence (ay,) of countable ordinals with the property (2.2).

(B) Let M be a nonempty set; and (<), some order (=antisymmetric
quasi-order) on it. By a (<)-chain of M we shall mean any (nonempty) part
A of M with (A, <) being well ordered (see above). Note that any such object
may be written as A = {ag; £ < A}, where the net £ F ag is strictly ascending
(6 < n = a¢ < ay); the uniquely determined ordinal A is just ord(4, <).
Now, by the remark above, A is countable <= ord(4, <) < . If, moreover,
ord(A, <) < w, we say that A is normally countable; equivalently, this reads

A = {by;n < w}, where n I b, is ascending (p < ¢ = b, < b,). (2.3)
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Let P, @ be nonempty parts with P O ). We say that P is majorized by
Q@ (and write P o Q) provided @ is cofinal in P (Vo € P,Jy € Q with z < y).
The (<)-chain S C M is called upper countable in case

S o T, for some normally countable (<)-chain 7' C S. (2.4)

Clearly, this happens if S is normally countable. The following completion of
it is available (via Proposition 1):

Proposition 2. The generic relation holds
(V(<)-chain) countable = upper countable. (2.5)
Hence, the (<)-chain S C M is upper countable if and only if
S T, for some countable (<)-chain T C S. (2.6)

Remark. The converse of (2.5) is not in general true; just take any (<)-
chain S of M with Q < ord(S, <)= first kind ordinal.

(C) Let us now return to our initial setting. We say that the order structure
(M, <) is separable if (cf. Zhu, Fan and Zhang [16])

any (<)-chain of M is upper countable. (2.7)
For example, this holds (under (2.5)) whenever
(M, <) is strongly separable: each (<)-chain of M is countable. (2.8)

In fact, the reciprocal holds too; so that, we may formulate

Proposition 3. Under these conventions,
(V(M, <)=ordered structure) separable <= strongly separable. (2.9)

[The proof is essentially based on Proposition 1; we do not give details].

A basic example of such structures may be given along the following lines.
By a topology over M we mean, as usually, any family 7 D {0, M} of parts in
M, invariant to arbitrary unions and finite intersections. Assume that we fixed
such an object; and let ”cl” stand for the associated closure operator. Any
subfamily B C 7 with the property that each D € 7 is a union of members in
B, will be referred to as a basis for 7. If, in addition, B is countable, then 7
will be called second countable. Finally, term (<), closed from the left provided
M(x,>):={y € M;x >y} is closed, for each z € M.

Proposition 4. Assume that T is second countable and (<) is closed from
the left. Then, (M, <) is (strongly) separable.
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Proof. Let B = {By,;n < w} stand for a countable basis of 7. Further,
take some choice function ”Ch” of the nonempty parts in M [Ch(X) € X, for
each X C M, X # (]. Given the arbitrary fixed (<)-chain S of M, denote
T = {Ch(BnNS); B € B} (hence T C S). For the moment, T is countable
(because T' < B). In addition, we claim that cl(T) D S [wherefrom, T" is dense
in S]. In fact, let s be some point of S; and U stand for an open neighborhood
of it. By definition, U=union of members in B; so

U2 B>s (hence U 3 Ch(BNS)), forsome B € B;

and our claim follows. If T is cofinal in S, we are done (cf. Proposition 2).
Otherwise, there must be some s € S with T' C M (s, >); wherefrom

S Cel(T) C cl(M(s,>)) = M(s,>);

i.e., {s} is cofinal in S. The proof is thereby complete. |

It remains now to establish under which conditions is 7', second countable.
An appropriate answer is to be given in a metrizable context:

there exists a metric d : M x M — R, which generates 7.
Then, e.g., the condition below yields the desired property for 7:
M has a countable dense subset P (in the sense: cl(P) = M). (2.10)

The proof is to be found in Bourbaki [4, Ch 9, Sect 2.8]; see also Alexandrov
[op. cit., Ch 4, Sect 4].

In particular, let R stand for the real axis. Denote by (<, d) the usual order
and metric. Take any bounded from above part M of R (M < v, for some
v € R). The structure (M, <) fulfills (via (2.10)) conditions of Proposition
4; wherefrom, (M, <) is (strongly) separable. A similar conclusion is valid
for the dual order (>). Precisely, for each bounded from below part M of R
(M > u, for some u € R), one has that (M, >) is (strongly) separable. This
will be useful for our future developments.

3. Main result

With these informations at hand, we may now return to the questions
of the introductory section. Let M be some nonempty set. Take a metric
d: M x M — Ry and a function ¢ : M — Ry U {co} with

(d, ) is descending complete:
for each Cauchy sequence (z,,) in M with (p(z,,)) descending (3.1)
there exists x € M with z, — = and lim p(z,,) > ¢(z).
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Further, let = F ¢(x) stand for another function from M to Ry U {oco} with
1 is proper  (Dom(v) := {z € M;vy(x) < oo} is nonempty). (3.2)

Finally, take a selfmap T': M — M. Our main result is
Theorem 3. Let the above data be such that (1.5) is true, as well as

[p(T"z) > (T"y), n=0,1,..] = ¢(Tx) = ¢(Ty) (3-3)

d(z,Tz) < (xz) —¢(Tx), for each x € Dom(v)). (3.4)
Then, for each u € Dom() there exists v € Dom(v)) with

v=Tv and d(u,v) <p(u) —P(v). (3.5)
Proof. Denote for simplicity
M, = {z € M;p(u) > p(x), d(u,) < (u) - ()}
(where u is the above precised one). Clearly, § # M,, C Dom(%)); and
M, is invariant under T' (in view of (1.5)+(3.4)). (3.6)
Assume by contradiction that there is no fixed point of T in M,:
d(xz,Tx) > 0, (hence ¥(z) > (Tx), via (3.4)), for each z € M,,. (3.7)

We shall prove by transfinite induction that this cannot be in agreement with
some statements in Section 2. Put a(0) = u, a(l) = T(a(0)); note that
a(l) € M, (by (3.6)); and (cf. (1.5)+(3.4)+(3.7))

p(a(0)) = ¢(a(1)); 0 < d(a(0), a(1)) < ¥ (a(0)) = (a(1))
(hence ¥ (a(0)) > 9(a(1))).

Generally, assume that, for the ordinal p < €, we constructed a net (a(£);€ <
w) in M, so that: for each A\ <

{<E+1< A= al+1)=T(a(f)) (A(N)
£ <A = ¢(a(§)) = p(a(X) (B(A)

£ < A= d(a(§),a(N) < P(a(§)) —¥(a(N)) (CN)
§ <A = (a(§)) > ¢(a(N)- (D)

Two cases are open before us.
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i) p is a first kind ordinal: A = p — 1 exists. Put a(p) = T(a(X)); hence
a(p) € M, (by (3.6)). In addition (from (1.5)+(3.4))

p(a(A) = pla(p)); d(a(A), a(p)) < P(a(N)) = Pla(p));
hence ¢(a(A)) > ¢(a(p)) (by (3.7), with z = a(}));
(D

and, from this, (A(n)) — (D(u)) follow.

ii) p is a second kind ordinal: p — 1 does not exist. For the moment, it
is clear that (A(u)) holds; because £ < £+ 1 < pu = £ < £+ 1 < p; and
then, by (A(§ + 1)), we are done. The remaining conclusions necessitate a
special construction. Let (\,) be a strictly ascending sequence of ordinals in
W (1) with sup(Ay,)(= lirIzn(An)) = 1 (see Proposition 1); and put for simplicity

by, = a(An), 77; =0,1,.... By (C(XA) : A < u) we have an evaluation like
d(bp,bm) < (b)) — (b)), whenever n < m. (3.8)

The sequence (9(by,)) is descending in R, ; hence a Cauchy one. As a conse-
quence, (by,) is a Cauchy sequence in M; and this, along with (B(A); A < p)
tells us (via (3.1)) that there must be an element a(u) € M with

bn — a(p) as n — ooy and lim(b,) > p(a(p)).

The second part of this relation yields, again via (B(A); A < ),

v(a(€)) > pla(p)), ¥€ < p; wherefrom (B(p)) holds. (3.9)

Moreover, a repeated application of (A(A); A < p) and (1.5) gives

p(T(a(§))) = p(a(§ +p)) = pla(p)) = ¢(TP(a(p))), Vp <w,VE < ;

so, by simply combining with (3.3),

¥(a(§)) = ¥(alp), Y€ < p; hence P(by) = ¥(alp)), Vn. (3.10)

Taking (3.8) into account gives d(by, by,) < 9 (by) —¢(a(p)), for all (n, m) with
n < m; wherefrom (passing to limit as m — 00) d(bp, a(p)) < ¥(by)—1(a(w)),
for all n. But, from this and the choice of (by,), the conclusion (C(u)) is clear;
hence (combining with (3.9) above) a(u) € M,,. Finally, (D(u)) results from
(D(A\); A < p) and (3.10). Summing up, the recursive construction of (a(&))
is possible over £ € W(Q2). But, in this case, (D(A); A < Q) tells us that
(¥(a(€));€ < ) is a (>)-chain in R, of order type €; in contradiction with
Proposition 4 above. Hence, the working assumption (3.7) about our data
cannot be accepted; and the conclusion follows. [ |
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4. Particular aspects

The key regularity condition of Theorem 3 is evidently (3.3). So, it would
be natural to have it expressed in convenient ways, useful for applications. A
basic construction of this type is to be performed under the lines below. Let
again M be a nonempty set. Take a metric d: M x M — R, and a function
¢ : M — Ry U{oo} fulfilling (3.1). Further, let (R4 U {oo})" stand for
the class of all sequences (s, $1,...) with positive terms (s, > 0,n =0,1,...).
Take a map (s, S1,...) = F(s9,51,...) from (Ry U{co})" to Ry U {co} with
the global increasing property

[sn <tn,n=0,1,...] = F(so,51,...) < F(to,t1,...). (4.1)
Finally, take a self-map T : M — M. The composed function
(4 M= Ry U{o0}) 6(2) = F(ple), o(Ta),.), z€ M (42)
fulfills (3.3). Moreover, the properness condition (3.2) reads
A(p, F;T) :={x € M; F(p(x),p(Tx),...) < 0o} is nonempty. (4.3)
By Theorem 3 we then have
Theorem 4. Assume (1.5)+(4.3) are valid, as well as (Vo € A(p, F;T))
d(z,Tz) < F(p(z), o(Tx),...) — F(o(Tz), p(T?z), ...). (4.4)

Then, for each u € A(p, F;T) there exists v € A(p, F;T) in such a way that
(3.5) holds, where 1 : M — Ry U {oc} is that of (4.2).

Now, by an appropriate choice of the function (so,s1,...) = F(so,s1,...)
appearing in (4.1) one gets some useful particular cases.

I) For example, let the function F, : (R4 U {oo})Y — Ry U{oo} be taken
as (for some p > 1)

F;,,(SQ7 S1, ) =380+ ... + Sp—1, (50, S1, ) S (R+ U {OO})N (45)
Clearly, (4.1) holds in such a case; and (4.3) reads
Ao, Fy; T) := {x € M;{z,...,TP"tz} C Dom(y)} is nonempty. (4.6)

The associated by (4.2) function v has the form ¥ (z) = () + ... + (TP 1z),
x € M. By Theorem 4 we get:

Theorem 5. Assume that (1.5)+(4.6) are valid, as well as

d(z,Tz) < p(x) — o(TPx), for each x € A(p, Fp;T). (4.7
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Then, for each u € A(p, F,; T) there exists v € A(p, Fp; T') with
v="Tv and d(u,v) < (¢(u) — @(v)) + ... + (P(TP~ u) — @(v)). (4.8)

The obtained fact may be viewed as a completion of the Kirk-Saliga fixed
point result [10] (subsumed to Theorem 2). Moreover, it also extends a related
statement in Birsan [2]; see also Taskovic [15].

IT) Another interesting choice for this function is the limit of the preceding
one as p — 00; namely

FOO(SQ, S1, ) =S89+ 81+ ..., (SQ7 S1, ) S (R+ U {OO})N (49)

As before, (4.1) holds in such a case; and (4.3) reads

A(p, Foo3 T) i={z € M; Y _(T"z) < 00} # 0 (4.10)

The associated by (4.2) function ¢ has the form (x) = ¢(x) + o(Tx) + ...,
x € M. Since the series in the right member converges on A(p, Fso; T), we
must have lim(p(T"z)) = 0, for all © € A(p, Foo; T); wherefrom

Y(z) —p(Tx) =
lim[(p(z) + ... + (T"2)) = (p(T2) + ... + (T )] =
lim{p(z) — (T™a)] = o(x), Vo € Alp, Faoi T).

n

By Theorem 4 we derive a ”limit” counterpart of Theorem 5 above:
Theorem 6. Assume that (1.5)+(4.10) are valid, as well as

d(z,Tz) < p(z), foreach x € Alp, Foo; T'). (4.11)
Then, for each u € A(p, Fso; T) there exists v € A(p, Foo; T') with

v="Tv (hence p(v) =0) and d(u,v) < Z e(T™u). (4.12)

Finally, we note that the construction (4.1) is not the only possible one so
as to satisfy conditions of Theorem 3; this fact will be developed elsewhere.
Some related aspects may be found in the 2003 survey paper by Kirk [9].
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