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Three Positive Solutions of Multi-point BVPs
for Difference Equations with the Nonlinearity

Depending on ∆−operator∗

Yuji Liu

Abstract

This article deals with a class of discrete type boundary value prob-
lems. Sufficient conditions guaranteeing the existence of at least three
positive solutions of this class of boundary value problems are estab-
lished by using a fixed point theorem in cones in Banach spaces. An
example is given to illustrate the main theorem.

1 Introduction

The existence of positive solutions of boundary value problems (BVPs for
short) for difference equations were studied extensively, see the papers [1-4,
6-13, 17, 19, 20, 22, 23] and the references therein. The approaches used are
fixed point theorems in cones in Banach spaces (see [1-4, 6-13, 19-23] ) and
critical point theorems (see [5, 7]).

There exist three kinds of processing methods to establish sufficient con-
ditions for the existence of positive solutions of BVPs of difference equations
by using the fixed point theorems in cones in Banach spaces.
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(i) For BVPs of difference equations without p−Laplacian, see [1-3, 6, 8,
10, 19, 20, 22, 23], by using the explicit expressions of the associated Green′s
functions, one transforms the BVPs into integral equations and operators in
Banach spaces are defined, then the fixed point theorems are used to get the
positive solutions;

(ii) For BVPs of difference equations with p−Laplacian, see [5, 9, 12,
13, 17, 18], by using some of the boundary condition such as ∆x(0) = 0,
the BVPs are transformed into integral equations and operators in Banach
spaces are defined. Then the fixed point theorems are used to get the positive
solutions;

(iii) For multi-point BVPs of difference equations with p−Laplacian, see
[14]. The difficult to study this kind of BVPs comes from that it is not easy
to establish the associated Green′s functions or transform BVPs into integral
equations.

In recent paper [14], the author overcomed the difficulty mentioned above
and studied the following multi-point BVP for the second order p-Laplacian
difference equation with its nonlinearity f depending on ∆x(n), i.e. the BVP
of the form ∆[ϕ(∆x(n))] + f(n, x(n),∆x(n)) = 0, n ∈ [0, N ],

x(0) =
∑m

i=1 αix(ni),
x(N + 2) =

∑m
i=1 βix(ni),

(1)

where N > 1 an integer, 0 < n1 < · · · < nm < N + 2, αi, βi ≥ 0 for
all i = 1, · · · ,m, f is continuous and nonnegative, ϕ is called p−Laplacian,
ϕ(x) = |x|p−2x for x ̸= 0 and ϕ(0) = 0 with p > 1. Sufficient conditions for the
existence of at least three positive solutions of BVP(1) were established. One
finds that the coefficients αi, βi(i = 1, 2, · · · ,m) in BCs are all nonnegative.

Ma in [15, 16] studied the following BVP

 [p(t)x′(t)]′ − q(t)x(t) + f(t, x(t)) = 0, t ∈ (0, 1),
αx(0)− βp(0)x′(0) =

∑m
i=1 aix(ξi),

γx(1) + δp(1)x′(1) =
∑m

i=1 bix(ξi),
(2)

where 0 < ξ1 < · · · < ξm < 1, α, β, γ, δ ≥ 0, ai, bi ≥ 0 with ρ = γβ + αγ +
αδ > 0. By using Green′s functions (an abstract not an explicit ones, which
complicate the studies of BVP(2) ) and Guo-Krasnoselskii fixed point theorem,
the existence and multiplicity of positive solutions for BVP(2) were given.
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It is easy to see that the discrete analogue of BVP (2) is as follows: ∆(p(n)ϕ(∆x(n)))− q(n)x(n) + f(n, x(n)) = 0, n ∈ [0, T ],
αx(0)− β∆x(0) =

∑m
i=1 aix(ni),

γx(T + 2) + δ∆x(T + 1) =
∑m

i=1 bix(ni).
(3)

The coefficients of the BCs of the right side are nonnegative, i.e. ai ≥ 0 and
bi ≥ 0 for all i ∈ [1,m].

In Xu′s paper [21], by using Guo-Krasnoselskii fixed point theorem, the
existence results of at least one or two positive solutions of the following prob-
lem 

[ϕ(x′(t))]′ + a(t)f(x(t)) = 0, t ∈ (0, 1),
x′(0) =

∑m
i=1 aix

′(ξi),

x(1) =
∑k

i=1 bix(ξi)−
∑s

i=k+1 bix(ξi)−
∑m−2

i=s+1 bix
′(ξi)

(4)

was obtained, where all ai ≥ 0 and bi ≥ 0, 0 < ξ1 < ξ2 < · · · < xm−2 < 1, a(t)
and f(x) are nonnegative and continuous functions. The discrete analogue of
BVP(4) is as follows

[ϕ(∆x(n))]′ + a(n)f(x(n)) = 0, n ∈ [0, N ],
∆x(0) =

∑m
i=1 ai∆x(ni),

x(N + 2) =
∑k

i=1 bix(ni)−
∑s

i=k+1 bix(ni)−
∑m−2

i=s+1 bi∆x
′(ni).

(5)

Besides [14], there exist no other papers discussed the existence of multi-
ple positive solutions of multi-point BVPs for p-Laplacian difference equations
even BVP(3) and BVP(5) in which the nonlinearity f is independent on ∆x(n).

Motivated by the reason and papers mentioned above, the purpose of this
paper is to investigate the multi-point BVP for the second order p-Laplacian
difference equation whose nonlinear term is dependent on ∆x(n), i.e. the BVP
of the form ∆[p(n)ϕ(∆x(n))] + f(n, x(n),∆x(n)) = 0, n ∈ [0, N ],

αx(0)− β∆x(0) = −ax(n1) + bx(n2) + a1∆x(n1)− b1∆x(n2),
∆x(N + 1) = c∆x(m1)− d∆x(m2),

(6)

where N > 1 an integer, 0 < n1 < n2 < N + 2 and 0 < m1 < m2 < N + 2,
α, β, γ, δ, a, b, c, d, a1, b1 ≥ 0, f is continuous and nonnegative, ϕ is called
p−Laplacian, ϕ(x) = |x|p−2x with p > 1, its inverse function is denoted by
ϕ−1(x) = |x|q−2x with 1/p+ 1/q = 1.

Sufficient conditions for the existence of at least three positive solutions of
BVP(6) are established. Note that the coefficients of the right sides in bound-
ary conditions in BVP(6) have negative and positive signs. The methods and
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the results in this paper, which are not based upon the Green′s functions,
are different from those in known papers. The results improve and generalize
some known theorems.

The methods can be extended to establish existence results for positive
solutions of the more general BVP of the form


∆[p(n)ϕ(∆x(n))] + f(n, x(n),∆x(n)) = 0, n ∈ [0, N ],
αx(0)− β∆x(0) = −

∑m
i=1 aix(ni)

+
∑n

i=m+1 aix(ni) +
∑m

i=1 bi∆x(ni)−
∑n

i=m+1 bi∆x(ni),

∆x(N + 1) =
∑k

i=1 ci∆x(mi)−
∑n

i=k+1 ci∆x(mi).

(7)

The readers should try to do it further.

The technique used in this paper is very valuable and demonstrates a
method of dealing with existence of solutions arguments for measure chain
arguments for p-Laplacian.

The remainder of this paper is organized as follows: the main results and
examples to illustrate it are presented in Section 2, the lemmas and proofs of
the main theorems are given in Section 3.

2 Main Results and Examples

In this section, we present the main result and give an example to illustrate
the efficiency of the main theorem. Suppose that

(A1) α > 0, β ≥ 0, a ≥ 0, b ≥ 0, a1 ≥ 0, b1 ≥ 0 with 0 ≤ b− a < α, and

0 ≤ b1ϕ
−1

(
p(0)

p(n2)

)
− a1ϕ

−1

(
p(0)

p(n1)

)
< β

and

0 ≤ cϕ−1

(
p(N + 1)

p(m1)

)
− dϕ−1

(
p(N + 1)

p(m2)

)
< 1;

(A2) p : [0, N + 1] → (0,+∞) and there exists a k ∈ [1, N + 1] such that
p(s) ≥ p(j) for all s ∈ [k,N + 1] and j ∈ [0, k − 1];

(A3) f : [0, N ]× [0,+∞)×R→ [0,+∞) is a continuous function.
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For a group of positive constants e1, e2, c, denote

δ = ϕ

1 + dϕ−1
(

p(N+1)
p(m2)

)
cϕ−1

(
p(N+1)
p(m1)

)
− 1,

Q = ϕ

(
αc

αN + 2α+ β + an1 + bn2 + a1 + b1

)
δminn∈[0,N ] p(n)

(1 + δ)(N + 1)
;

W = ϕ

 (N + 2)e2

k
∑k

i=0 ϕ
−1
(

N−k+1
p(i)

)
 ;

E = ϕ

(
αe1

αN + 2α+ β + an1 + bn2 + a1 + b1

)
δminn∈[0,N ] p(n)

(1 + δ)(N + 1)
.

Theorem 2.1. Suppose that (A1) − (A3) hold. Furthermore, suppose
there exist positive constants e1, e2, c1 such that Q > W and

0 < e1 < e2 <
N + 2

k
e2 < c1

and

(A4) f(t, u, v) < Q for all t ∈ [0, N ], u ∈ [0, c1], v ∈ [−c1, c1];
(A5) f(t, u, v) ≥W for all t ∈ [k,N ], u ∈

[
e2,

N+2
k e2

]
, v ∈ [−c1, c1];

(A6) f(t, u, v) ≤ E for all t ∈ [0, N ], u ∈ [0, e1], v ∈ [−c1, c1].
Then BVP(6) has three increasing positive solutions x1, x2 and x3 such that

x1(N + 2) < e1, x2(k) > e2, x3(N + 2) > e1, x3(k) < e2.

Now, we present an example, which can not be covered by known theorems,
to illustrate Theorem 2.1.

Example 2.1. Consider the following multi-point BVP ∆[p(n+ 1)(∆x(n)))3] + f(n, x(n),∆x(n)) = 0, n ∈ [0, 99],
x(0)−∆x(0) = 1

2x(9)−
1
3x(19)−

1
8∆x(9) +

1
2∆x(19),

∆x(101) = −1
4∆x(9) +

1
4∆x(19),

(8)

where f : [0, 99]× [0,+∞)×R→ [0,+∞) is defined by

f(n, x, y) =
n

1019
+ f0(x) +

|y|
2× 1039

, n ∈ [0, 99], x ≥ 0, y ∈ R,
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where

f0(x) =



24×482

27233
(4+ 3√5)3−10

100(4+ 3√5)3
, x ∈ [0, 2],

24×482

27233
(4+ 3√5)3−10

100(4+ 3√5)3

+ (x− 2)

483×1016

27233
(4+ 3√5)3−10

(4+ 3√5)3
+ 160×913(∑50

i=0
1

3√i+1

)3

2(1000−2) , x ∈ [2, 1000],

1
2

(
483×1016

27233
(4+ 3√5)3−10

(4+ 3√5)3
+ 160×913(∑50

i=0
1

3√i+1

)3

)
, x ∈ [1000, 2000000],

1
2

(
483×1016

27233
(4+ 3√5)3−10

(4+ 3√5)3
+ 160×913(∑50

i=0
1

3√i+1

)3

)
ex−2000000, x ≥ 2000000.

It is easy to see that f is a continuous function.
Corresponding to BVP(6), one sees that ϕ(x) = x3, p(n) = n+1, N = 99,

α = 1, β = 1 n1 = 9, n2 = 19,m1 = 9,m2 = 19, a = 1/2, b = 1/3, a1 =
1/8, b1 = 1/2, c = 1/4, d = 1/4.

Use Theorem 2.1. Choose constants k = 50. One sees that (A1)− (A3)
hold.

Choose e1 = 2, e2 = 1000, c1 = 2000000, then

δ = ϕ

1 + dϕ−1
(

p(N+1)
p(m2)

)
cϕ−1

(
p(N+1)
p(m1)

)
− 1 =

(4 + 3
√
5)3 − 10

10
,

Q = ϕ

(
αc1

αN + 2α+ β + an1 + bn2 + a1 + b1

)
δminn∈[0,N ] p(n)

(1 + δ)(N + 1)

=
483 × 1016

27233
(4 + 3

√
5)3 − 10

(4 + 3
√
5)3

;

W = ϕ

 (N + 2)e2

k
∑k

i=0 ϕ
−1
(

N−k+1
p(i)

)
 =

160× 913(∑50
i=0

1
3√i+1

)3 ;
E = ϕ

(
αe1

αN + 2α+ β + an1 + bn2 + a1 + b1

)
δminn∈[0,N ] p(n)

(1 + δ)(N + 1)

=
483

27233
(4 + 3

√
5)3 − 10

100(4 + 3
√
5)3

.

It is easy to see that Q > W and

c1 >
N + 2

k
e2 > e2 > e1 > 0.
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One sees that

f0(u) ≤ 483×1016

27233
(4+ 3√5)3−10

(4+ 3√5)3
for all u ∈ [0, 2000000];

f0(u) ≥ 160×913(∑50
i=0

1
3√i+1

)3 for all u ∈ [1000, 2020];

f0(u) ≤ 483

27233
(4+ 3√5)3−10

100(4+ 3√5)3
for all u ∈ [0, 2].

It follows that

f(t, u, v) ≤ 483×1016

27233
(4+ 3√5)3−10

(4+ 3√5)3
for all t ∈ [0, 99], u ∈ [0, 2000000], v ∈

[−2000000, 2000000];

f(t, u, v) ≥ 160×913(∑50
i=0

1
3√i+1

)3 for all t ∈ [50, 99], u ∈ [1000, 2020], v ∈ [−2000000,

2000000];

f(t, u, v) ≤ 483

27233
(4+ 3√5)3−10

100(4+ 3√5)3
for all t ∈ [0, 99], u ∈ [0, 2] and v ∈ [−2000000,

2000000];

Hence (A4), (A5), (A6) hold. Then applying Theorem 2.1 BVP(8) has at
least three solutions x1, x2, x3 such that x1(101) < 6, x2(50) > 1004, x3(101) >
6, x3(50) < 1004.

Remark 1. One can not get three solutions of BVP (8) by applying the
theorems obtained in papers [2, 6-8, 10, 12-14, 17, 19-22].

3 Proofs of Theorem 2.1

In this section, we first present some background definitions in Banach spaces,
state the important three fixed point theorem and lemmas. Then the main
results are proved.

Definition 3.1. LetX be a semi-ordered real Banach space. The nonempty
convex closed subset P of X is called a cone in X if ax ∈ P and x+ y ∈ P for
all x, y ∈ P and a ≥ 0, x ∈ X and −x ∈ X imply x = 0.

Definition 3.2. A map ψ : P → [0,+∞) is a nonnegative continuous
concave or convex functional map provided ψ is nonnegative, continuous and
satisfies ψ(tx+ (1− t)y) ≥ tψ(x) + (1− t)ψ(y), or ψ(tx+ (1− t)y) ≤ tψ(x) +
(1− t)ψ(y), for all x, y ∈ P and t ∈ [0, 1].

Definition 3.3. An operator T ;X → X is completely continuous if it is
continuous and maps bounded sets into pre-compact sets.

Let c1, c2, c3, c4, c5 > 0 be positive constants, α1, α2 be two nonnegative
continuous concave functionals on the cone P , β1, β2, β3 be three nonnegative
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continuous convex functionals on the cone P . Define the convex sets as follows:

Pc5 = {x ∈ P : ||x|| < c5},
P (β1, α1; c2, c5) = {x ∈ P : α1(x) ≥ c2, β1(x) ≤ c5},
P (β1, β3, α1; c2, c4, c5) = {x ∈ P : α1(x) ≥ c2, β3(x) ≤ c4, β1(x) ≤ c5},
Q(β1, β2; , c1, c5) = {x ∈ P : β2(x) ≤ c1, β1(x) ≤ c5},
Q(β1, β2, α2; c3, c1, c5) = {x ∈ P : α2(x) ≥ c3, β2(x) ≤ c1, β1(x) ≤ c5}.

Lemma 3.1[3, 11]. Let X be a real Banach space, P be a cone in
X. α1, α2 be two nonnegative continuous concave functionals on the cone P ,
β1, β2, β3 be three nonnegative continuous convex functionals on the cone P .
Then T has at least three fixed points y1, y2 and y3 such that

β2(y1) < c1, α1(y2) > c2, β2(y3) > c1, α1(y3) < c2

if
(1) T : X → X is a completely continuous operator;
(2) there exist constant M > 0 such that α1(x) ≤ β2(x), ||x|| ≤ Mβ1(x)

for all x ∈ P ;
(3) there exist positive numbers c1, c2, c3, c4, c5 with c1 < c2 such that

(C1) TPc5 ⊂ Pc5 ;
(C2) {y ∈ P (β1, β3, α1; c2, c4, c5)|α1(x) > c2} ̸= ∅ and

α1(Tx) > c2 for every x ∈ P (β1, β3, α1; c2, c4, c5);

(C3) {y ∈ Q(β1, β2, α2; c3, c1, c5)|β2(x) < c1} ̸= ∅ and

β2(Tx) < c1 for every x ∈ Q(β1, β2, α2; c3, c1, c5);

(C4) α1(Ty) > c2 for y ∈ P (β1, α1; c2, c5) with β3(Ty) > c4;
(C5) β2(Tx) < c1 for each x ∈ Q(β1, β2; c1, c5) with α2(Tx) < c3.

Choose X = RN+3. We call x ≤ y for x, y ∈ X if x(n) ≤ y(n) for all
n ∈ [0, N + 2], define the norm

||x|| = max{ max
n∈[0,N+2]

|x(n)|, max
n∈[0,N+1]

|∆x(n)|}.

It is easy to see that X is a semi-ordered real Banach space.
Choose

P =

x ∈ X :

x(n) is increasing and positive on [0, N + 2],
x(k) ≥ k

N+2 |x(N + 2)|, k is defined in (A2),

αx(0)− β∆x(0) = −ax(n1) + bx(n1)
+ a1∆x(n1)− b1∆x(n2),

∆x(N + 1) = c∆x(m1)− d∆x(m2).


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It is easy to see that P is a cone in X.
Define the functionals on P by

β1(y) = max
n∈[0,N+1]

|∆y(n)|, y ∈ P,

β2(y) = max
n∈[0,N+2]

|y(n)| , y ∈ P,

β3(y) = max
n∈[k,N+2]

|y(n)| , y ∈ P,

α1(y) = min
t∈[k,N+2]

|y(n)| , y ∈ P,

α2(y) = min
t∈[k,N+2]

|y(n)| , y ∈ P.

Lemma 3.2. Suppose that (A1) − (A3) hold. If x ∈ X is a solution of
BVP(6), then

(i) p(n)ϕ(∆x(n)) is decreasing on [0, N + 1];
(ii) ∆x(n) ≥ 0 for all n ∈ [0, N + 1];
(iii) x(n) > 0 for all n ∈ [1, N + 1];
(iv) x(k) ≥ k

N+2x(N + 2)|;
(v) it holds that

x(N + 2) ≤
(
N + 2 +

β + an1 + bn2 + a1 + b1
α

)
max

s∈[0,N+1]
|∆x(s)|. (9)

Proof. The proofs are omitted.

Lemma 3.3. Let δ be defined in Section 2 and denote

σf = ϕ−1

(∑N
j=0 f(j, x(j),∆x(j))

δp(N + 1)

)
.

Suppose that (A1), (A2) hold. If x ∈ X if a solution of BVP(6), then

x(n) = Bx +
n−1∑
i=0

ϕ−1

(
p(N + 1)ϕ(Ax) +

∑N
j=n f(j, x(j),∆x(j))

p(n)

)
, (10)

where Ax satisfies

Ax = cϕ−1

(
p(N + 1)ϕ(Ax) +

∑N
j=m1

f(j, x(j),∆x(j))

p(m1)

)

−dϕ−1

(
p(N + 1)ϕ(Ax) +

∑N
j=m2

f(j, x(j),∆x(j))

p(m2)

)
∈ [0, σf ] ,
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and Bx satisfy the equalities:

Bx =
1

α+ a− b

[
βϕ−1

(
p(N + 1)ϕ(Ax) +

∑N
j=0 f(j, x(j),∆x(j))

p(0)

)

−a
n1−1∑
i=0

ϕ−1

(
p(N + 1)ϕ(Ax) +

∑N
j=i f(j, x(j),∆x(j))

p(i)

)

+b

n2−1∑
i=0

ϕ−1

(
p(N + 1)ϕ(Ax) +

∑N
j=i f(j, x(j),∆x(j))

p(i)

)

+a1ϕ
−1

(
p(N + 1)ϕ(Ax) +

∑N
j=n1

f(j, x(j),∆x(j))

p(n1)

)

−b1 ϕ−1

(
p(N + 1)ϕ(Ax) +

∑N
j=n2

f(j, x(j),∆x(j))

p(n2)

)]
.

Proof. Since x ∈ X is a solution of BVP(6), we get that there exist
constants Ax and Bx such that

∆x(n) = ϕ−1

(
p(N + 1)ϕ(Ax) +

∑N+1
j=n f(j, x(j),∆x(j))

p(n)

)
,

and

x(n) = Bx +
n−1∑
i=0

ϕ−1

(
p(N + 1)ϕ(Ax) +

∑N+1
j=i f(j, x(j),∆x(j))

p(i)

)
.

It follows from the BCs in (6) that Ax and Bx are defined. Now we prove that

Ax ∈ [0, σf ] . (11)

It follows from Lemma 3.3 that Ax ≥ 0. Suppose that Ax ̸= 0. Let

F (s) = 1− cϕ−1

(
p(N + 1) + 1

ϕ(s)

∑N
j=m1

f(j, x(j),∆x(j))

p(m1)

)

+dϕ−1

(
p(N + 1) + 1

ϕ(s)

∑N
j=m2

f(j, x(j),∆x(j))

p(m2)

)
.
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If s > 0, it is easy to see that

F (s) > 1− cϕ−1

(
p(N + 1) + 1

ϕ(s)

∑N
j=m1

f(j, x(j),∆x(j))

p(m1)

)

+dϕ−1

(
p(N + 1)

p(m2)

)
=: G(s).

One finds that

lim
s→+∞

G(s) = 1− cϕ−1

(
p(N + 1)

p(m1

)
+ dϕ−1

(
p(N + 1)

p(m2

)
> 0

and

G

(
ϕ−1

(∑N
j=0 f(j, x(j),∆x(j))

δp(N + 1)

))

≥ 1− cϕ−1

(
(1 + δ)p(N + 1)

p(m1)

)
+ dϕ−1

(
p(N + 1)

p(m2)

)
= 0.

Since G(s) is increasing on [0,+∞), we get that G(s) > 0 for all s ∈ (σf ,+∞) .
Then F (s) > 0 for all s ∈ (σf ,+∞) . Since (A1) implies that

lim
s→0+

F (s)s = −cϕ−1

(∑N
j=m1

f(j, x(j),∆x(j))

p(m1)

)
+ dϕ−1

(∑N
j=m2

h(j)

p(m2)

)

≤
ϕ−1

(∑N
j=m2

f(j, x(j),∆x(j))
)

ϕ−1(p(N + 1))
×(

−cϕ−1

(
p(N + 1)

p(m1)

)
+ dϕ−1

(
p(N + 1)

p(m2)

))
≤ 0,

we get that lims→0+ F (s) ≤ 0. Together with F (σf ) ≥ G (σf ) ≥ 0, we get
that (11) holds. The proof is completed.

Define the operator T : P → X by

(Tx)(n) = Bx +
n−1∑
i=0

ϕ−1

(
p(N + 1)ϕ(Ax) +

∑N
j=i f(j, x(j),∆x(j))

p(i)

)

for n ∈ [0, N + 2], x ∈ P , where Ax and Bx are defined in Lemma 3.3.

Lemma 3.4. Suppose that (A1)-(A3) hold. Then
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(i) Tx ∈ P for each x ∈ P ;
(ii) x is a solution of BVP(6) if and only if x is a solution of the operator

equation x = Tx;
(iii) T : P → P is completely continuous;
(iv) Tx satisfies
∆[p(n)ϕ(∆(Tx)(n))] + f(n, x(n+ 1),∆x(n+ 1)) = 0, n ∈ [0, N ],
α(Tx)(0)− β∆(Tx)(0) = −a(Tx)(n1) + b(Tx)(n2)

+ a1∆(Tx)(n1)− b1∆(Tx)(n2),
∆(Tx)(N + 1) = c∆(Tx)(m1)− d∆(Tx)(m2);

(12)

(v) Ax satisfies Ax ∈ [0, σf ] .
Proof. The proofs of (i), (ii), (iv) and (v) are simple and omitted.
(iii). It suffices to prove that T is continuous on P and T is relative

compact. We divide the proof into three steps. These three steps imply that
T : P → P is completely continuous. We omit the details.

Step 1. For each bounded subset D ⊂ P , prove that {(Ax, Bx) : x ∈ D}
is bounded in R2.

Step 2. For each bounded subset D ⊂ P , and each x0 ∈ D, prove that T
is continuous at x0.

Step 3. For each bounded subset D ⊂ P , prove that T is pre-compact on
D.

Proof of Theorem 2.1. We prove that all conditions in Lemma 3.1 are
satisfied. It is easy to see that α1, α2 are two nonnegative continuous concave
functionals on the cone P , β1, β2, β3 are three nonnegative continuous convex
functionals on the cone P . One sees from Lemma 3.2(v) that

max
n∈[0,N+2]

x(n) ≤
(
N + 2 +

β + an1 + bn2 + a1 + b1
α

)
max

s∈[0,N+1]
|∆x(s)|

for all x ∈ P. It follows that there exist constants M > 0 such that

||y|| = max

{
max

n∈[0,N+2]
|y(n)|, max

n∈[0,N+1]
|∆y(n)|

}
≤Mβ1(y) for all y ∈ P.

Lemma 3.4 implies that x = x(n) is a positive solution of BVP(6) if and only
if x(n) is a solution of the operator equation x = Tx and T : P → P is
completely continuous. Then (1) and (2) in Lemma 3.1 hold. Now, we prove
that (3) in Lemma 3.1 holds.

Choose

a5 = c1, a4 =
k

N + 2
e1, a3 =

N + 2

k
e2, a2 = e2, a1 = e1.
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Now, we prove that all conditions of Lemma 3.1 hold. One sees that 0 < a1 <
a2. The remainder is divided into five steps.

Step 1. Prove that T : Pa5
→ Pa5

;
For y ∈ Pc1 , we have ||y|| ≤ c1. Then 0 ≤ y(t) ≤ c1 for t ∈ [0, N +

2] and −c1 ≤ ∆y(t)| ≤ c1 for all n ∈ [0, N + 1]. So (A4) implies that
f(t, y(n),∆y(n)) ≤ Q, t ∈ [0, N ]. Since

Q = ϕ

(
αc1

αN + 2α+ β + an1 + bn2 + a1 + b1

)
δminn∈[0,N ] p(n)

(1 + δ)(N + 1)
,

we have that

ϕ−1

(
(1 + δ)(N + 1)Q

δminn∈[0,N+1] p(n)

)
≤ c1

and(
N + 2 +

β + an1 + bn2 + a1 + b1
α

)
ϕ−1

(
(1 + δ)(N + 1)Q

δminn∈[0,N+1] p(n)

)
≤ c1.

Then

|∆(Ty)(n)| =

∣∣∣∣∣ϕ−1

(
p(N + 1)ϕ(Ay) +

∑N
i=n f(i, y(i),∆y(n))

p(n)

)∣∣∣∣∣
≤ ϕ−1

(∑N
i=0 f(i,y(i),∆y(n))

δ +
∑N

i=n f(i, y(i),∆y(n))

p(n)

)

≤ ϕ−1

(
(1 + δ)

∑N
n=0 f(n, y(n),∆y(n))

δp(n)

)

≤ ϕ−1

(
(1 + δ)(N + 1)Q

δminn∈[0,N+1] p(n)

)
≤ c1.

On the other hand, we have from Lemma 3.4 that Ty ∈ P . Lemma 3.3 implies
0 ≤ Ay ≤ σf , then

0 ≤ (Ty)(n) ≤
(
N + 2 +

β + an1 + bn2 + a1 + b1
α

)
max

s∈[0,N+1]
|∆(Ty)(s)|

≤
(
N + 2 +

β + an1 + bn2 + a1 + b1
α

)
ϕ−1

(
(1 + δ)(N + 1)Q

δminn∈[0,N+1] p(n)

)
≤ c1.

It follows that

||Ty|| = max

{
max

t∈[0,N+2]
|(Ty)(t)|, max

t∈[0,N+1]
|∆(Ty)(t)|

}
≤ c1.
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Then T : Pc1 → Pc1 . Hence (3)-(C1) holds.

Step 2. Prove that α1(Ty) > a2 for y ∈ P (β1, α1; a2, a5) with β3(Ty) >
a3;

For y ∈ P (β1, α1; a2, a5) = P (β1, α1; e2, c1) with β3(Ty) > b = e2
σ0
, we have

that α1(y) ≥ e2, β1(y) ≤ c1, and

max
t∈[k,N+2]

(Ty)(t) = (Ty)(N + 2) >
(N + 2)e2

k
.

Hence Lemma 3.4(i) and Lemma 3.2(iv) imply that

α1(Ty) = min
t∈[k,N+2]

(Ty)(t) = (Ty)(k) ≥ k

N + 2
(Ty)(N + 2) > e2 = a2.

This completes the proof of (3)-(C2).

Step 3. Prove that β2(Ty) < a1 for each y ∈ Q(β1, β2; a1, a5) with
α2(Ty) < a4.

For y ∈ Q(β1, β2; a1, a5) with α2(Ty) < a4, we have that β1(y) ≤ a5 = c1,
β2(y) ≤ a1 = e1, and α2(Ty) < a4 = k

N+2e1. Then

β2(Ty) = max
t∈[0,N+2]

(Ty)(t) = (Ty)(N+2) ≤ N + 2

k
min

t∈[k,N+2]
(Ty)(t) < e1 = a1.

This completes the proof of (3)-(C3).

Step 4. Prove that {y ∈ P (β1, β3, α1; a2, a3, a5) : α1(x) > a2} ̸= ∅ and
α1(Ty) > e2 for every y ∈ P

(
β1, β3, α1; e2,

N+2
k e2, c1

)
;

It is easy to see that
{
y ∈ P

(
β1, β3, α1; e2,

N+2
k e2, c1

)
: α1(y) > e2

}
̸= ∅.

For y ∈ P
(
β1, β3, α1; e2,

N+2
k e2, c1

)
, one has that α1(y) ≥ e2, β3(y) ≤

(N + 2)e2/k, β1(y) ≤ c1. Then

e2 ≤ y(t) ≤ N + 2

k
e2, t ∈ [k,N + 2], |∆y(t)| ≤ c1.

Thus (A5) implies that f(t, y(t),∆y(t)) ≥W, t ∈ [k,N ]. Since

α1(Ty) = min
t∈[k,N+2]

(Ty)(t) ≥ k

N + 2
max

t∈[0,N+2]
(Ty)(t),

we get

α1(Ty) ≥
k

N + 2
(Ty)(N + 2).
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It follows from Lemma 3.3 that

α1(Ty) ≥ k

N + 2
(Ty)(N + 2)

=

k

[
By +

∑N+1
i=0 ϕ−1

(
p(N+1)ϕ(Ay)+

∑N
j=i f(j,y(j),∆y(j))

p(i)

)]
N + 2

≥ k

N + 2

k∑
i=0

ϕ−1

(∑N
j=k f(j, y(j),∆y(j))

p(i)

)

>
k

N + 2

k∑
i=0

ϕ−1

(
(N − k + 1)W

p(i)

)
= e2.

This completes the proof of (3)-(C4).

Step 5. Prove that {y ∈ Q(β1, β3, α2; a4, a1, a5) : β2(x) < a1} ̸= ∅ and
β2(Tx) < a1 for every x ∈ Q(β1, β3, α2; a4, a1, a5);

It is easy to see that {y ∈ Q(β1, β3, α2; a4, a1, a5) : β2(x) < a1} ≠ ∅.
For y ∈ Q(β1, β3, α2; a4, a1, a5), one has that α2(y) =≥ a4 = ke1/(N + 2),
β3(y) =≤ a1 = e1, β1(y) ≤ a5 = c1. Hence we get that 0 ≤ y(t) ≤ e1, t ∈
[0, N + 2]; −c ≤ ∆y(t) ≤ c1, t ∈ [0, N + 1]. Then (A6) implies that
f(t, y(t),∆y(t)) ≤ E, t ∈ [0, N ]. Similarly to Step 1, we get that

β2(Ty) = max
n∈[0,N+2]

(Ty)(n) = (Ty)(N + 2)

≤
(
N + 2 +

β + an1 + bn2 + a1 + b1
α

)
max

s∈[0,N+1]
|∆(Ty)(s)|

≤
(
N + 2 +

β + an1 + bn2 + a1 + b1
α

)
ϕ−1

(
(1 + δ)(N + 1)E

δminn∈[0,N+1] p(n)

)
≤ e1 = a1.

This completes the proof of (3)-(C5). Then Lemma 3.1 implies that T has
at least three fixed points y1, y2 and y3 such that β2(y1) < e1, α1(y2) >
e2, β2(y3) > e1, α1(y3) < e2. Hence BVP(6) has three increasing positive
solutions x1, x2 and x3 such that x1(N + 2) < e1, x2(k) > e2, x3(N + 2) >
e1, x3(k) < e2. The proof is complete.
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