An. St. Univ. Ovidius Constanta Vol. 10(1), 2002, 63-72
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Abstract

Constant mean curvature, particularly minimal, surfaces given by
indicatrices of Lagrange and generalized Lagrange spaces are studied.

Introduction

The search of minimal surfaces in R? is an old exciting problem([6]) and se-
veral methods appear in the study of these surfaces: Lie groups methods([3]),
theory of integrable systems via the Weierstrass representation([4]).

Also, very interesting generalizations are fruitful: minimal surfaces in Rie-
mannian manifolds([5]), constant mean curvature(CMC) surfaces([4], [9]).

In this paper we search CMC surfaces, particularly minimal surfaces, pro-
vided by indicatrices of Lagrange and generalized Lagrange manifolds of di-
mension three. Because the indicatrices of these spaces are given in implicit
form, in first section the equations of CMC and minimal surfaces in implicit
form are derived. In next two sections several equations of CMC and minimal
indicatrices are obtained in the Lagrange and generalized Lagrange framework
and the last section is devoted to examples.
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1 CMC surfaces equation for surfaces in implicit form

Let in R3 a surface S given in explicit form S : v = u(x,y). The mean
curvature function of S is:

_ Uy (1 + ui) + Uyy (1 + u%) — 2umuyu$y' (1.1)

2(1+u§+u§)%

The equation H=constant is called CMC surfaces equation and in particular
the equation H = 0 is called minimal surfaces equation.
If S is given in implicit form S : F' (z,y, z) = 0 from relation F (z,y,u (x,y))

0 it results:
e = —

— Er(szFz_Fzsz)_Fz(Fszz_szFm)
F3

Ugy =
Fy(Fyo Fo—Fo s Fy)—Fy (Foy Fo—Fun Fy)
Ugy = L2 w) T (Fey u (1.3)
z
m — Fy(Fyze_Fzsz)_Fz(Fnyz_Fysz)
yy — 3

z

After a straightforward computation we get the CMC surfaces equation:

2 (FyyFyFy + Fy.FyF, + F.,F.F,) —

3
2

— [Fuw (F} + F2) + Fyy (F2 + F2) + Fo. (F2 + F})] = 2H (F} + F} + F2)

(1.4)
and the minimal surfaces equation:
2FpyFoFy + FyoFyF. + Fou F.Fy) = Fop (Fy + F2) +
Fyy (F24+ F2)+ F.. (F2+F7). (1.5)

2 CMUC indicatrices in Lagrange geometry

Let us denote TR3 the tangent bundle of R3 for which we use the coordinates
(z,y) = (xi7yi)l<i<3 with x = (wl) the coordinates in R3 and y = (yl) the
coordinates in the fiber T,R3. A function f € C> (TR?®) which does not
depends of z i.e. f = f(y) is called Minkowskian function. A tensor field
of (r,s)-type on TR? with law of change, at a change of coordinates on TR?,
exactly as a tensor field of (r, s)-type on R? is called d-tensor field of (r, s)-type.

After [8] a smooth Lagrangian L : TR® — R is called regular if the matrix

9= (9ij) 1< j<39i5 = 1 9:9j L, is of rank 3 i.e. detg # 0 where 9;= 8%1..
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The pair (R?’, L) is called then Lagrange space and the d-tensor field g = (g;;)
is called the Lagrange metric.

For every z € R3 we have the indicatriz of L, I, = {y € T,R3; L (z,y) = 1}
which appears as a surface defined by F' (y) = L (z,y)—1, x being fixed. Using
the last relations of previous section it results that I, is CMC surface if:

— [Fi1 (FE + F2) + Fao (F + F2) + Fa3 (FE + F3)] =

3
2

— 2 2 2
- T 1 2 3 :
2H, (Ff + F§ + F3) (2.1)

and I, is minimal surface if:
2(FioFy Py + Fo3 o F3 + F31 F3 1) =
= Fyy (F§ + F5) + Fao (F§ 4+ F}) + Fs3 (FY + F) (2.2)
where F;, =9; L and Fi; zéiéj L. From Fj; = 2g;; it follows:
Proposition 2.1 (i) CMC indicatrices are given by:
2(g12F1F> + gasFaFs + g31 F3Fy) —
— 911 (F5 + F3) + goo (F5 + F}) + g3 (FT + F3)] =
— H, (P24 F2+F2)* (2.3)
(i1) minimal indicatrices are given by:
2(g12F1 Fy + go3FoF3 + g31 F3F1) =

= g11 (F§ + F3) + goo (F5 + F2) + gs3 (F7 + F3) . (2.4)

Let us remark that for a Minkowski Lagrangian if there exists a CMC
(minimal) indicatrix then all indicatrices are CMC (minimal) surfaces.

A particular important case is that of a r-homogeneous Lagrangian i.e.
L(xz,Ay) = \"L (z,y) for every X € R.

Proposition 2.2 If L is r-homogeneous with r # 1 then:
(i) CMC indicatrices are given by:

2 (12910926 + 923924936 + 93193a916) Y*Y° — {g11 {(gzay“)z + (gsay“)ﬂ +

+g22 | (g3ay®)° + (glay“)z} + 933 [(gmy“)2 + (g2ay“)2}} =
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= fI_{Tl [(gmy“)2 + (9209")° + (gsay“)Q] ’ (2.5)

(ii) minimal indicatrices are given by:
2 (912910920 + 923920936 + 93193a916) Y*y° =

=gn [(gzay“)2 + (gzay“)ﬂ + 922 {(gsay“)2 + (glay“)z} +

+933 [(glay“)Q + (gzay“ﬂ : (2.6)

Proof From Euler relation ; Ly® = rL applying §; we have
29;;y" + F; = rF; which means that:

2
Fj = 7gmya (27)

r—1

and substituting this relation in (2.3) and (2.4) we get (2.5) and (2.6). m

The most important case is r = 2 for:

(i) Riemann spaces when g = (g;; (¢)) is a Riemannian metric and L is the
kinetic energy of g i.e. L = gijyiyj

(ii) Finsler spaces when g = (g;; (x,y)) is a Finsler metric([8]) and L =
9ii Y'Y’

Proposition 2.3 For Finsler, particularly Riemann, spaces:

(i) the CMC indicatrices are given by:

2 (12910926 + 923924936 + 93193a916) Y*Y° ——{g11 {(gzay“f + (93ay“)2} +

+g22 [(g:aay“)2 + (gmy“)ﬂ + 933 [(gmy“)Q + (ggay“ﬂ} =

[N

= 2H, | (91a5")° + (9209")° + (9305")’] (28)

(i) the minimal indicatrices are given by (2.6).

Returning to the general case of proposition 2.1 because the matrix g =
(9s5) is symmetric let us suppose that this matrix is diagonal: g12 = g32 =
gs1 = 0. Let us call diagonal Lagrange space this type of Lagrange spaces.

Proposition 2.4 A) In a diagonal Lagrange space:
(i) the CMC indicatrices are given by:

3
g11 (F5 + F3) + go2 (F§ + F7) + gs3 (F{ + F5) = —H, (F{ + F5 + F3)®

(2.9)
(ii) the minimal indicatrices are given by:

gu (F3 + F5) + gaa (F5 + FY) + g33 (F? + F3) = 0. (2.10)
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If the diagonal Lagrange metric is positive definite i.e. g; > 0,1 < i < 3, it
results that there are no minimal indicatrices.
B) In a diagonal r-homogeneous Lagrange space:

(i) the CMC indicatrices are given by:

911 [(922312)2 + (ggzy?’)ﬂ + 922 {(ggzy?’)2 + (glaylﬂ +

2H. 3
+933 [(9113/1)2 + (922y2)2} =7 _g; [(9113/1)2 + (922212)2 + (933@3)2] ’
(2.11)
(i) the minimal indicatrices are given by:
g11 {(92292)2 + (933y3)2} + 922 {(9331/3)2 + (guyl)z} +
+933 [(911?;1)2 + (922?/2)2} =0 (2.12)

C) In a diagonal Finsler, particularly Riemann, space:
(i) the CMC indicatrices are given by:

g11 [(922y2)2 + (93393)2} + 922 [(93393)2 + (9112/1)2} +

Nfw

+933 {(911y1)2 + (922112)2} = —2H, {(gnyl)2 + (g229%)° + (ggsy‘g)z}
(2.13)

(i) the minimal indicatrices are given by (2.12).

Example 2.5( The Euclidean case) Let g;; = d,; be the usual Euclidean
metric of R3 which is a diagonal Riemann metric. The relation (2.13) becomes:

3
2[)*+ ()" + )] = 21 [(v")* + (A" + )]
In this case L = (y1)2 + (y2)2 + (y3)2 and thus the equation of I, is (y1)2 +
(y2)2 + (y3)2 =1 and then for every x € R3:

(i) the only CMC indicatrix is the unit sphere S? with H, = —1,

(ii) there are not minimal indicatrices.

3 CMC indicatrices in generalized Lagrange spaces

A d-tensor field of (0,2)-type on TR?, denoted g = (gi; (x,y)), is called gen-
eralized Lagrange metric (GL-metric, on short) if the following properties
hold([8)):
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(i) symmetry, gi; = g;i

(ii) nondegeneracy: det (g;;) # 0 . ‘

(iii) the signature of quadratic form g (£) = g;;€'¢’,& = (&) € R3, is
constant.

The function &€ (g) = gi;y'y’ is called the absolute energy of the given
GL-metric.

Definition 3.1([8]) The GL-metric is called weak regular if £ (g) is a reg-
ular Lagrangian.
It follows that for a weak regular GL-metric the d-tensor field of (0, 2)-type:

" 1. .
9i5 = 5 9i0; € (9) (3.1)

is a Lagrange metric and then we can associate the indicatrix:
I, = {(z,y) € TR* & (g) (w,y) = 1}.
Applying proposition 2.1 we get:

Proposition 3.2 For a weak regular GL-metric:
(i) the CMC indicatrices are given by:

2912 01 € (9) 02 € (9) + 933 02 € (9) s € (9) + gin 05 € (9) D1 € (9)] —

ot | (22 @) "+ (2£@) o | (20 £ @)+ (1€ 0) ] +
tai | (3£ @) + (e ) ]y -
| (9 £@) + (@) + (e <g>)2}g (3.2

(ii) the minimal indicatrices are given by:

2|9tz 91 € (9) 02 € (9) + g3 02 € (9) s € (9) + g 0 € (9) 01 £ (9)] =

2

=911 [(52 € (9))2 + (33 & (9))1 + 932 [(83 £ (9)) + (61 £ (g)ﬂ +

_ 2 . 2
raip (00 £@) + (122 0)) ] (33
A straightforward computation gives:

95 = gi; + (8133 gab) Yy’ + (81 Gjat O, gia) y*
9i E(g) = (31‘ %b) ¥y’ + 2giay*
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The above formulae become more simple in the following case:
Definition 3.3([8]) A weak regular GL-metric is called regular if:
i € (9) = 29i. (3.5)
It results([8)]):
gi; = 9ij + (6]- gik) y* (3.6)
and then:

Proposition 3.4 For a regular GL-metric:
(i) the CMC indicatrices are given by:

2{ [gu - (62 glk) y’“} 1ag2n + [923 - (63 92k) y’“} 920930
+ g1 + (1 g3t) 9*] gsaguody®y” (g1 + (91 916) "] [(9200™)? + (g5ay™)7] +
+ [gzz + (62 92k) y’“} [(gsay")2 + (glay“)z} +
+ {933 + (6‘3 gBk) y’“] [(gmy“)2 - (gzay“)z}} =

3
2

2H, [(919")” + (9209")" + (950")"] (3.7)

(ii) the minimal indicatrices are given by:
2{ {912 + (82 glk) yk} J1a92b + {923 + (83 g2k) yk} 92a93p+
: k a b _ : E a2 a2
{931 + (81 93k> Yy }QSaglb}y Y’ = [911 + (81 glk) Yy } [(Q%y )7+ (93ay")" | +
- k a\2 a\2
+ [922 + (82 ng) Y } [(gsay )"+ (9149 ] +

+ [933 + (53 gBk) yk} [(glaya)z + (gzaya)z} . (3-8)

Another approach in the regular case is provided by homogeneity. By
multiplication of (3.5) with y* we have:

9: E(9)y' = 2g:;y'y’ = 2E (9) (3.9)

which means that £ (g) is 2-homogeneous i.e. £ (g) is a Finslerian function.
Then we apply proposition 2.3:

Proposition 3.5 For a regular GL-metric:
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(i) the CMC indicatrices are given by:
2 (91291950 T 95395495 + 95195a91s) ¥y —

—{g% [(gé‘aya)2 + (g§ay“)2] + g3 [(gé‘ay“)2 + (gi‘ay“)z} -

2 2
93 [(g7ay")” + (935")° ]} =
3
2

= 2H, [(g1,9")” + (g3,5")° + (9505")’] (3.10)

(ii) the minimal indicatrices are given by:
2(9729593 + 93395495 + 9519%a91) Y°Y° =

2 2 2 2
= gt [(03a5")” + (035"’ + g2 [(93a™)° + (glay™)?] +

93 |(91ay")" + (939" (3.11)

where for gi; we use the relation (3.6).

4 Beil metrics as examples

Let § = (g (x,y)) be a Finsler metric and B = B’ (z,y) §; a d-vector field
for which we denote B; = §;; B’ and By = B;y'. Let also a,b € C* (TR?). In
[1] and [2] the following GL-metric is studied:

Gij = aﬁij + bBZBj (41)
These GL-metrics, called Beil metrics, are not Lagrange metrics. From:
£ (9) = a& (§) + b(Bo)* (4.2)
we get:
01 €(9) = (0:0) €@ +a (5 €@) + (9 D) (Bo)” +26Bo (8 Bo)  (4.3)
2g;; = 2agi;+ 0i0; a€(9)+ 9ia 0; E(G)+ 0; a 5 E(9) + 9id; b (Bo)® +
2B, (&- b d; Bo+ ;b di Bo+b 9:0; B0> +2b d; By d; Bo. (4.4)
I) On TpR? = TR3\ {null section} let:

1

= (4.5)
2|lyll%

1
= b
a 2,
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where |, || is the norm induced by the Finsler metric g i.e. ||y||% = E (g) =

Gijy'y?. Let B =y 9; be the Liouville vector field, it results B; = g;;y’ denoted

y;. The associated Beil metric is:

~\2 ~ o~ ~ ~ ~ ~ ~
1 (1) + gullyllz y1y22+ qelyll® %105 + gisllvll%
g= W Y1y2 + §12Hy||% (72)" + '§22Hy||% §2§32+ 523||y||%
F s+ gislyly  v2us + gesllyllF  (13)° + gssllyllF
(4.6)
Thus:

E(@) =lylE=£@© (4.7)

which is 2-homogeneous and then a Finsler function. It results that the Beil
metric is regular GL-metric with g7; = gi; and then the CMC(minimal) indi-
catrices of Beil metric are exactly the CMC(minimal) indicatrices of Finsler
metric g.

IT) (Miron-Tavakol metrics) For a = exp (20) ,b = 0 with 0 € C* (TR?)

and § = g(x) a Riemannian metric we have the so-called Miron-Tavakol
metrics([7]):

gij (x,y) = 7@V G,; () (4.8)
for which:
9i E(g9) =2 (gmy“ + (Bi a) gaby“yb) (4.9)
o 3. < A - a, b ; :
9ij = 9ij + (8i8j o+29;00; 0) 9aby"y’ + 2 (gja 0i 0+ Gia O; a) . (4.10)

Particular cases:
1. ([7, p. 219]) 0 = 3€ () = 594"V’

9i € (9) = 2¢°9D (1 + £ (7)) Giay” (4.11)

95 = 9i + (G5 + 2060 955°Y") oy y" + 2 (gjaGiuy" + GiaGia) y*.  (4.12)

112. 0 =, (x)y" with v, € C> (R?),1<i<3
i € (9) = 2(9iay” + 7€ (9)) (4.13)

9355 = 9i5 + 27:7,€ (9) + 2 (ViGja + 7;9ia) - (4.14)
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