A CLASS OF MEROMORPHIC FUNCTIONS WITH POSITIVE COEFFICIENTS DEFINED BY Q-ANALOGUE LINEAR OPERATOR

A. O. Mostafa, Z. M. Saleh

ABSTRACT. In the present investigation, we define a class of meromorphic functions by making use of the q-analogue of a linear operator. Coefficient inequalities, growth and distortion inequalities, as well as closure results are obtained. We also establish some results concerning the partial sums of meromorphic functions in this class.

2010 Mathematics Subject Classification: 30C45.

Keywords: Meromorphic, starlike, convex, linear operator, coefficient estimates, radius of convexity, partial sums.

1. INTRODUCTION

Let Φ denote the class of functions of the form:

$$\mathcal{F}(z) = \frac{1}{z} + \sum_{k=1}^{\infty} a_k z^k,\tag{1}$$

which are regular in $\mathbb{U}^* = \{z : 0 < |z| < 1\}$. Also let Φ_{δ} denote the subclass of Φ consisting of functions of the form:

$$\mathcal{F}(z) = \frac{1}{z} + \sum_{k=1}^{\infty} a_k z^k, \ (a_k \ge 0),$$
(2)

which are analytic and univalent in \mathbb{U}^* .

For $0 \leq \alpha < 1$, the function $\mathcal{F} \in \Phi_{\delta}$ is said to be meromorphically starlike of order α and meromorphically convex of order α , respectively, if and only if

$$-Re\left\{\frac{z\mathcal{F}'(z)}{\mathcal{F}(z)}\right\} > \alpha,\tag{3}$$

$$-Re\left\{1+\frac{z\mathcal{F}''(z)}{\mathcal{F}'(z)}\right\} > \alpha \tag{4}$$

The classes of such functions are denoted by $\Phi_{\delta}^*(\alpha)$ and $\Phi_{\delta}^c(\alpha)$, respectively. Note that the class $\Phi_{\delta}^*(\alpha)$ and various other subclasses of $\Phi_{\delta}^*(0)$ have been studied by [9], [12, 13, 14, 15] (see also [3], [7], [17], [19, 20, 21]). Aldweby and Darus [1] defined the basic hypergeometric function $_lF_s(a_1, ..., a_l; b_1, ..., b_s, q, z)$, for complex parameters a_i, b_j, q $(i = 1, ..., l, j = 1, ..., s, b_j \in \mathbb{C} \setminus \{0, -1, -2, ...\}, |q| < 1$), by

$${}_{l}F_{s}(a_{1},...,a_{l};b_{1},...,b_{s};q;z) = \sum_{k=0}^{\infty} \frac{(a_{1},q)_{k}...(a_{l},q)_{k}}{(q,q)_{k}(b_{1},q)_{k}...(b_{s},q)_{k}} z^{k},$$
(5)

 $(l \leq s+1, l, s \in \mathbb{N}_0 = \mathbb{N} \cup \{0\}, z \in \mathbb{U}^*)$ where \mathbb{N} denotes the set of positive integers and $(a, q)_k$ is the q-shifted factorial defined by

$$(a,q)_k = \begin{cases} 1, & k = 0; \\ (1-a)(1-aq)(1-aq^2)...(1-aq^{k-1}), & k \in \mathbb{N}; a \in \mathbb{C} \end{cases} .$$
(6)

We note that

$$\lim_{q \to 1^{-}} \left[{}_{l}F_{s}(q^{a_{1}}, ..., q^{a_{l}}; q^{b_{1}}, ..., q^{b_{s}}; q; (q-1)^{1+s-l}z) \right] \\
= {}_{l}F_{s}(a_{1}, ..., a_{l}; b_{1}, ..., b_{s}; z),$$
(7)

the well-known generalized hypergeometric function. For more mathematical background of basic hypergeometric functions, one may refer to [5, 6].

It is known that the calculus without the notion of limits is called q-calculus which has influenced many scientific fields due to its important applications. Tang et al. [18] defined the q-derivative $\partial_q(\mathcal{F}(z))$ by:

$$\partial_q \mathcal{F}(z) = \frac{\mathcal{F}(z) - \mathcal{F}(qz)}{(1-q)z}$$
$$= -\frac{1}{qz^2} + \sum_{k=1}^{\infty} [k]_q a_k z^{k-1}, \qquad (8)$$

where

$$[j]_q = \frac{1 - q^j}{1 - q}.$$
(9)

As $q \to 1^-$, $[j]_q = j$ and $\partial_q \mathcal{F}(z) = \mathcal{F}'(z)$.

For positive real values of $a_1, ..., a_l$ and $b_1, ..., b_s$ $(b_j \in \mathbb{C} \setminus \{0, -1, -2, ...\}, j = 0$ 1, ..., s, let

$$\mathcal{H}(a_1, ..., a_l; b_1, ..., b_s; q) : \Phi \to \Phi$$

be a linear operator defined by

$$\mathcal{H}(a_1, ..., a_l; b_1, ..., b_s; q, z) = \mathcal{H}_{l,s,q}(a_1) = z^{-1} {}_l F_s(a_1, ..., a_l; b_1, ..., b_s; q; z)$$
$$= z^{-1} + \sum_{k=1}^{\infty} \Gamma_{q,k} z^k,$$
(10)

where

$$\Gamma_{q,k} = \frac{(a_1, q)_{k+1} \dots (a_l, q)_{k+1}}{(q, q)_{k+1} (b_1, q)_{k+1} \dots (b_s, q)_{k+1}}.$$
(11)

Note that $\lim_{q\to 1-} \mathcal{H}_{l,s,q}(a_1) = \mathcal{H}_{l,s}(a_1)$ was investigated recently by Liu and Srivastava [8] and Aouf [2]. With the aid of the function $\mathcal{H}_{l,s,q}$, let

$$\mathcal{H}_{l,s,q} * \mathcal{H}_{l,s,q}^* = \mathcal{G}_{q,\lambda+1}(z), \ (z \in \mathbb{U}^*; \lambda > -1).$$
(12)

where

$$\mathcal{G}_{q,\lambda+1}(z) = \frac{1}{z} + \sum_{k=1}^{\infty} \frac{[\lambda+1,q]_{k+1}}{[k+1,q]!} z^k,$$
(13)

and $[k+1,q]! = \begin{cases} 1, & \text{if } k = 0\\ [1,q][2,q][3,q]...[k,q][k+1,q], & \text{if } k \in \mathbb{N} \end{cases}$. This function yields the following family of linear operators $\mathcal{M}_{l,s,q}^{\lambda} : \Phi \to \Phi$

which are given by:

$$\mathcal{M}_{l,s,q}^{\lambda}(a_1)\mathcal{F}(z) = \mathcal{H}_{l,s,q}^* * \mathcal{F}(z).$$
(14)

If $\mathcal{F}(z)$ is given by (2), then

$$\mathcal{M}_{l,s,q}^{\lambda}\mathcal{F}(z) = \mathcal{M}_{l,s,q}^{\lambda}(a_1)\mathcal{F}(z) = z^{-1} + \sum_{k=0}^{\infty} \Gamma_{q,k}(\lambda)a_k z^k, \ (z \in \mathbb{U}^*, \lambda > -1).$$
(15)

where

$$\Gamma_{q,k}(\lambda) = \frac{(q,q)_{k+1}(b_1,q)_{k+1}\dots(b_s,q)_{k+1}[\lambda+1,q]_{k+1}}{(a_1,q)_{k+1}\dots(a_l,q)_{k+1}[k+1,q]!}.$$
(16)

Note that: $\lim_{q\to 1^-} \mathcal{M}_{l,s,q}^{\lambda}(a_1)\mathcal{F}(z) = \mathcal{M}_{l,s}^{\lambda}(a_1)\mathcal{F}(z)$ (see [10] at p = 1).

Definition 1. The function $\mathcal{F} \in \Phi_{\delta}$ is said to be in the class $\Phi_{l,s,q}^{\lambda}(\zeta, \alpha)$ if it satisfies

$$Re\left\{\frac{zq\partial_q(\mathcal{M}_{l,s,q}^{\lambda}\mathcal{F}(z))}{(\zeta-1)\mathcal{M}_{l,s,q}^{\lambda}\mathcal{F}(z)+q\zeta z\partial_q(\mathcal{M}_{l,s,q}^{\lambda}\mathcal{F}(z))}\right\} > \alpha,$$
(17)

where $\lambda > -1$, $0 \le \alpha < 1$, $0 \le \zeta < 1$.

2. Main Results

Unless indicated, let 0 < q < 1, $0 \le \alpha < 1$, $0 \le \zeta < 1$, $\lambda > -1$, $z \in \mathbb{U}^*$, $\mathcal{F}(z)$ defined by (2).

Theorem 1. The function $\mathcal{F} \in \Phi_{l,s,q}^{\lambda}(\zeta, \alpha)$ if and only if

$$\sum_{k=1}^{\infty} \left[q[k]_q(1-\alpha\zeta) + \alpha(1-\zeta)\right] \Gamma_{q,k}(\lambda) a_k \le 1-\alpha.$$
(18)

Proof. Assume that (18) holds true. Since

$$Re\left\{\omega\right\} > \alpha \quad \text{if and only if} \quad \left|\omega - 1\right| < \left|\omega + 1 - 2\alpha\right|,$$

it is sufficient to show that

$$\left|\frac{zq\partial_q(\mathcal{M}_{l,s,q}^{\lambda}\mathcal{F}(z)) - \left[(\zeta - 1)\mathcal{M}_{l,s,q}^{\lambda}\mathcal{F}(z) + q\zeta z\partial_q(\mathcal{M}_{l,s,q}^{\lambda}\mathcal{F}(z))\right]}{zq\partial_q(\mathcal{M}_{l,s,q}^{\lambda}\mathcal{F}(z)) + (1 - 2\alpha)\left[(\zeta - 1)\mathcal{M}_{l,s,q}^{\lambda}\mathcal{F}(z) + q\zeta z\partial_q(\mathcal{M}_{l,s,q}^{\lambda}\mathcal{F}(z))\right]}\right| < 1.$$

Using (18), we have for 0 < |z| = r < 1,

$$\left| \frac{\sum_{k=1}^{\infty} (1-\zeta)(q[k]_{q}+1)\Gamma_{q,k}(\lambda)a_{k}z^{k+1}}{-2(1-\alpha)+\sum_{k=1}^{\infty} \{q[k]_{q}\left[1+(1-2\alpha)\zeta\right]+(1-2\alpha)(\zeta-1)\}\Gamma_{q,k}(\lambda)a_{k}z^{k+1}} \right| \\ \leq \frac{\sum_{k=1}^{\infty} (1-\zeta)(q[k]_{q}+1)\Gamma_{q,k}(\lambda)a_{k}r^{k+1}}{2(1-\alpha)-\sum_{k=1}^{\infty} \{q[k]_{q}\left[1+(1-2\alpha)\zeta\right]+(1-2\alpha)(\zeta-1)\}\Gamma_{q,k}(\lambda)a_{k}r^{k+1}} \\ \leq 1. \tag{19}$$

Since (19) holds for all r, 0 < r < 1 letting $r \to 1^-$, we have $\mathcal{F} \in \Phi_{l,s,q}^{\lambda}(\zeta, \alpha)$. Now, let $\mathcal{F} \in \Phi_{l,s,q}^{\lambda}(\zeta, \alpha)$, since $Re(z) \leq |z|$ for all z. Then

$$\begin{split} ℜ\left\{\frac{zq\partial_q(\mathcal{M}_{l,s,q}^{\lambda}\mathcal{F}(z))}{(\zeta-1)\mathcal{M}_{l,s,q}^{\lambda}\mathcal{F}(z)+q\zeta z\partial_q(\mathcal{M}_{l,s,q}^{\lambda}\mathcal{F}(z))}\right\}\\ &=Re\left\{\frac{-1+\sum_{k=1}^{\infty}q[k]_q\Gamma_{q,k}(\lambda)a_kz^{k+1}}{-1+\sum_{k=1}^{\infty}[\zeta(1+q[k]_q)-1]\Gamma_{q,k}(\lambda)a_kz^{k+1}}\right\}>\alpha. \end{split}$$

Choose values of z on real axis so that $\frac{zq\partial_q(\mathcal{M}_{l,s,q}^{\lambda}\mathcal{F}(z))}{(\zeta-1)\mathcal{M}_{l,s,q}^{\lambda}\mathcal{F}(z)+q\zeta z\partial_q(\mathcal{M}_{l,s,q}^{\lambda}\mathcal{F}(z))}$ is real. Letting $z \to 1$ through positive values, we have (18).

Corollary 2. If $\mathcal{F} \in \Phi_{l,s,q}^{\lambda}(\zeta, \alpha)$, then we have

$$a_k \le \frac{1-\alpha}{\left[q[k]_q(1-\alpha\zeta) + \alpha(1-\zeta)\right]\Gamma_{q,k}(\lambda)}.$$
(20)

The result is sharp for the function $\mathcal{F}_k(z)$ defined by

$$\mathcal{F}_k(z) = \frac{1}{z} + \frac{1-\alpha}{\left[q[k]_q(1-\alpha\zeta) + \alpha(1-\zeta)\right]\Gamma_{q,k}(\lambda)} z^k,\tag{21}$$

for $k \geq 1$.

Theorem 3. If $\mathcal{F} \in \Phi_{l,s,q}^{\lambda}(\zeta, \alpha)$, then

$$\sum_{k=1}^{\infty} a_k \le \frac{1-\alpha}{\left[q(1-\alpha\zeta)+\alpha(1-\zeta)\right]\Gamma_{q,1}(\lambda)}.$$
(22)

Proof. Let $\mathcal{F} \in \Phi_{l,s,q}^{\lambda}(\zeta, \alpha)$. Then, in view of (18), we have

$$[q(1 - \alpha\zeta) + \alpha(1 - \zeta)]\Gamma_{q,1}(\lambda)\sum_{k=1}^{\infty} a_k \le (1 - \alpha),$$

we have the assertion (22).

Theorem 4. Let the function $\mathcal{F}(z) \in \Phi_{l,s,q}^{\lambda}(\zeta, \alpha)$. Then

$$\frac{1}{|z|} - \frac{1-\alpha}{\left[q(1-\alpha\zeta) + \alpha(1-\zeta)\right]\Gamma_{q,1}(\lambda)} |z| \le |\mathcal{F}(z)| \le \frac{1}{|z|} + \frac{1-\alpha}{\left[q(1-\alpha\zeta) + \alpha(1-\zeta)\right]\Gamma_{q,1}(\lambda)} |z|.$$
(23)

The result is sharp.

Proof. For $\mathcal{F}(z) \in \Phi_{l,s,q}^{\lambda}(\zeta, \alpha)$. Then

$$|\mathcal{F}(z)| = \left|\frac{1}{z} + \sum_{k=1}^{\infty} a_k z^k\right| \le \frac{1}{|z|} + |z| \sum_{k=1}^{\infty} a_k,$$

and

$$|\mathcal{F}(z)| = \left|\frac{1}{z} + \sum_{k=1}^{\infty} a_k z^k\right| \ge \frac{1}{|z|} - |z| \sum_{k=1}^{\infty} a_k,$$

which in view of (22), we have (23).

Theorem 5. Let $\mathcal{F}(z) \in \Phi_{l,s,q}^{\lambda}(\zeta, \alpha)$. Then $\mathcal{F}(z)$ is starlike in $0 < |z| < r_1$, where r_1 is the largest value for which

$$\frac{([k]_q + 2)(1 - \alpha)}{[q[k]_q(1 - \alpha\zeta) + \alpha(1 - \zeta)]\Gamma_{q,k}(\lambda)}r_1^{k+1} \le 1,$$
(24)

for $k \geq 1$. The result is sharp for the function $\mathcal{F}_k(z)$ given by (21).

Proof. It is sufficient to show that

$$\left| \frac{z\mathcal{F}'(z)}{\mathcal{F}(z)} + 1 \right| < 1, \tag{25}$$

we have

$$\left| \frac{z\mathcal{F}'(z)}{\mathcal{F}(z)} + 1 \right| \le \frac{\sum_{k=1}^{\infty} ([k]_q + 1)a_k |z|^k}{\frac{1}{|z|} - \sum_{k=1}^{\infty} a_k |z|^k}.$$
(26)

Hence for 0 < |z| < r, (26) hold true if

$$\sum_{k=1}^{\infty} ([k]_q + 2)a_k r^{k+1} < 1,$$

and by (18), we may take

$$\sum_{k=1}^{\infty} a_k \le \frac{1-\alpha}{[q[k]_q(1-\alpha\zeta) + \alpha(1-\zeta)]\Gamma_{q,k}(\lambda)}\lambda_k, \quad (k\ge 1).$$

where $\lambda_k \geq 0$ and $\sum_{k=1}^{\infty} \lambda_k \leq 1$. For each fixed r, we choose the positive integer $k_0 = k_0(r)$ for which

$$\frac{([k_0]_q + 2)}{[q[k_0]_q(1 - \alpha\zeta) + \alpha(1 - \zeta)]\Gamma_{q,k_0}(\lambda)}r^{k_0 + 1}, \text{ is maximal.}$$

Then it follows that

$$\sum_{k=1}^{\infty} ([k]_q + 2)a_k r^{k+1} \le \frac{([k]_q + 2)(1 - \alpha)}{[q[k]_q(1 - \alpha\zeta) + \alpha(1 - \zeta)]\Gamma_{q,k}(\lambda)} r^{k+1},$$

then \mathcal{F} is starlike in $0 < |z| < r_1$ provided that

$$\frac{([k_0]_q+2)(1-\alpha)}{[q[k_0]_q(1-\alpha\zeta)+\alpha(1-\zeta)]\Gamma_{q,k_0}(\lambda)}r_1^{k_0+1} \le 1.$$

We find the value $r_1 = r_0$ and the corresponding integer $k_0(r_0)$ so that

$$\frac{([k_0]_q + 2)(1 - \alpha)}{[q[k_0]_q(1 - \alpha\zeta) + \alpha(1 - \zeta)]\Gamma_{q,k_0}(\lambda)}r_0^{k_0 + 1} = 1.$$
(27)

Then this value is the radius of starlikeness for function \mathcal{F} belong to class $\Phi_{l,s,q}^{\lambda}(\zeta,\alpha)$.

Theorem 6. Let $\mathcal{F}(z) \in \Phi_{l,s,q}^{\lambda}(\zeta, \alpha)$. Then $\mathcal{F}(z)$ is convex in $0 < |z| < r_2$, where r_2 is the largest value for which

$$\frac{[k]_q([k-1]_q+3)(1-\alpha)}{[q[k]_q(1-\alpha\zeta)+\alpha(1-\zeta)]\Gamma_{q,k}(\lambda)}r_2^{k+1} \le 1,$$
(28)

for $k \geq 1$. The result is sharp for the function $\mathcal{F}(z)$ given by (21).

Proof. By using the same technique in the proof of Theorem 4 we can show that

$$\left|\frac{z\mathcal{F}''(z)}{\mathcal{F}'(z)} + 2\right| < 1,\tag{29}$$

for $0 < |z| < r_2$ with the aid of Theorem 1. Thus, we have the assertion of Theorem 6.

Let the function $\mathcal{F}_j(z)$ be given by

$$\mathcal{F}_{j}(z) = \frac{1}{z} + \sum_{k=1}^{\infty} a_{k,j} z^{k}, \ j = 1, 2, ..., m.$$
(30)

Theorem 7. Let the function $\mathcal{F}_j(z)$ defined by (30) be in the class $\Phi_{l,s,q}^{\lambda}(\zeta, \alpha)$, for each j = 1, 2, ..., m, then the function $\mathbb{F}(z)$ defined by

$$\mathbb{F}(z) = \frac{1}{z} + \sum_{k=1}^{\infty} b_k z^k,\tag{31}$$

also be in the class $\Phi_{l,s,q}^{\lambda}(\zeta,\alpha)$, where

$$b_k = \frac{1}{m} \sum_{j=1}^m a_{k,j}.$$
 (32)

Proof. Since $\mathcal{F}_j(z) \in \Phi_{l,s,q}^{\lambda}(\zeta, \alpha)$, it follows from Theorem 1, that

$$\sum_{k=1}^{\infty} \left[q[k]_q (1 - \alpha \zeta) + \alpha (1 - \zeta) \right] \Gamma_{q,k}(\lambda) a_{k,j} \le 1 - \alpha, \ j = 1, 2, ..., m.$$
(33)

Hence

$$\sum_{k=1}^{\infty} [q[k]_q (1 - \alpha\zeta) + \alpha(1 - \zeta)] \Gamma_{q,k}(\lambda) b_k$$

=
$$\sum_{k=1}^{\infty} [q[k]_q (1 - \alpha\zeta) + \alpha(1 - \zeta)] \Gamma_{q,k}(\lambda) (\frac{1}{m} \sum_{j=1}^m a_{k,j})$$

=
$$\frac{1}{m} \sum_{j=1}^m \left(\sum_{k=1}^{\infty} [q[k]_q (1 - \alpha\zeta) + \alpha(1 - \zeta)] \Gamma_{q,k}(\lambda) a_{k,j} \right) \le 1 - \alpha.$$

By Theorem 1, we have $\mathbb{F}(z) \in \Phi_{l,s,q}^{\lambda}(\zeta, \alpha)$.

Theorem 8. The class $\Phi_{l,s,q}^{\lambda}(\zeta, \alpha)$ is closed under convex linear compination. Proof. Let $\mathcal{F}_j(z)$ be defined by (30). Define the function h(z) by

$$h(z) = \frac{1}{z} + \sum_{k=1}^{\infty} b_k z^k, \quad b_k \ge 1.$$
(34)

Suppose that $\mathcal{F}(z)$ and h(z) are in the class $\Phi_{l,s,q}^{\lambda}(\zeta, \alpha)$, we only need to prove that

$$G(z) = \xi \mathcal{F}(z) + (1 - \xi)h(z) \quad (0 \le \xi \le 1),$$
(35)

also be in the class. Since

$$G(z) = \frac{1}{z} + \sum_{k=1}^{\infty} \left\{ \xi a_k + (1 - \xi) b_k \right\} z^k,$$
(36)

then

$$\sum_{k=1}^{\infty} \left[q[k]_q (1 - \alpha \zeta) + \alpha (1 - \zeta) \right] \Gamma_{q,k}(\lambda) \left\{ \xi a_k + (1 - \xi) b_k \right\} \le (1 - \alpha), \quad (37)$$

with the aid of Theorem 1. Hence $G(z) \in \Phi_{l,s,q}^{\lambda}(\zeta, \alpha)$. This clearly completes the proof of the Theorem.

Theorem 9. Let $\mathcal{F}_0(z) = \frac{1}{z}$ and $\mathcal{F}_k(z)$ defined by (21) for $k \ge 1$. Then the function $\mathcal{F}(z) \in \Phi_{l,s,q}^{\lambda}(\zeta, \alpha)$ if and only if it can be expressed in the form

$$\mathcal{F}(z) = \sum_{k=0}^{\infty} \eta_k \mathcal{F}_k(z), \tag{38}$$

where $\eta_k \geq 0$ and

$$\sum_{k=0}^{\infty} \eta_k \le 1. \tag{39}$$

Proof. We suppose that the function $\mathcal{F}(z)$ can be expressed in the form (38). Then from (21) and (39) we have

$$\mathcal{F}(z) = \frac{1}{z} + \sum_{k=1}^{\infty} \frac{(1-\alpha)\eta_k}{\left[q[k]_q(1-\alpha\zeta) + \alpha(1-\zeta)\right]\Gamma_{q,k}(\lambda)} z^k,\tag{40}$$

Since

$$\sum_{k=1}^{\infty} [q[k]_q (1 - \alpha \zeta) + \alpha (1 - \zeta)] \Gamma_{q,k}(\lambda) \cdot \frac{(1 - \alpha)\eta_k}{[q[k]_q (1 - \alpha \zeta) + \alpha (1 - \zeta)] \Gamma_{q,k}(\lambda)}$$

$$= (1 - \alpha) \sum_{k=1}^{\infty} \eta_k$$

$$\leq (1 - \alpha). \tag{41}$$

It follows from Theorem 2 that the function $\mathcal{F}(z) \in \Phi_{l,s,q}^{\lambda}(\zeta, \alpha)$. Conversely, let $\mathcal{F}(z) \in \Phi_{l,s,q}^{\lambda}(\zeta, \alpha)$ which satisfies (22) for $k \geq 1$, we obtain

$$\eta_k = \frac{(1-\alpha)}{\left[q[k]_q(1-\alpha\zeta) + \alpha(1-\zeta)\right]\Gamma_{q,k}(\lambda)} a_k \le 1,$$

and

$$\eta_0 = 1 - \sum_{k=1}^{\infty} \eta_k.$$

This completes the proof of the Theorem 9.

Corollary 10. The extreme points of the class $\Phi_{l,s,q}^{\lambda}(\zeta, \alpha)$ are the functions $\mathcal{F}_k(z)$ $(k \ge 1)$ given by (21) in Theorem 9.

For $\mathcal{F}(z) \in \Phi_{\delta}$, given by 2, the sequence of partial sums is given by

$$\mathcal{F}_n(z) = \frac{1}{z} + \sum_{k=1}^n a_k z^k \ (n \in \mathbb{N}).$$

$$\tag{42}$$

Now we will follow the work of [16], [11] and [4] on partial sums of meromorphic univalent functions, to obtain the results. Let

$$\Psi_{q,k}^{\lambda}(\alpha,\zeta) = [q[k]_q(1-\alpha\zeta) + \alpha(1-\zeta)]\Gamma_{q,k}(\lambda).$$
(43)

Theorem 11. If $\mathcal{F}(z) \in \Phi_{\delta}$, satisfies the condition (18), then

$$Re\left(\frac{\mathcal{F}(z)}{\mathcal{F}_n(z)}\right) \ge \frac{\Psi_{q,n+1}^{\lambda} - 1 + \alpha}{\Psi_{q,n+1}^{\lambda}},\tag{44}$$

where

$$\Psi_{q,k}^{\lambda}(\alpha,\zeta) \ge \begin{cases} 1-\alpha, & \text{if } k = 1,2,3,...,n\\ \Psi_{q,n+1}^{\lambda}, & \text{if } k = n+1,n+2,... \end{cases}$$
(45)

The result (44) is sharp for

$$\mathcal{F}(z) = \frac{1}{z} + \frac{1 - \alpha}{\Psi_{q,n+1}^{\lambda}} z^{n+1}.$$
 (46)

Proof. Let

$$\frac{1+\omega(z)}{1-\omega(z)} = \frac{\Psi_{q,n+1}^{\lambda}}{1-\alpha} \left[\frac{\mathcal{F}(z)}{\mathcal{F}_n(z)} - \frac{\Psi_{q,n+1}^{\lambda} - 1 + \alpha}{\Psi_{q,n+1}^{\lambda}} \right]$$

$$= \frac{1+\sum_{k=1}^n a_k z^{k+1} + \left(\frac{\Psi_{q,n+1}^{\lambda}}{1-\alpha}\right) \sum_{k=n+1}^\infty a_k z^{k+1}}{1+\sum_{k=1}^n a_k z^{k+1}}.$$
(47)

It suffices to show that $|\omega(z)| \leq 1$. Now from (47) we have

$$\omega(z) = \frac{\left(\frac{\Psi_{q,n+1}^{\lambda}}{1-\alpha}\right)\sum_{k=n+1}^{\infty}a_k z^{k+1}}{2+2\sum_{k=1}^{n}a_k z^{k+1} + \left(\frac{\Psi_{q,n+1}^{\lambda}}{1-\alpha}\right)\sum_{k=n+1}^{\infty}a_k z^{k+1}}.$$

Hence we obtain

$$|\omega(z)| \le \frac{\left(\frac{\Psi_{q,n+1}^{\lambda}}{1-\alpha}\right) \sum_{k=n+1}^{\infty} a_k}{2 - 2\sum_{k=1}^n a_k - \left(\frac{\Psi_{q,n+1}^{\lambda}}{1-\alpha}\right) \sum_{k=n+1}^{\infty} a_k}$$

Now $|\omega(z)| \leq 1$ if and only if

$$2\left(\frac{\Psi_{q,n+1}^{\lambda}}{1-\alpha}\right)\sum_{k=n+1}^{\infty}a_{k} \le 2-2\sum_{k=1}^{n}a_{k}$$

or, equivalently

$$\sum_{k=1}^{n} a_k + \sum_{k=n+1}^{\infty} \left(\frac{\Psi_{q,n+1}^{\lambda}}{1-\alpha} \right) a_k \le 1.$$

From (18), it is sufficient to show that

$$\sum_{k=1}^{n} a_k + \sum_{k=n+1}^{\infty} \left(\frac{\Psi_{q,n+1}^{\lambda}}{1-\alpha} \right) a_k \le \sum_{k=1}^{\infty} \left(\frac{\Psi_{q,k}^{\lambda}}{1-\alpha} \right) a_k,$$

which is equivalent to

$$\sum_{k=1}^{n} \left(\frac{\Psi_{q,k}^{\lambda} - 1 + \alpha}{1 - \alpha} \right) a_k + \sum_{k=n+1}^{\infty} \left(\frac{\Psi_{q,k}^{\lambda} - \Psi_{q,n+1}^{\lambda}}{1 - \alpha} \right) a_k \ge 0.$$
(48)

For $z = re^{i\pi/n}$ we have

$$\frac{\mathcal{F}(z)}{\mathcal{F}_n(z)} = 1 + \frac{1-\alpha}{\Psi_{q,n+1}^{\lambda}} z^k \to 1 - \frac{1-\alpha}{\Psi_{q,n+1}^{\lambda}} z^k = \frac{\Psi_{q,n+1}^{\lambda} - 1 + \alpha}{\Psi_{q,n+1}^{\lambda}} \text{ where } r \to 1^-,$$

which shows that $\mathcal{F}(z)$ given by (46) gives the sharpness.

Theorem 12. If $\mathcal{F}(z) \in \Phi_{\delta}$, satisfies the condition (18), then

$$Re\left(\frac{\mathcal{F}_n(z)}{\mathcal{F}(z)}\right) \ge \frac{\Psi_{q,n+1}^{\lambda}}{\Psi_{q,n+1}^{\lambda} + 1 - \alpha},\tag{49}$$

where $\Psi_{q,n+1}^{\lambda}$ is defined by (43) and satisfies (45) and $\mathcal{F}(z)$ given by (46) gives the sharpness.

Proof. The proof follows by defining

$$\frac{1+\omega(z)}{1-\omega(z)} = \frac{\Psi_{q,n+1}^{\lambda}+1-\alpha}{1-\alpha} \left[\frac{\mathcal{F}_n(z)}{\mathcal{F}(z)} - \frac{\Psi_{q,n+1}^{\lambda}}{\Psi_{q,n+1}^{\lambda}+1-\alpha}\right].$$
(50)

The reminder part is as in Theorem 11. So, we omit it.

References

[1] H. Aldweby and M. Darus, A subclass of harmonic univalent functions associated with q-analogue of Dziok-Srivastava operator, ISRN. Math. Anal., 2013 (2013), no. 6, 1-6.

[2] M.K. Aouf, Certain subclasses of meromorphically multivalent functions associated with generalized hypergeometric function, Comput. Math. Appl., 55 (2008), 494–509.

[3] M. K. Aouf, On a certain class of meromorphic univalent functions with positive coefficients, Rend. Mat. Appl., 7 (11) (1991), no. 2, 209-219.

[4] N. E. Cho and S. Owa, Partial sums of certain meromorphic functions, J. Ineq. Pure. Appl. Math., 5 (2004), Issue 2, Article 30.

[5] H. Exton, q-hypergeometric functions and applications, Ellis Horwood Series: Maths. Appl, Ellis Horwood, Chichester, UK, 1983.

[6] G. Gasper and M. Rahman, Basic Hypergeometric Series, Encyc. Math. Appls., 35 (1990) Cambridge University Press, Cambridge, UK, 1990.

[7] R. M. Goel and N. S. Sohi, On a class of meromorphic functions, Glas. Mat., 3. Ser., 17 (37) (1982), 19-28.

[8] J. L. Liu, H.M. Srivastava, Classes of meromorphically multivalent functions associated with generalized hypergeometric function, Math. Comput. Modelling., 39 (2004), 21–34.

[9] J. Miller, Convex meromorphic mappings and related functions, Proc. Am. Math. Soc., 25 (1970), 220-228.

[10] A.O. Mostafa, Applications of differential subordination to certain subclasses of p-valent meromorphic functions involving a certain operator, J. Math. Com. Modelling., 54 (2011), 1486–1498.

[11] A. O. Mostafa, On partial sums Some of certain analytic functions, Demonstratio Mathematica., 41(2008), no. 4, 779-789.

[12] Z. Nehari and E.Netanyahu, On the coefficients of meromorphic schlicht functions, Proc. Am. Math. Soc., 8 (1957), 15-23.

[13] Ch. Pommerenke, Uber einige Klassen meromorpher schlichter Funktionen, Math. Z., 78 (1962), 263-284.

[14] Ch. Pommerenke, On meromorphic starlike functions, Pac. J. Math., 13 (1963), 221-235.

[15] W. C. Royster, Meromorphic starlike multivalent functions, Trans. Am. Math. Soc., 107 (1963), 300-308.

[16] H. Silverman, Partial sums of starlike and convex functions, J. Math. Appl., 209(1997), 221-227.

[17] H. M. Srivastava and S. Owa, Current Topics In Analytic Functions Theory, World Scientific, Singapore, 1992.

[18] H. Tang, H. M. Zayed, A. O. Mostafa and M. K. Aouf, Fekete-Szegö problems for certain classes of meromorphic functions using q-derivative operator, J. Math. Resear. Appl., 38 (2018), no. 3, 236-246.

[19] B. A. Uralgaddi and M. D. Ganigi, A certain class of meromorphically starlike functions with positive coefficients, Pure Appl. Math. Sci., 26 (1987), 75-81.

[20] B. A. Uralegaddi and C. Somanatha, Certain differential operators for meromorphic functions, Houston J. Math., 17 (1991), 279-284.

[21] B. A. Uralegaddi and C. Somanatha, New criteria for meromorphic starlike univalent functions, Bull. Austral. Math. Soc., 43 (1991), 137-140.

A. O. Mostafa Department of Mathematics, Faculty of Science, Mansoura University, Egypt email: adelaeg254@yahoo.com

Z. M. Saleh Department of Mathematics, Faculty of Science, Mansoura University, Egypt email: einabnsar2@gmail.com