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CANAL SURFACE WHOSE CENTER CURVE IS A SPHERICAL
CURVE WITH SPHERICAL FRAME
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Abstract. In this paper, we obtain the parametrization of the canal sur-
faces whose center curves are the spherical curves on the sphere S2 in E3. The
parametrization of the canal surface is expressed according to the spherical orthonor-
mal frame given in [8]. Then the parallel surface of this surface is studied. Also we
define the notion of the associated canal surface. Lastly we give the geometric prop-
erties of these surfaces such that Weingarten surface, (X,Y )-Weingarten surface and
linear Weingarten surface.
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1. Introduction

Canal surfaces was firstly investigated by Monge in 1850. A canal surface is defined
as a surface formed as the envelope of a family of spheres whose centers lie on a space
curve C(t) with radius r(t). If the radius r(t) is constant, then the canal surface
is called as pipe surface or tubular surface. Canal surfaces play an essential role
in descriptive geometry, because in case of an orthographic projection its contour
curve can be drawn as the envelope of circles. In technical area canal surfaces can
be used for blending surfaces smoothly. Canal surface is useful to represent various
objects e.g. pipe, hose, rope or intestine of a body. Moreover, canal surface is an
important instrument in surface modelling for CAD/CAM such as tubular surfaces,
torus and Dupin cyclides [5].

Canal surfaces and tubular surfaces have been studied by many researchers. In
[3], [4], [5], [6], the authors study canal surfaces and tubular surfaces in Euclidean
3-space, Minkowski 3-space, Galilean and Pseudo Galilean spaces. Lately, in [10],
the authors consider the new approach to canal surfaces. Also in [2] and [7], the
authors study canal surfaces with quaternions.
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In [8], the author defines the spherical orthonormal frame of the curves on the
sphere S2.

In this paper, we obtain the parametrization of the canal surfaces whose center
curves are the spherical curves on the sphere S2 in E3. The parametrization of the
canal surface is expressed according to the spherical orthonormal frame given in [8].
Then the parallel surface of this surface is studied. Also we define the notion of the
associated canal surface. Lastly we give the geometric properties of these surfaces
such that Weingarten surface, (X,Y )-Weingarten surface and linear Weingarten
surface.

2. Preliminaries

Let m ∈ E3 be a fixed point and r > 0 be a constant. Then the sphere is defined by

S2 (m, r) = {u ∈ E3 : 〈u−m,u−m〉 = r2}.

We use S2 (0, 1) = S2 and S2 (0, r) = S2 (r) throughout this article.
For a unit speed regular curve x (s) ⊂ S2 ⊂ E3, we choose {x (s) , α (s) , y (s)}

forming a standart orthonormal basis of E3. Then the spherical Frenet formulas of
the spherical curve x (s) on S2 can be written as

x′ (s) = α (s) , α′ (s) = −x (s) + κ (s) y (s) , y′ (s) = −κ (s)α (s) . (1)

Here, the function κ (s) is called the spherical curvature function (or curvature) of
x (s) and the frame {x (s) , α (s) , y (s)} is called the spherical Frenet frame of the
spherical curve x (s) ([8]).

We recall some well-known formulas for the surfaces in E3. Let M be a surface
of E3, the standart connection D on E3 induces the Levi-Civita connection 5 on
M . We have the following Gauss formula

DXY = ∇XY + h (X,Y ) ,

and the Weingarten formula

DXξ = −AξX + ⊥∇X ξ,

where X,Y ∈ Γ (TM) and ξ ∈ Γ
(
TM⊥

)
. Then ∇ is the Levi-Civita connection

of M , h is the second fundamental form, Aξ is the shape operator, and ⊥∇ is the
normal connection. We note that

〈h (X,Y ) , ξ〉 = 〈AξX,Y 〉 .
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The mean curvature vector field
−→
H, the mean curvature H and the Gauss curvature

of M are given respectively by

−→
H =

1

2
(h (e1, e1) + h (e2, e2)), H =

∥∥∥−→H∥∥∥ and K = detA

where {e1, e2} is an orthonormal basis on M ([1]).
Let U be the unit normal vector field on a surface M (s, t) defined by

U =
Ms ×Mt

‖Ms ×Mt‖
.

The second fundamental form II of a surface M (s, t) is given as

II = eds2 + 2fdsdt+ gdt2

where
e = g (Mss, U) , f = g (Mst, U) , g = g (Mtt, U) .

([11]) Thus the second Gaussian curvature KII of a surface is given as

KII =
1

(eg − f2)2


∣∣∣∣∣∣
−1

2ett + fst − 1
2gss

1
2es fs − 1

2et
ft − 1

2gs e f
1
2gt f g

∣∣∣∣∣∣
−

∣∣∣∣∣∣
0 1

2et
1
2gs

1
2et e f
1
2gs f g

∣∣∣∣∣∣
 .

3. Canal surface whose center curve is the spherical curve on S2

In this section, we consider the canal surfaces whose center curve is the spherical
curves on S2.

Theorem 1. Let x (s) be a spherical curve with arc-length parameter s on S2 and
be the center curve of a canal surface obtained from the sphere S2 (r) . Then
(i) the parametrization of the canal surface can be as following

M (s, t) =
(

1 +m1r (s)
√

1− r2s(s) sin t
)
x (s)− r (s) rs(s)α (s)

+
(
m2r (s)

√
1− r2s(s) cos t

)
y (s)

(ii) the parametrization of the tubular surface can be as following

M (s, t) = (1 +m1r sin t)x (s) + (m2r cos t) y (s)

where m1,m2 ∈ {−1, 1}.
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Proof. Let x (s) be a spherical curve with arc-length parameter s on S2. Assume
that M be a parametrization of the envelope of the sphere S2(r) defining the canal
surface and the center curve x (s) . Then M can be parametrized as

M (s, t)− x(s) = a (s, t)x (s) + b (s, t)α (s) + c (s, t) y (s) (2)

where a, b and c are differentiable functions of s and t on the interval I on which x
is defined. Moreover, since M (s, t) lies on the sphere S2(r), we can write

〈M (s, t)− x(s),M (s, t)− x(s)〉 = r2. (3)

which leads to that

a2 + b2 + c2 = r2 (4)

aas + bbs + ccs = rrs (5)

where as, bs, cs, rs refer to the derivative of the functions with respect to s.
Differentiating (2) with respect to s and using (1), we get

Ms = (as − b)x+ (1 + a+ bs − cκ)α+ (bκ+ cs) y (6)

where Ms refers to the derivative of M with respect to s. Furthermore, M (s, t)−
x(s) is a normal vector to the canal surfaces, which implies that

〈M (s, t)− x(s),Ms〉 = 0, (7)

Then, from (7), (2), (5) and (4), we obtain

b = −rrs, (8)

a2 + c2 = r2
(
1− r2s

)
. (9)

which let us take

a = ±r
√

1− r2s sin t,

c = ±r
√

1− r2s cos t.

Then the proof of (i) is complete. If we take r as a constant, we get the proof of
(ii).

In the following theorem, we classify all spherical curve on S2 with constant
curvature.
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Ali Uçum – Canal surface whose center curve is a spherical curve . . .

Theorem 2. Let κ be a real number. Then x (s) is a spherical curve on S2 with
arc-length parameter s and curvature κ if and only if x (s) can be parameterized by

x = cos
(√

1 + κ2s
)
V1 + sin

(√
1 + κ2s

)
V2 + V3

where V1, V2, V3 are mutually orthogonal vectors satisfying the following equations

〈V1, V1〉 = 〈V2, V2〉 =
1

1 + κ2
and 〈V3, V3〉 =

κ2

1 + κ2
.

Proof. Let x (s) be a spherical curve on S2 with arc-length parameter s and con-
stant curvature κ. By using the spherical Frenet equations, we obtain the following
homogeneous differential equation with constant coefficients

x′′′ +
(
1 + κ2

)
x′ = 0.

The characteristic equation of the previous equation is follows

r
(
r2 +

(
1 + κ2

))
= 0.

Then we get

x = cos
(√

1 + κ2s
)
V1 + sin

(√
1 + κ2s

)
V2 + V3. (10)

Differentiating (10) with respect to s, we get

α = −
√

1 + κ2 sin
(√

1 + κ2s
)
V1 +

√
1 + κ2 cos

(√
1 + κ2s

)
V2.

By using 〈α, α〉 = 1, we get V1, V2, V3 are mutually orthogonal vectors satisfying
the following equations

〈V1, V1〉 = 〈V2, V2〉 =
1

1 + κ2
and 〈V3, V3〉 =

κ2

1 + κ2
.

Then the proof is complete.

Example 1. Let us take κ = 1 in Theorem 2. Then we obtain

〈V1, V1〉 = 〈V2, V2〉 = 〈V3, V3〉 =
1

2
.

Then we can choose

V1 =

(
1√
2
, 0, 0

)
, V2 =

(
0,

1√
2
, 0

)
, V3 =

(
0, 0,

1√
2

)
,
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which implies that

x =

(
cos
(√

2s
)

√
2

,
sin
(√

2s
)

√
2

,
1√
2

)
,

α =
(
− sin

(√
2s
)
, cos

(√
2s
)
, 0
)
,

y =

(
−

cos
(√

2s
)

√
2

,−
sin
(√

2s
)

√
2

,
1√
2

)
.

Now let us take m1 = m2 = 1 in Theorem 1 and give the canal surfaces with r = 2
and r = s2 (Figure 1).

Figure 1: The canal surface for r = 2 (left) and r = s2 (right)

4. Tubular surface whose center curve is the spherical curve

In this section we consider the tubular surface whose center curve is the spherical
curve in S2, which is parameterized by

M (s, t) = (1 +m1r sin t)x (s) + (m2r cos t) y (s)

where m1,m2 ∈ {−1, 1} and r ∈ R. By taking m1 = m2 = 1, we have

ψ (s, t) = (1 + r sin t)x (s) + (r cos t) y (s) . (11)

From (11), we find

ψs = (1 + r sin t− rκ cos t)α,

ψt = (r cos t)x− (r sin t) y.
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We can find the components of first fundemental form as follows

g11 = 〈ψs, ψs〉 = (1 + r sin t− rκ cos t)2 , g12 = 〈ψs, ψt〉 = 0, g22 = 〈ψt, ψt〉 = r2.

Then g11g22 − (g12)
2 = r2 (1 + r sin t− rκ cos t)2. We assume that 1 + r sin t −

rκ cos t > 0 for the regularity of the surface ψ.
Now we will give an orthonormal basis on ψ (s, t) .

e1 =
1

‖ψs‖
ψs = α,

e2 =
1

‖ψt‖
ψt = (cos t)x− (sin t) y,

where {e1, e2} is an orthonormal frame field on ψ (s, t). Set

e3 = − (sin t)x− (cos t) y,

where e3 is a normal vector field to ψ (s, t) . {e1, e2, e3} is an orthonormal basis on
ψ (s, t) . Then we obtain

De1e1 =
1

1 + r sin t− rκ cos t
(−x+ κy) ,

De1e2 =
cos t+ κ sin t

1 + r sin t− rκ cos t
α,

De2e2 =
1

r
(− (sin t)x− (cos t) y) .

The components of the second fundamental form h are calculated as follows

h11 = 〈De1e1, e3〉 =
sin t− κ cos t

1 + r sin t− rκ cos t
,

h12 = 〈De1e2, e3〉 = 0 and h22 = 〈De2e2, e3〉 =
1

r
.

Theorem 3. The mean curvature H of ψ (s, t) is obtained as

H =
1

2
(h11 + h22) =

1− 2rκ cos t+ 2r sin t

2r (1 + r sin t− rκ cos t)
. (12)

Theorem 4. The Gauss curvature K of ψ (s, t) is obtained as

K = h11h22 − (h12)
2 =

sin t− κ cos t

r (1 + r sin t− rκ cos t)
. (13)
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A surface is called Weingarten surface if there exist a non-trivial function Ψ (K,H)
such that Ψ (K,H) = KsHt − KtHs = 0 for the Gauss curvature K and mean
curvature H of the surface. Here subscripts denote partial derivatives. Also we
a surface is called as a linear Weingarten surface if there exist real numbers a,
b, c ∈ R\{0} such that the linear combination aK + bH = c is satisfied. For
(X,Y ) ∈ {(K,KII) , (H,KII)}, the surface is called as (X,Y )-Weingarten surface if
Ψ (X,Y ) = 0 ([9]).

From (12) and (13) , we have

Ks =
−κ′ cos t

r (1 + r sin t− rκ cos t)2
, Kt =

cos t+ κ sin t

r (1 + r sin t− rκ cos t)2

and

Hs =
−κ′ cos t

2 (1 + r sin t− rκ cos t)2
, Ht =

cos t+ κ sin t

2 (1 + r sin t− rκ cos t)2
.

Thus it can be easily seen that Ψ (K,H) = KsHt −KtHs = 0. So we can give the
following theorem.

Theorem 5. The surface ψ (s, t) is a Weingarten surface.

Now assume that there exist real numbers a, b, c ∈ R\{0} such that the linear
combination aK + bH = c is satisfied.

aK + bH − c =
b− 2cr + 2

(
a− cr2 + br

)
sin t− 2

(
a− cr2 + br

)
κ cos t

2r (1 + r sin t− rκ cos t)
= 0

which implies that b = 2cr and a+ cr2 = 0. So we can give the following theorem.

Theorem 6. Let K and H be the Gauss curvature and mean curvature of the surface
ψ (s, t). Then there exists the following relation between K and H :

−r2K + 2rH = 1

where r is a positive real number.

From above theorem, we get the following corollary.

Corollary 7. The surface ψ (s, t) is a linear Weingarten surface.

Definition 1. The parallel surface of the surface X (s, t) defined by

X∗ (s, t) = X (s, t) + µU (s, t)

where

U (s, t) =
Xs ×Xt

‖Xs ×Xt‖
is the unit normal vector of the surface X (s, t) and µ ∈ R.
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Now we will define the parallel surface ψ∗ (s, t) of the surface ψ (s, t) as follows

ψ∗ (s, t) = ψ (s, t) + µe3

= (1 + (r − µ) sin t)x (s) + ((r − µ) cos t) y (s) (14)

From (14), we find

ψ∗s = (1 + (r − µ) sin t− (r − µ)κ cos t)α,

ψ∗t = ((r − µ) cos t)x− ((r − µ) sin t) y.

We can find the components of first fundemental form as follows

g∗11 = 〈ψ∗s , ψ∗s〉 = (1 + (r − µ) sin t− (r − µ)κ cos t)2 ,

g∗12 = 〈ψ∗s , ψ∗t 〉 = 0, g22 = 〈ψt, ψt〉 = (r − µ)2 .

Then g∗11g
∗
22− (g∗12)

2 = (r − µ)2 (1 + (r − µ) sin t− (r − µ)κ cos t)2. We assume that
r − µ > 0 and 1 + (r − µ) sin t− (r − µ)κ cos t > 0 for the regularity of the surface
ψ∗ (s, t).

Now we will give an orthonormal basis on ψ∗ (s, t) .

e∗1 =
1

‖ψ∗s‖
ψ∗s = α,

e∗2 =
1

‖ψ∗t ‖
ψ∗t = (cos t)x− (sin t) y,

where {e∗1, e∗2} is an orthonormal frame field on ψ∗ (s, t). Set

e∗3 = − (sin t)x− (cos t) y,

where e∗3 is a normal vector field to ψ∗ (s, t) . {e∗1, e∗2, e∗3} is an orthonormal basis on
ψ∗ (s, t) . Then we obtain

De∗1
e∗1 =

1

1 + (r − µ) sin t− (r − µ)κ cos t
(−x+ κy) ,

De∗1
e∗2 =

cos t+ κ sin t

1 + (r − µ) sin t− (r − µ)κ cos t
α,

De∗2
e∗2 =

1

(r − µ)
(− (sin t)x− (cos t) y) .

The components of the second fundamental form h∗ are calculated as follows

h∗11 =
〈
De∗1

e∗1, e
∗
3

〉
=

sin t− κ cos t

1 + (r − µ) sin t− (r − µ)κ cos t
,

h∗12 =
〈
De∗1

e∗2, e
∗
3

〉
= 0 and h22 =

〈
De∗2

e∗2, e
∗
3

〉
=

1

(r − µ)
.

Similarly we can find the following results.
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Theorem 8. The mean curvature H∗ of ψ∗ (s, t) is obtained as

H∗ =
1− 2 (r − µ)κ cos t+ 2 (r − µ) sin t

2 (r − µ) (1 + (r − µ) sin t− (r − µ)κ cos t)
.

Theorem 9. The Gauss curvature K∗ of ψ∗ (s, t) is obtained as

K∗ =
sin t− κ cos t

(r − µ) (1 + (r − µ) sin t− (r − µ)κ cos t)
.

Theorem 10. The surface ψ∗ (s, t) is a Weingarten surface.

Now assume that there exist real numbers a, b, c ∈ R\{0} such that the linear
combination aK∗ + bH∗ = c is satisfied.

aK∗ + bH∗ − c

=
b− 2c (r − µ) + 2

(
a− c (r − µ)2 + b (r − µ)

)
(sin t− κ cos t)

2r (1 + r sin t− rκ cos t)

= 0

which implies that b = 2c (r − µ) and a+c (r − µ)2 = 0. So we can give the following
theorem.

Theorem 11. Let K∗ and H∗ be the Gauss curvature and mean curvature of the
surface ψ∗ (s, t). Then there exists the following relation between K∗ and H∗ :

− (r − µ)2K∗ + 2 (r − µ)H∗ = 1

where r is a positive real number and µ is a real number.

From above theorem, we get the following corollary.

Corollary 12. The surface ψ∗ (s, t) is a linear Weingarten surface.

5. Associated canal surfaces

In this section, we will give the definition of the associated canal surfaces.
In [8], the author defines the associated curve of the spherical curve x (s) in S2

with the spherical frame {x (s) , α (s) , y (s)}. Let x1 (s) be the associated curve of
x (s) such that x1 (s) = y (s) where there exists a diffeomorfism s = f1 (s). In this
paper, we will call x1 (s) = y (s) as the first associated curve of the spherical
curve x (s).

Let x2 (s∗) = α (s) where there exists a diffeomorfism s∗ = f2 (s) Then we will
call x2 (s∗) = α (s) as the second associated curve of the spherical curve x (s).

So we can give the following corollaries.
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Corollary 13. Let x1 (s) be the first associated curve of the spherical curve x (s) in
S2 with the spherical frame {x (s) , α (s) , y (s)} such that x1 (s) = y (s) where there
exists a diffeomorfism s = f1 (s). Then we have

x1 = y, α1 = −α, y1 = x, κ1 =
1

κ
,

df1
ds

= κ,

where {x1 (s) , α1 (s) , y1 (s)} is the spherical frame of x1 (s) and κ1 (s) is the spherical
curvature of x1 (s).

Corollary 14. Let x2 (s∗) be the second associated curve of the spherical curve
x (s) in S2 with the spherical frame {x (s) , α (s) , y (s)} such that x2 (s∗) = y (s)
where there exists a diffeomorfism s∗ = f2 (s). Then we have

x2 = α, α2 =
1√

1 + κ2
(−x+ κy) , y2 =

1√
1 + κ2

(κx+ y) ,

κ2 =
κ′

(1 + κ2)3/2
,

df2
ds

=
√

1 + κ2,

where {x2 (s∗) , α2 (s∗) , y2 (s∗)} is the spherical frame of x2 (s∗) and κ2 (s∗) is the
spherical curvature of x2 (s∗).

Definition 2. Let x1 (s) be the first associated curve of the spherical curve x (s) in
S2, ψ (s, t) and ψ1 (s, t) be canal surfaces (or tubular surfaces) whose center curves
are x (s) and x1 (s) , respectively. Then ψ1 (s, t) is called as ”the first associated
canal surface (or the first associated tubular surface)” of ψ (s, t) .
Similarly, let x2 (s∗) be the second associated curve of the spherical curve x (s) in S2,
ψ (s, t) and ψ2 (s∗, t) be canal surfaces (or tubular surfaces) whose center curves are
x (s) and x2 (s∗) , respectively. Then ψ2 (s∗, t) is called as ”the second associated
canal surface (or the second associated tubular surface)” of ψ (s, t) .

Firstly, we consider the first associated tubular surface of ψ (s, t) . Let ψ1 (s, t)
be the first associated tubular surface of ψ (s, t). Then we can write

ψ1 (s, t) = (1 + r sin t)x1 (s) + (r cos t) y1 (s)

= (r cos t)x (s) + (1 + r sin t) y (s) . (15)

From (15), we have

(ψ1)s =
1

κ
(r cos t− (1 + r sin t))α,

(ψ1)t = − (r sin t)x+ (r cos t) y,
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which implies that

〈(ψ1)s , (ψ1)s〉 =
(r cos t− (1 + r sin t)κ)2

κ2
,

〈(ψ1)s , (ψ1)t〉 = 0, 〈(ψ1)t , (ψ1)t〉 = r2.

Then

〈(ψ1)s , (ψ1)s〉 〈(ψ1)t , (ψ1)t〉 − 〈(ψ1)s , (ψ1)t〉
2 = r2

(r cos t− (1 + r sin t)κ)2

κ2
.

Theorem 15. Let ψ1 (s, t) be the first associated tubular surfaces of ψ (s, t). Then
ψ1 (s, t) has a singular point at ψ (s0, t0) if and only if

r cos t0 − (1 + r sin t0)κ (s0) = 0.

Now we assume that r cos t − (1 + r sin t)κ 6= 0 for all (t, s) . Then we will give
an orthonormal basis on ψ1 (s, t) .

e1 =
1

‖(ψ1)s‖
(ψ1)s = ε1α,

e2 =
1

‖(ψ1)t‖
(ψ1)t = − (sin t)x+ (cos t) y,

where ε1 = sgn (r cos t− (1 + r sin t)κ) and {e1, e2} is an orthonormal frame field
on ψ1 (s, t). Set

e3 = − (cos t)x− (sin t) y,

where e3 is a normal vector field to ψ1 (s, t) . {e1, e2, e3} is an orthonormal basis on
ψ1 (s, t) . Then we obtain

De1e1 =
1

r cos t− (1 + r sin t)κ
(−x+ κy) ,

De1e2 =
−ε1 (κ cos t+ sin t)

r cos t− (1 + r sin t)κ
α,

De2e2 =
1

r
(− (cos t)x− (sin t) y) .

The components of the second fundamental form h are calculated as follows

h11 = 〈De1e1, e3〉 =
cos t− κ sin t

r cos t− (1 + r sin t)κ
,

h12 = 〈De1e2, e3〉 = 0 and h22 = 〈De2e2, e3〉 =
1

r
.
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Ali Uçum – Canal surface whose center curve is a spherical curve . . .

Theorem 16. The mean curvature H1 of ψ1 (s, t) is obtained as

H1 =
1

2

(
h11 + h22

)
=

2r cos t− κ (1 + 2r sin t)

2r (r cos t− (1 + r sin t)κ)
. (16)

Theorem 17. The Gauss curvature K1 of ψ1 (s, t) is obtained as

K1 = h11h22 −
(
h12
)2

=
cos t− κ sin t

r (r cos t− (1 + r sin t)κ)
. (17)

From (16) and (17) , we have

(K1)s =
κ′ cos t

rκ (r cos t− (1 + r sin t)κ)2
, (K1)t =

κ (sin t+ κ cos t)

r (r cos t− (1 + r sin t)κ)2

and

(H1)s =
κ′ cos t

2κ (r cos t− (1 + r sin t)κ)2
, (H1)t =

κ (sin t+ κ cos t)

2 (r cos t− (1 + r sin t)κ)2
.

Thus it can be easily seen that Ψ (K1, H1) = (K1)s (H1)t − (K1)t (H1)s = 0. So we
can give the following theorem.

Theorem 18. The surface ψ1 (s, t) is a Weingarten surface.

Now assume that there exist real numbers a, b, c ∈ R\{0} such that the linear
combination aK1 + bH1 = c is satisfied.

aK1 + bH1 − c =
2
(
a− cr2 + br

)
cos t−

(
b− 2cr + 2

(
a− cr2 + br

))
κ sin t

2r (r cos t− (1 + r sin t)κ)
= 0

which implies that b = 2cr and a+ cr2 = 0. So we can give the following theorem.

Theorem 19. Let K1 and H1 be the Gauss curvature and mean curvature of the
surface ψ1 (s, t). Then there exists the following relation between K1 and H1 :

−r2K1 + 2rH1 = 1

where r is a positive real number.

From above theorem, we get the following corollary.

Corollary 20. The surface ψ1 (s, t) is a linear Weingarten surface.
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Now, we consider the second associated tubular surface of ψ (s, t) . Assume that
κ (s) = κ (constant). Let ψ2 (s∗, t) be the second associated tubular surface of
ψ (s, t). Then we can write

ψ2 (s∗, t) = (1 + r sin t)x2 (s∗) + (r cos t) y2 (s∗)

=
κr cos t√

1 + κ2
x (s) + (1 + r sin t)α (s) +

r cos t√
1 + κ2

y (s) . (18)

From (18), we have

(ψ2)s∗ =
1 + r sin t√

1 + κ2
(−x+ κy) ,

(ψ2)t =
−κr sin t√

1 + κ2
x+ (r cos t)α− r sin t√

1 + κ2
y,

which implies that

〈(ψ2)s∗ , (ψ2)s∗〉 = (1 + r sin t)2 , 〈(ψ2)s∗ , (ψ2)t〉 = 0, 〈(ψ2)t , (ψ2)t〉 = r2.

Then

〈(ψ2)s∗ , (ψ2)s∗〉 〈(ψ2)t , (ψ2)t〉 − 〈(ψ2)s∗ , (ψ2)t〉
2 = r2 (1 + r sin t)2 .

Theorem 21. Let ψ2 (s∗, t) be the second associated tubular surfaces of ψ (s, t).
Then ψ2 (s∗, t) has a singular point at ψ (s, t0) if and only if 1 + r sin t0 = 0.

Now we assume that 1+r sin t 6= 0 for all (t, s) . Then we will give an orthonormal
basis on ψ2 (s∗, t) .

e∗1 =
1

‖(ψ2)s∗‖
(ψ2)s∗ =

ε2√
1 + κ2

(−x+ κy) ,

e∗2 =
1

‖(ψ2)t‖
(ψ2)t =

−κ sin t√
1 + κ2

x+ (cos t)α− sin t√
1 + κ2

y,

where ε2 = sgn (1 + r sin t) and {e∗1, e∗2} is an orthonormal frame field on ψ1 (s, t).
Set

e∗3 = −ε2κ cos t√
1 + κ2

x− (ε2 sin t)α− ε2 cos t√
1 + κ2

y,

where e∗3 is a normal vector field to ψ2 (s∗, t) . {e∗1, e∗2, e∗3} is an orthonormal basis on
ψ2 (s∗, t) . Then we obtain

De∗1
e∗1 =

1

1 + r sin t
α

De∗1
e∗2 =

ε2 cos t

(1 + r sin t)
√

1 + κ2
(−x+ κy) ,

De∗2
e∗2 = − κ cos t

r
√

1 + κ2
x− sin t

r
α− cos t

r
√

1 + κ2
y.
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The components of the second fundamental form h∗ are calculated as follows

h∗11 =
〈
De∗1

e∗1, e
∗
3

〉
=
−ε2 sin t

1 + r sin t
,

h∗12 =
〈
De∗1

e∗2, e
∗
3

〉
= 0 and h∗22 =

〈
De∗2

e∗2, e
∗
3

〉
=
ε2
r
.

Theorem 22. The mean curvature H2 of ψ2 (s∗, t) is obtained as

H2 =
ε2

2r (1 + r sin t)
. (19)

Theorem 23. The Gauss curvature K2 of ψ2 (s∗, t) is obtained as

K2 =
− sin t

r (1 + r sin t)
. (20)

From (19) and (20) , we have

(K2)s∗ = 0, (K2)t =
− cos t

r (1 + r sin t)2

and

(H2)s∗ = 0, (H2)t =
−ε2 cos t

2 (1 + r sin t)2
.

Thus it can be easily seen that Ψ (K2, H2) = 0. So we can give the following theorem.

Theorem 24. The surface ψ2 (s∗, t) is a Weingarten surface.

Now assume that there exist real numbers a, b, c ∈ R\{0} such that the linear
combination aK2 + bH2 = c is satisfied.

aK2 + bH2 − c =
bε2 − 2cr − 2

(
cr2 + a

)
sin t

2r (1 + r sin t)
= 0

which implies that b = 2ε2cr and a+ cr2 = 0. So we can give the following theorem.

Theorem 25. Let K2 and H2 be the Gauss curvature and mean curvature of the
surface ψ2 (s∗, t). Then there exists the following relation between K2 and H2 :

−r2K2 + 2ε2rH2 = 1

where r is a positive real number.

From above theorem, we get the following corollary.
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Corollary 26. The surface ψ2 (s∗, t) is a linear Weingarten surface.

The second Gaussian curvature KII of the surface ψ2 (s∗, t) is obtained that

KII =
cot2 t+ 2 (1 + r sin t) (1 + 2r sin t)

4ε2r (1 + r sin t)2
.

Then it can be easily seen that Ψ (KII , H2) = 0 and Ψ (KII ,K2) = 0. So we can
give the following theorem.

Theorem 27. The surface ψ2 (s∗, t) is a (X,Y )-Weingarten surface where (X,Y ) ∈
{(K2,KII) , (H2,KII)} .
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