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IDEALS IN THE BANACH ALGEBRAS OF α-LIPSCHITZ
VECTOR-VALUED OPERATORS
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Abstract. We study an interesting class of Banach function algebras of vector-
valued operators on compact metric spaces, and investigate certain ideals of the
Lipschitz algebras. In this paper, we consider a nonempty compact metric space
(X, d) and a commutative unital Banach algebra (B, ‖ . ‖) over the scalar field F(=
R or C). At first, we define the B-valued α-Lipschitz operator algebras Lipα(X,B)
and lipα(X,B), where α ∈ (0, 1]. Then we characterize the norm closed ideals of
lipα(X,B), and primary ideals of Lipα(X,B).
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1. Introduction

Throughout this paper, let (X, d) be a compact metric space which has at least
two elements, (B, ‖ . ‖) be a commutative unital Banach algebra over the scalar field
F(= R or C) with unit e, C(X,B) be the set of all B-valued continuous operators
and Cb(X,B) be the set of all bounded B-valued continuous operators on X, and
also α ∈ R with 0 < α ≤ 1. When B = F, we write C(X) instead of C(X,B).

The dual space of B is the vector space B∗ whose elements are the continuous
linear functionals on B. The set of all multiplicative functionals on B is called
spectrum of B; we denote it by σ(B). Suppose that throughout this article Λ ∈ σ(B)
is arbitrary and fixed. Since σ(B) is a subset of the closed unit ball of B∗, ‖ Λ ‖ is
bounded, where

‖ Λ ‖= sup{ | Λx | : x ∈ B , ‖ x ‖≤ 1 }.

When B = F, take Λ as the identity function Λx = x.
Consider the set Y as follows

Y := {(x, y) : x, y ∈ X , x 6= y}. (1)
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For an operator f : X → B, and any (x, y) ∈ Y , define

Lαf (x, y) :=

∣∣∣(Λof)(x)−
(
Λof

)
(y)

∣∣∣
dα(x, y)

, (2)

where dα(x, y) =
(
d(x, y)

)α
, and define

pα(f) := sup
x 6=y

Lαf (x, y),

which is called the Lipschitz constant of f . Also, for 0 < α ≤ 1 define

Lipα(X,B) := {f ∈ Cb(X,B) : pα(f) < +∞},

and for 0 < α < 1, define

lipα(X,B) := {f ∈ Lipα(X,B) : lim
d(x,y)→0

Lαf (x, y) = 0}.

The elements of Lipα(X,B) and lipα(X,B) are called big and little α-Lipschitz
B-valued operators, respectively.

Now, for each λ ∈ F and f, g ∈ C(X,B) define(
f + g

)
(x) := f(x) + f(x) ,

(
λf

)
(x) := λf(x) , ∀x ∈ X,

‖ f ‖∞:= sup
x∈X
‖ f(x) ‖,

and for any f ∈ Lipα(X,B) define

‖ f ‖α:= pα(f)+ ‖ f ‖∞ .

It is easy to see that
(
C(X,B), ‖ . ‖∞

)
becomes a Banach algebra over F.

Cao, Zhang and Xu in [9] proved that
(
Lipα(X,B), ‖ . ‖α

)
is a Banach space

over F and
(
lipα(X,B), ‖ . ‖α

)
is a closed linear subspace of

(
Lipα(X,B), ‖, . ‖α

)
,

when B is a Banach space.
We studied some of the properties of these algebras in [16, 17, 18, 19]. Also

some properties of these algebras were studied by certain mathematicians including
Abtahi [2], Ranjbary and Rejali [13].
Note that for α = 1 and B = F, the space Lip1(X,F) consisting of all Lipschitz func-
tions from X into F(= R or C) has a series of interesting and important properties,
which has been studied by many mathematicians. Including the characterization of
the ideals of these algebras in [1, 3 - 8, 11, 12, 14, 15] were researched and studied.
In [10, 20] some properties of Lipschitz scalar-valued functions are mentioned.

Finally, in this paper we study the algebras of α-Lipschitz B-valued operators,
and we will characterize the norm closed ideals of lipα(X,B), and primary ideals of
Lipα(X,B).
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2. Norm closed ideals

In this section, we characterize the norm closed ideals of little α-Lipschitz operator
algebras lipα(X,B). So suppose that α ∈ R with 0 < α < 1.

In the complex plan C, let D(0, r) be the closed disk with center at the origin
and radius r > 0. Define the map Πr : C→ D(0, r) by

Πr(z) =

{
z ; | z |≤ r
rz
|z| ; | z |> r.

(3)

Lemma 1. Let f ∈ lipα(X,B), and define Λofn := Π 1
n

(Λof); n ∈ N. Then Λofn ∈
lipα(X,B) for any n ∈ N.

Proof. Since f ∈ lipα(X,B), for any (x, y) ∈ Y (Y is defined in (1)) we have

lim
d(x,y)→0

∣∣∣(Λof)(x)−
(
Λof

)
(y)

∣∣∣
dα(x, y)

= 0.

Then for each n ≥ 1 and (x, y) ∈ Y , we have

lim
d(x,y)→0

∣∣∣(Λofn)(x)−
(
Λofn

)
(y)

∣∣∣
dα(x, y)

= lim
d(x,y)→0

∣∣∣Π 1
n

((
Λof

)
(x)

)
−Π 1

n

((
Λof

)
(y)

)∣∣∣
dα(x, y)

.

(4)
Now we have three case:
Case 1. Suppose

∣∣(Λof)(x)
∣∣ ≤ 1

n and
∣∣(Λof)(y)

∣∣ ≤ 1
n . Then

(4) = lim
d(x,y)→0

∣∣∣(Λof)(x)−
(
Λof

)
(y)

∣∣∣
dα(x, y)

= 0.

Case 2. Suppose
∣∣(Λof)(x)

∣∣ > 1
n and

∣∣(Λof)(y)
∣∣ > 1

n . Then

(4) = lim
d(x,y)→0

∣∣∣∣ 1
n

(Λof)(x)∣∣(Λof)(x)
∣∣ − 1

n
(Λof)(y)∣∣(Λof)(y)

∣∣ ∣∣∣∣
dα(X,B)

, (5)

if
∣∣(Λof)(x)

∣∣ =
∣∣(Λof)(y)

∣∣, then

(5) =
1

n
∣∣(Λof)(x)

∣∣ × lim
d(x,y)→0

∣∣(Λof)(x)−
(
Λof

)
(y)

∣∣
dα(x, y)

= 0,

and so (4) = 0.
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If
∣∣(Λof)(x)

∣∣ 6= ∣∣(Λof)(y)
∣∣, then we can assumed that

∣∣(Λof)(x)
∣∣ > ∣∣(Λof)(y)

∣∣.
Therefore

(5) ≤ 1

n
∣∣(Λof)(y)

∣∣ × lim
d(x,y)→0

∣∣(Λof)(x)−
(
Λof

)
(y)

∣∣
dα(x, y)

= 0,

and so (4) = 0.
Case 3. Suppose

∣∣(Λof)(x)
∣∣ > 1

n ,
∣∣(Λof)(y)

∣∣ ≤ 1
n . Then

(4) = lim
d(x,y)→0

∣∣∣∣ 1
n

(Λof)(x)∣∣(Λof)(x)
∣∣ − (

Λof
)
(y)

∣∣∣∣
dα(X,B)

≤ lim
→0

∣∣(Λof)(x)−
(
Λof

)
(y)

∣∣
dα(x, y)

= 0,

and so (4) = 0.
Consequently, in any case we have

lim
d(x,y)→0

∣∣∣(Λofn)(x)−
(
Λofn

)
(y)

∣∣∣
dα(x, y)

= 0 ; n ∈ N.

This means for any n ∈ N, Λofn ∈ lipα(X,B). 4

Let H be a non-empty closed subset of X. Put

i(H) := {f ∈ lipα(X,B) : (Λof)
∣∣
H

= 0},

where (Λof)
∣∣
H

is the restriction of Λof to H. It is easy to see that, i(H) is an ideal
of lipα(X,B).

Lemma 2. Suppose H is a closed subset of X, and f ∈ i(H). Then there is a
sequence {fn} ⊂ lipα(X,B) such that each fn is equal to f on a neighborhood of H,
and limn→+∞ pα(Λofn) = 0.

Proof. For any n ∈ N, define Λofn := Π 1
n

(Λof), where the map Πr is defined in (3).

Then for each n ∈ N, Λofn ∈ lipα(X,B) by Lemma 1. Since f ∈ i(H), (Λof)
∣∣
H

= 0.

So for any n ∈ N and x ∈ H,
∣∣(Λofn)(x)

∣∣ < 1
n . Therefor on a neighborhood of H,

we have

Λ(fn(x)) = (Λofn)(x) = Π 1
n

(
(Λof)(x)

)
= (Λof)(x) = Λ(f(x)).

Since Λ ∈ σ(B) is arbitrary, fn(x) = f(x) on a neighborhood of H, where n ∈ N.
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Now, since for any n ∈ N we have Λofn ∈ lipα(X,B), for each ε > 0 there exists
δ > 0 such that for any (x, y) ∈ Y (Y is defined in (1)) with d(x, y) < δ we have∣∣(Λofn)(x)− (Λofn)(y)

∣∣
dα(x, y)

< ε.

Especially for ε = 1
n (to large enough n) we have∣∣(Λofn)(x)− (Λofn)(y)

∣∣
dα(x, y)

<
1

n
.

So, for to large enough n, pα(Λofn) < 1
n . Therefore limn→+∞ pα(Λofn) = 0. 4

For each subset E ⊂ lipα(X,B), let its hull be the set

hull(E) := {x ∈ X : (Λof)(x) = 0 , ∀f ∈ E}.

A subset E of lipα(X,B) is a norm closed ideal, if it is an ideal and it is closed
in the topology induced by the norm on lipα(X,B).

Lemma 3. Let E be a norm closed ideal of lipα(X,B), and suppose f ∈ lipα(X,B)
such that Λof vanishes in a neighborhood of hull(E). Then f ∈ E.

Proof. Let H := hull(E), ε > 0, and (Λof)(x) = 0 for any x ∈ X such that
d(x,H) < ε, where d(x,H) := inf{d(x, y) : y ∈ H}. Suppose that G := {x ∈
X : d(x,H) ≥ ε

2}. It is obvious that G is a compact subset of X, and for any x ∈ G
there is a function fx ∈ E that Λofx is nonzero on an open neighborhood of x. As
these neighborhoods cover G, by compactness. So we can find a finite set of points
x1, x2, ..., xn ∈ G such that Λog is nowhere zero on G, where g := fx1 +fx2 + ...+fxn .
Then g ∈ E and g(x) is invertible for any x ∈ G. Define the function h ∈ lipα(X,B)

such that (Λoh)(x) := 0 for x /∈ G, and h(x) :=
(
g(x)

)−1
f(x) for x ∈ G. Then

f = gh on G. By ideal properties, we have f ∈ E. 4

Now we prove one of the main results of the article.

Theorem 4. Let E be a norm closed ideal of lipα(X,B). Then E = i(H), where
H = hull(E).

Proof. It is obvious that E ⊆ i(H). We prove that i(H) ⊆ E. For this purpose, let
f ∈ i(H) be arbitrary, so we will show that f ∈ E.

It is clear that hull(E) is a closed subset of X. So by Lemma 2, there is a
sequence {fn} ⊂ lipα(X,B) such that fn = f on a neighborhood of H (n ≥ 1), and
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limn→+∞ pα(Λofn) = 0. So Λo(f − fn) = 0 on a neighborhood of H (n ≥ 1). Then
f − fn ∈ E (n ≥ 1) by Lemma 3. Since limn→+∞ pα(Λofn) = 0 on a neighborhood
of H,

lim
n→+∞

∣∣(Λofn)(x)− (Λofn)(y)
∣∣

dα(x, y)
= 0 ; (x 6= y),

=⇒ lim
n→+∞

∣∣(Λofn)(x)− (Λofn)(y)
∣∣ = 0 ; (x 6= y),

=⇒ lim
n→+∞

(Λofn)(x) = lim
n→+∞

(Λofn)(y) ; (x 6= y),

on neighborhood of H. This relation shoes that fn is a constant function on a
neighborhood of H for each n ≥ 1. So, by definition of H = hull(E) and f ∈ i(H),
we have limn→+∞(Λofn)(x) = 0 in a neighborhood of H. Then sup | (Λofn)(x) |→ 0
on a neighborhood of H. Thus ‖ Λofn ‖∞→ 0 on a neighborhood of H. On the
other hand we have limn→+∞ pα(Λofn) = 0, so

‖ Λofn ‖α=‖ Λofn ‖∞ +pα(Λofn)→ 0

on a neighborhood of H.
Now define gn := f − fn (n ≥ 1). Then {gn} ⊂ E, and so we have

‖ Λo(f − gn) ‖α=‖ Λofn ‖α→ 0

on a neighborhood of H. Since Λ is arbitrary, ‖ f − gn ‖α→ 0 on a neighborhood of
H. Since {gn} ⊂ E and E is a norm closed ideal, f ∈ E. This completes the proof.
4

3. Primary ideals

In this section, we characterize the primary ideals of big α-Lipschitz operator al-
gebras Lipα(X,B). So suppose that α ∈ R with 0 < α ≤ 1.

Let H be a non-empty closed subset of X. Put

I(H) := {f ∈ Lipα(X,B) : (Λof)
∣∣
H

= 0}.

Define the mapping λ as follows:

λ : Lipα(X,B)→ C(Y )

f 7→ λf
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where Y is defined in (1), and λf : Y 7→ F with the criterion

(
λf

)
(x, y) :=

(Λof)(x)− (Λof)(y)

dα(x, y)
.

Then Lαf (x, y) =
∣∣(λf)(x, y)

∣∣ for all (x, y) ∈ Y , which Lαf (x, y) is defined in (2). Also
put

J(H) := {f ∈ I(H) :
∣∣(λf)(x, y)

∣∣→ 0 as d(x,H) , d(y,H)→ 0}.

Clearly for each ideal E in Lipα(X,B) with hull(E) = H, we have:

Remark 1. (i) J(H) is the minimum ideal, and J(H) is the minimum closed ideal
of Lipα(X,B), where the norm closure J(H) of J(H) is the intersection of all closed
sets that contain J(H).
(ii) I(H) is the maximum ideal of Lipα(X,B), and
(iii) J(H) ⊂ E ⊂ I(H).

Below we prove a theorem, which we need to prove the main result of the article.

Theorem 5. Let H be a non-empty closed subset of X. Then J(H) = I(H)2, that
by I(H)2 we mean the norm closure of the set of linear combinations of products fg
where f, g ∈ I(H).

Proof. Since J(H) and I(H)2 are ideals in Lipα(X,B), Remark 1 implies that
J(H) ⊆ I(H)2.

Now to prove the other side of the relationship, let f, g ∈ I(H) be arbitrary such
that for each ε > 0 and any (x, y) ∈ Y∣∣(Λof)(x)

∣∣ < ε

2 Lαg (x, y)
and

∣∣(Λog)(y)
∣∣ < ε

2 Lαf (x, y)

when d(x,H), d(y,H) → 0. Then for any (x, y) ∈ Y as d(x,H), d(y,H) → 0 we
have
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∣∣(λ(fg)
)
(x, y)

∣∣ =

∣∣(Λo(fg)
)
(x)−

(
Λo(fg)

)
(y)

∣∣
dα(x, y)

=

∣∣(Λof)(x) (Λog)(x)− (Λof)(y) (Λog)(y)
∣∣

dα(x, y)

≤ 1

dα(x, y)

(∣∣(Λof)(x)
∣∣ ∣∣(Λog)(x)− (Λog)(y)

∣∣
+
∣∣(Λog)(y)

∣∣ ∣∣(Λof)(x)− (Λof)(y)
∣∣)

≤
∣∣(Λof)(x)

∣∣ Lαg (x, y) +
∣∣(Λog)(y)

∣∣ Lαf (x, y)

<
ε

2
+
ε

2
= ε.

This implies that fg ∈ J(H). It follows that I(H)2 ⊆ J(H), and the proof is
complete. 4

Let E be an ideal in Lipα(X,B). E is called primary if its hull contains exactly
one point.

Now we prove the second main result of the article. The primary ideals of
Lipα(X,B) are characterized as follows.

Theorem 6. Let a ∈ X, and take H = {a}. Suppose that E be a norm closed
subspace of Lipα(X,B) such that J(H) ⊂ E ⊂ I(H). Then E is a primary ideal of
Lipα(X,B). Conversely, every primary ideal of Lipα(X,B) is of this form.

Proof. Let f ∈ E and g ∈ Lipα(X,B) be arbitrary. Then g − (Λog)(a) ∈ I(H).
Hence, since J(H) = I(H)2 by Theorem 2,(

g − (Λog)(a)
)
f ∈ I(H)E ⊂ I(H)2 ⊂ J(H) ⊂ E.

Thus
(
g − (Λog)(a)

)
f ∈ E. Since (Λog)(a) is a constant and f ∈ E, we have

(Λog)(a)f ∈ E. So gf ∈ E. As the same way, fg ∈ E. This shows that E is an
ideal. Since

hull(E) = {x ∈ X : (Λof)(x) = 0 , ∀f ∈ E} = {a},

E is clearly primary.
The converse of theorem is true by Remark 1. 4
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