## AN APPROACH TO SYMMETRIC NUMERICAL SEMIGROUPS

## A. Çelik

Abstract. In this study, we will get some results in a class of the family of symmetric numerical semigroups such that $S_{r}=\langle 7,7 r+6\rangle$ where $r \geq 1, r \in \mathbb{Z}$. We will also examine Arf closure of these numerical semigroups.

2010 Mathematics Subject Classification: 20M14.
Keywords: Symmetric numerical semigroup, Arf closure, genus.

## 1. Introduction

Let $\mathbb{N}_{0}$ denote the monoid of nonnegative integers under addition. A submonoid $S$ of $\mathbb{N}_{0}$ is called a numerical semigroup such that $\mathbb{N} \backslash S$ is finite. Let $S=\left\langle c_{1}, c_{2}, \cdots, c_{n}\right\rangle$ be numerical semigroup where $c_{1}, c_{2}, \cdots, c_{n}$ are relatively prime positive integer. In this case, we write

$$
S=\left\langle c_{1}, c_{2}, \cdots, c_{n}\right\rangle=\left\{\sum_{i=1}^{n} t_{i} c_{i}: t_{i} \in \mathbb{N}_{0}\right\} .
$$

Here, $c_{1}$ is called multiplicity of $S$ and is denoted by $m(S)$. Let $S$ be a numerical semigroup. Then, the greatest integer which doesn't belong to $S$ is called the Frobenius number of $S$ and is denoted by $F(S)$, that is $F(S)=\max (\mathbb{Z} \backslash S)$. Also $n(S)=\operatorname{Card}(\{0,1,2, \cdots, F(S)\} \cap S)$ is called determine number of $S$ ( see [5]). Thus we can write that

$$
\begin{aligned}
S=\left\langle c_{1}, c_{2}, \cdots, c_{n}\right\rangle & =\left\{\sum_{i=1}^{n} t_{i} c_{i}: t_{i} \in \mathbb{N}_{0}\right\} \\
& =\left\{s_{0}=0, s_{1}, s_{2}, \cdots, s_{n-1}, s_{n}=F(S)+1, \rightarrow \cdots\right\},
\end{aligned}
$$

where $s_{i}<s_{i+1}, n=n(S)$ and the arrow means that every integer greater than $F(S)+1$ belongs to $S$ for $i=1,2, \cdots, n=n(S)$ (see [3]).
A. Çelik - An approach to symmetric numerical semigroups

If $d \in \mathbb{N}_{0}$ and $d \notin S$, then $d$ is called gap of $S$. We denote the set of gaps of $S$ by $H(S)$, that is $H(S)=\left\{a \in \mathbb{N}_{0}: a \notin S\right\}$ and the $G(S)=\operatorname{Card}(H(S))$ is called the genus of $S$. It is known that $G(S)+n(S)=F(S)+1$ ( see [4]).
$S$ is called symmetric numerical semigroup if $F(S)-p \in S$, for $p \in \mathbb{Z} \backslash S$. It is known the numerical semigroup $S=\left\langle c_{1}, c_{2}\right\rangle$ is symmetric $F(S)=c_{1} c_{2}-c_{1}-c_{2}$ and $n(S)=\frac{F(S)+1}{2}($ see $[1])$.

A numerical semigroup $S$ is called Arf if $c_{1}+c_{2}-c_{3} \in S$, for all $c_{1}, c_{2}, c_{3} \in S$ such that $c_{1} \geq c_{2} \geq c_{3}$. The smallest Arf numerical semigroup containing a numerical semigroup $S$ is called the Arf closure of $S$, and is denoted by $\operatorname{Arf}(S)$ (for details see $[2,6])$. If $S$ is a numerical semigroup such that $S=\left\langle c_{1}, c_{2}, \cdots, c_{n}\right\rangle$, then $L(S)=\left\langle c_{1}, c_{2}-c_{1}, c_{3}-c_{1}, \cdots, c_{n}-c_{1}\right\rangle$ is called Lipman numerical semigroup of $S$, and it is known that
$L_{0}(S)=S \subseteq L_{1}(S)=L\left(L_{0}(S)\right) \subseteq L_{2}=L\left(L_{1}(S)\right) \subseteq \cdots \subseteq L_{v}=L\left(L_{v-1}(S)\right) \subseteq \cdots \subseteq \mathbb{N}$.
In this study, we will show outcome of a class of symmetric numerical semigroups such that $S_{r}=\langle 7,7 r+6\rangle$ where $r \geq 1, r \in \mathbb{Z}$. Also, we will examine Arf closure of these numerical semigroups.

## 2. Main Results

Theorem 1. Let $S_{r}=\langle 7,7 r+6\rangle$ be numerical semigroup where $r \geq 1, r \in \mathbb{Z}$. Then we have

$$
\begin{aligned}
& (a) F\left(S_{r}\right)=42 r+29 \\
& (b) n\left(S_{r}\right)=21 r+15 \\
& (c) G\left(S_{r}\right)=21 r+15 .
\end{aligned}
$$

Proof. Let $S_{r}=\langle 7,7 r+6\rangle$ be numerical semigroup where $r \geq 1, r \in \mathbb{Z}$. Then $S_{r}$ is symmetric and we find that

$$
\begin{aligned}
& \text { (a) } F\left(S_{r}\right)=7(7 r+6)-7-7 r-6=42 r+29 \\
& \text { (b) } n\left(S_{r}\right)=\frac{F\left(S_{r}\right)+1}{2}=\frac{42 r+29+1}{2}=21 r+15 \\
& \text { (c) } G\left(S_{r}\right)=42 r+29+1-21 r-15=21 r+15 \text { from } G\left(S_{r}\right)=F\left(S_{r}\right)+1-n\left(S_{r}\right)
\end{aligned}
$$

Theorem 2. Let $S_{r}=\langle 7,7 r+6\rangle$ be numerical semigroup where $r \geq 1, r \in \mathbb{Z}$. Then $\operatorname{Arf}\left(S_{r}\right)=\{0,7,14,21, \cdots, 7 r, 7 r+6, \rightarrow \cdots\}$.
A. Çelik - An approach to symmetric numerical semigroups

Proof. It is trivial $m_{0}=7$ since $L_{0}\left(S_{r}\right)=S_{r}$. Thus, we write $L_{1}\left(S_{r}\right)=\langle 7,7 r-1\rangle$. In this case,
(1) If $7 r-1<7$ (if $r=1$ ) then $S_{1}=\langle 7,13\rangle, L_{1}\left(S_{1}\right)=\langle 7,6\rangle=\langle 6,7\rangle, m_{1}\left(S_{1}\right)=$ $m_{1}=6, L_{2}\left(S_{1}\right)=\langle 6,1\rangle=\langle 1,6\rangle=\langle 1\rangle=\mathbb{N}_{0}, m_{2}\left(S_{1}\right)=m_{2}=1$.

In this way, we have that $\operatorname{Arf}\left(S_{1}\right)=\{0,7,13, \rightarrow \cdots\}$.
(2) If $7 r-1 \geq 7$ (if $r \geq 2$ ) then $L_{1}\left(S_{r}\right)=\langle 7,7 r-1\rangle$ and $m_{1}\left(S_{r}\right)=m_{1}=7$. In this case, we write $L_{2}\left(S_{r}\right)=\langle 7,7 r-8\rangle$.
(a) If $r=2$ then $L_{2}\left(S_{2}\right)=\langle 7,6\rangle=\langle 6,7\rangle, m_{2}\left(S_{2}\right)=m_{2}=6, L_{3}\left(S_{2}\right)=\langle 6,1\rangle=$ $\langle 1,6\rangle=\langle 1\rangle=\mathbb{N}_{0}, m_{3}\left(S_{2}\right)=m_{3}=1$. So, we have $\operatorname{Arf}\left(S_{2}\right)=\{0,7,14,20, \rightarrow \cdots\}$.
(b) If $r>2$ then $L_{2}\left(S_{r}\right)=\langle 7,7 r-8\rangle$ and $m_{2}\left(S_{r}\right)=m_{2}=7$ and $L_{3}\left(S_{r}\right)=\langle 7,7 r-15\rangle$. In this condition,
(i) If $r=3$ then $L_{3}\left(S_{3}\right)=\langle 7,6\rangle=\langle 6,7\rangle, m_{3}\left(S_{3}\right)=m_{3}=6, L_{4}\left(S_{3}\right)=\langle 6,1\rangle=$ $\langle 1,6\rangle=\langle 1\rangle=\mathbb{N}_{0}, m_{4}\left(S_{3}\right)=m_{4}=1$. So we find that $\operatorname{Arf}\left(S_{3}\right)=\{0,7,14,21,27 \rightarrow$ $\cdots\}$.
(ii) If $r>3$ then $L_{3}\left(S_{r}\right)=\langle 7,7 r-15\rangle$ and $m_{3}\left(S_{r}\right)=m_{3}=7$ and $L_{4}\left(S_{r}\right)=$ $\langle 7,7 r-22\rangle$. In this case,
(1')If $r=4$ then $L_{4}\left(S_{4}\right)=\langle 7,6\rangle=\langle 6,7\rangle, m_{4}\left(S_{4}\right)=m_{4}=6, L_{5}\left(S_{4}\right)=\langle 6,1\rangle=$ $\langle 1,6\rangle=\langle 1\rangle=\mathbb{N}_{0}, m_{5}\left(S_{4}\right)=m_{5}=1$. Thus we have $\operatorname{Arf}\left(S_{4}\right)=\{0,7,14,21,28,34 \rightarrow$ $\cdots\}$.
(2')If $r>4$ then $L_{4}\left(S_{r}\right)=\langle 7,7 r-22\rangle$ and $m_{4}\left(S_{r}\right)=m_{4}=7$ and we write $L_{5}\left(S_{r}\right)=$ $\langle 7,7 r-29\rangle$. If we go on the operations then we obtain Arf closure of $\operatorname{Arf}\left(S_{r}\right)$ as follows

$$
\operatorname{Arf}\left(S_{r}\right)=\{0,7,14,21, \cdots, 7 r, 7 r+6, \rightarrow \cdots\} .
$$

Thus, the proof is completed.
Corollary 3. Let $S_{r}=\langle 7,7 r+6\rangle$ be numerical semigroup where $r \geq 1, r \in \mathbb{Z}$. Then we have

$$
\begin{aligned}
& (a) F\left(\operatorname{Arf}\left(S_{r}\right)\right)=7 r+5 \\
& \text { (b) } n\left(\operatorname{Arf}\left(S_{r}\right)\right)=r+1 \\
& \text { (c) } G\left(\operatorname{Arf}\left(S_{r}\right)\right)=6 r+5 .
\end{aligned}
$$

Proof. Let $S_{r}=\langle 7,7 r+6\rangle$ be numerical semigroup where $r \geq 1, r \in \mathbb{Z}$. So, we write that $F\left(\operatorname{Arf}\left(S_{r}\right)\right)=7 r+5$ from Theorem 2. On the other hand, we find that
$n\left(\operatorname{Arf}\left(S_{r}\right)\right)=\operatorname{Card}\left(\{0,1,2, \cdots, 7 r+5\} \cap \operatorname{Arf}\left(S_{r}\right)\right)=\operatorname{Card}(\{0,7,14,21, \cdots, 7 r\})=r+1$
and we obtain

$$
G\left(\operatorname{Arf}\left(S_{r}\right)\right)=7 r+5+1-r-1=6 r+5
$$

since

$$
G\left(\operatorname{Arf}\left(S_{r}\right)\right)=F\left(\operatorname{Arf}\left(S_{r}\right)\right)+1-n\left(\operatorname{Arf}\left(S_{r}\right)\right) .
$$

A. Çelik - An approach to symmetric numerical semigroups

Corollary 4. Let $S_{r}=\langle 7,7 r+6\rangle$ be numerical semigroup where $r \geq 1, r \in \mathbb{Z}$. Then we have

$$
\begin{aligned}
& \text { (a) } F\left(S_{r}\right)=F\left(\operatorname{Arf}\left(S_{r}\right)\right)+35 r+24 \\
& \text { (b) } n\left(S_{r}\right)=n\left(\operatorname{Arf}\left(S_{r}\right)\right)+20 r+14 \\
& \text { (c) } G\left(S_{r}\right)=G\left(\operatorname{Arf}\left(S_{r}\right)\right)+15 r+10 .
\end{aligned}
$$

Proof. Let $S_{r}=\langle 7,7 r+6\rangle$ be numerical semigroup where $r \geq 1, r \in \mathbb{Z}$. We have

$$
\begin{aligned}
& (a) F\left(\operatorname{Arf}\left(S_{r}\right)\right)+35 r+24=(7 r+5)+35 r+24=42 r+29=F\left(S_{r}\right) \\
& \text { (b) } n\left(\operatorname{Arf}\left(S_{r}\right)\right)+20 r+14=(r+1)+20 r+14=21 r+15=n\left(S_{r}\right) \\
& \text { (c) } G\left(\operatorname{Arf}\left(S_{r}\right)\right)+15 r+10=(6 r+5)+15 r+10=21 r+15=G\left(S_{r}\right)
\end{aligned}
$$

from Corollary 3.
Corollary 5. Let $S_{r}=\langle 7,7 r+6\rangle$ be numerical semigroup where $r \geq 1, r \in \mathbb{Z}$. Then we have

$$
\begin{aligned}
& \text { (a) } F\left(S_{r+1}\right)=F\left(S_{r}\right)+42 \\
& \text { (b) } n\left(S_{r+1}\right)=n\left(S_{r}\right)+21 \\
& \text { (c) } G\left(S_{r+1}\right)=G\left(S_{r}\right)+21 .
\end{aligned}
$$

Corollary 6. Let $S_{r}=\langle 7,7 r+6\rangle$ be numerical semigroup where $r \geq 1, r \in \mathbb{Z}$. Then the following equalities are satisfied:

$$
\begin{aligned}
& (a) F\left(\operatorname{Arf}\left(S_{r+1}\right)\right)=F\left(\operatorname{Arf}\left(S_{r}\right)\right)+7 \\
& (b) n\left(\operatorname{Arf}\left(S_{r+1}\right)\right)=n\left(\operatorname{Arf}\left(S_{r}\right)\right)+1 \\
& (c) G\left(\operatorname{Arf}\left(S_{r+1}\right)\right)=G\left(\operatorname{Arf}\left(S_{r}\right)\right)+6 .
\end{aligned}
$$

Example 1. We put $r=1$ in $S_{r}=\langle 7,7 r+6\rangle$ symmetric numerical semigroup. Then we have
$S_{1}=\langle 7,13\rangle=\{0,7,13,14,20,21,26,27,28,33,34,35,39,40,41,42, \cdots, 72, \rightarrow, \cdots\}$.
In this case, we have $F\left(S_{1}\right)=71, n\left(S_{1}\right)=36$,

$$
\begin{aligned}
H\left(S_{1}\right)= & \{1,2,3,4,5,6,8,9,10,11,12,15,16,17,18,19,22,23,24,25,29,30, \\
& 31,32,36,37,38,43,45,46,50,51,58,64,65,69,71\},
\end{aligned}
$$

$$
G\left(S_{1}\right)=\operatorname{Card}\left(H\left(S_{1}\right)\right)=36
$$

A. Çelik - An approach to symmetric numerical semigroups

$$
\begin{gathered}
\operatorname{Arf}\left(S_{1}\right)=\{0,7,13, \rightarrow, \cdots\}, \\
F\left(\operatorname{Arf}\left(S_{1}\right)\right)=12, \\
n\left(\operatorname{Arf}\left(S_{1}\right)\right)=2, \\
H\left(\operatorname{Arf}\left(S_{1}\right)\right)=\{1,2,3,4,5,6,8,9,10,11,12\}
\end{gathered}
$$

and

$$
G\left(\operatorname{Arf}\left(S_{1}\right)\right)=11
$$

So we get

$$
\begin{aligned}
& F\left(\operatorname{Arf}\left(S_{1}\right)\right)+35+24=59+12=71=F\left(S_{1}\right) \\
& n\left(\operatorname{Arf}\left(S_{1}\right)\right)+20+14=34+2=36=n\left(S_{1}\right) \\
& G\left(\operatorname{Arf}\left(S_{1}\right)\right)+15+10=25+11=36=G\left(S_{1}\right)
\end{aligned}
$$

from Corollary 4.
We put $r=2$ then we write in $S_{r}=\langle 7,7 r+6\rangle$. Then we write

$$
S_{2}=\langle 7,20\rangle=\{0,7,14,21,27, \cdots, 114, \rightarrow \cdots\}
$$

We have

$$
\begin{aligned}
& F\left(S_{2}\right)=113 \\
& n\left(S_{2}\right)=57 \\
& G\left(S_{2}\right)=\operatorname{Card}\left(H\left(S_{2}\right)\right)=57 \\
& \operatorname{Arf}\left(S_{2}\right)=\{0,7,14,20, \rightarrow \cdots\} \\
& G\left(\operatorname{Arf}\left(S_{2}\right)\right)=17
\end{aligned}
$$

So, we find that

$$
\begin{aligned}
& F\left(\operatorname{Arf}\left(S_{2}\right)\right)+70+24=94+19=113=F\left(S_{2}\right) \\
& n\left(\operatorname{Arf}\left(S_{2}\right)\right)+40+14=54+3=57=n\left(S_{2}\right) \\
& G\left(\operatorname{Arf}\left(S_{2}\right)\right)+30+10=40+17=57=G\left(S_{2}\right)
\end{aligned}
$$

from Corollary 4.

## References

[1] Froberg R., Gotlieb, C. and Haggkvist R., On numerical semigroups, Semigroup Forum, 35, (1987), 63-68.
[2] İlhan S. and Karakaş H.亡̇., Arf numerical semigroups, Turkish Journal of Mathematics, 41, (2019), 1448-1457.
[3] Jonhson S.M., A Linear diophantine problem, Canad. J. Math.,12, (1960), 390398.
[4] Kirfel C. and Pellikaan R., The minimum distance of codes in an array coming telescopic semigroups, Special issue on Algebraic Geometry Codes, IEEE Trans. Inform. Theory, 41, (1995), 1720-1732.
[5] Rosales J.C., On symmetric numerical semigroups, Journal of Algebra, 182, (1996), 422-434.
[6] Süer M. and İlhan S., On Telescopic Numerical Semigroups families with embedding Dimension 3, Journal of Science and Technology, Erzincan Üniversitesi,12 (1), (2019),457-462.

## Ahmet Çelik

Adıyaman University, Technical Sciences Vocational School, Department of Technologies Computer, Adıyaman, TURKEY
email: acelik@adiyaman.edu.tr

