http://www.uab.ro/auajournal/

No. 70/2022

pp. 1-6

doi: 10.17114/j.aua.2022.70.01

MAPPING PROPERTIES OF AN INTEGRAL OPERATOR ASSOCIATED WITH MITTAG-LEFFLER FUNCTIONS

S. Porwal, N. Magesh

ABSTRACT. The main object of this paper is to obtain the mapping properties of an integral operator associated with Mittag - Leffler function of the first kind on a subclass of analytic univalent functions.

2010 Mathematics Subject Classification: 30C45.

Keywords: analytic function, univalent function, Mittag-Leffler function, convex function.

1. Introduction

Let \mathcal{A} stand for the class of functions f of the form

$$f(z) = z + \sum_{k=2}^{\infty} a_k z^k, \tag{1}$$

which are analytic in the open unit disk $\Delta = \{z : z \in \mathbb{C} \text{ and } |z| < 1\}.$

The function $f \in \mathcal{A}$ satisfy the normalization condition f(0) = f'(0) - 1 = 0. Further, we let S be the subclass of \mathcal{A} consisting of functions f(z) of the form (1), which are univalent in Δ . In 1994, Uralegaddi et al.[18] introduced the class $N(\beta)$ consisting of functions f(z) of the form (1) and satisfy the following analytic criteria

$$\Re\left\{1 + \frac{z f''(z)}{f'(z)}\right\} < \beta, \quad \text{where} \quad 1 < \beta \le \frac{3}{2}.$$

It is worthy to note that the class $N(\beta)$ is analogues to the class of convex functions of order β . The class $N(\beta)$ was extensively studied by Uralegaddi et al.[18] for functions f(z) of the form (1) with $a_n \geq 0$ ($n \geq 2$). The class $N(\beta)$ was further generalized by Dixit and Chandra [5], Dixit and Pathak [6], Dixit et al. [7], Porwal and Dixit [12] and Porwal et al. [15]etc.

The study of integral operators are interesting topic of research in geometric function theory. In 2008, Breaz [3] studied the integral operator for the class $N(\beta)$. This result was extended by Porwal [10]. Several researchers introduced various integral operators involving Bessel functions and established a co-relation between complex analysis and special functions. In this direction Baricz and Frasin [4], Frasin [8], Magesh et al. [9], Porwal and Breaz[11], Porwal and Kumar[13], Porwal et al. [14] makes a significant contribution. The integral operators associated with Bessel functions attracts to the researchers to obtain analogues results for other special functions. Recently, Srivastava et al. [17] investigated a new integral operator involving Mittag-Leffler function. Now, we recall the definition of Mittag-Leffler function.

Definition 1. Let $E_{\alpha}(z)$ be the function defined by

$$E_{\alpha}(z) = \sum_{n=0}^{\infty} \frac{z^n}{\Gamma(\alpha n + 1)}, \qquad z \in \mathbb{C}, \ \Re(\alpha) > 0.$$

The function $E_{\alpha}(z)$ was introduced by Mittag-Leffler function in [16]. Wiman [19, 20] generalized the Mittag-Leffler function $E_{\alpha}(z)$ into a more general function $E_{\alpha,\beta}(z)$

$$E_{\alpha,\beta}(z) = \sum_{n=0}^{\infty} \frac{z^n}{\Gamma(\alpha n + \beta)}, \qquad \alpha, \beta \in \mathbb{C}, \Re(\alpha) > 0.$$
 (2)

It is easy to verify that Mittag-Leffler function $E_{\alpha,\beta}(z)$ is not a member of class A. Therefore, we normalize the Mittag-Leffler function by

$$\mathbb{E}_{\alpha,\beta}(z) = \Gamma(\beta)z \ E_{\alpha,\beta}(z)$$

$$\mathbb{E}_{\alpha,\beta}(z) = z + \sum_{n=2}^{\infty} \frac{\Gamma(\beta)}{\Gamma(\alpha(n-1)+\beta)} \ z^n,$$
(3)

where $\alpha, \beta \in C, \beta \neq 0, -1, -2, \cdots, \Re(\alpha) > 0$.

In this paper, we consider the case for real-valued α, β and $z \in \Delta$. The function $E_{\alpha, \beta}(z)$ is a generalization of very well-known functions. For example,

$$\mathbb{E}_{2,1}(z) = z \cosh \sqrt{z}$$

$$\mathbb{E}_{2,2}(z) = \sqrt{z} \sinh \sqrt{z}$$

$$\mathbb{E}_{2,3}(z) = 2[\cosh \sqrt{z} - 1] \quad \text{and}$$

$$\mathbb{E}_{2,4}(z) = \frac{6[\sinh \sqrt{z} - \sqrt{z}]}{\sqrt{z}}.$$

Bansal and Prajapati[2] (see also [1]) investigated geometric properties of Mittag-Leffler function. In 2017, Srivastava et.al [17] introduced a new integral operator associated with Mittag-Leffler function. Now, we introduce a new integral operator associated with Mittag-Leffler function

$$F_{\alpha_j, \beta_j, \lambda_j}(z) = \int_0^z \prod_{j=1}^n \left(\frac{\mathbb{E}_{\alpha_j, \beta_j}(t)}{t}\right)^{\frac{1}{\lambda_j}} dt.$$
 (4)

In the present paper motivated with the above mentioned work we obtain sufficient condition for integral operator $F_{\alpha_i, \beta_i, \lambda_i}(z)$ to be in the class $N(\beta)$.

To prove our main results we shall require the following lemma.

Lemma 1. (/17/)Let $\alpha, \beta \geq 1$. Then

$$\left| \frac{z \, \mathbb{E}'_{\alpha, \, \beta}(z)}{\mathbb{E}_{\alpha, \, \beta}(z)} - 1 \right| \le \frac{2\beta + 1}{\beta^2 - \beta - 1}, \quad z \in \Delta.$$

2. Main Results

In our first result, we study the mapping properties for the integral operator defined in (4).

Theorem 2. Let n be a positive integer and $\alpha_1, \alpha_2, \dots, \alpha_n \geq 1, \ \beta_1, \beta_2, \dots, \beta_n \geq \frac{1}{2}(1+\sqrt{5})$ and consider the normalized Mittag-Leffler function $\mathbb{E}_{\alpha_j, \beta_j}(z)$ defined by

$$\mathbb{E}_{\alpha_j,\,\beta_j}(z) = \Gamma(\beta_j) \; z \; E_{\alpha_j,\,\beta_j}(z).$$

Let $\beta = min\{\beta_1, \beta_2, \dots, \beta_n\}$ and $\lambda_1, \lambda_2, \dots, \lambda_n$ be non-zero positive real numbers. Moreover, suppose that these numbers satisfy the following inequality

$$0 < \frac{2\beta + 1}{\beta^2 - \beta - 1} \sum_{j=1}^{n} \frac{1}{\lambda_j} \le \frac{1}{2}.$$

Then the function $F_{\alpha_j, \beta_j, \lambda_j}(z)$ defined by (4) is in $N(\delta)$, where $\delta = 1 + \frac{2\beta + 1}{\beta^2 - \beta - 1} \sum_{i=1}^{n} \frac{1}{\lambda_i}$.

Proof. We observe that $\mathbb{E}_{\alpha_j,\beta_j}(z) \in \mathcal{A}$, clearly $F_{\alpha_j,\beta_j,\lambda_j}(0) = F'_{\alpha_j,\beta_j,\lambda_j}(0) - 1 = 0$. Differentiating (4), we have

$$F'_{\alpha_j,\beta_j,\lambda_j}(z) = \prod_{i=1}^n \left(\frac{\mathbb{E}_{\alpha_j,\beta_j}(z)}{z}\right)^{\frac{1}{\lambda_j}}$$

Taking logarithmic differentiation we have

$$\frac{F_{\alpha_{j},\beta_{j},\lambda_{j}}^{"}(z)}{F_{\alpha_{j},\beta_{j},\lambda_{j}}^{"}(z)} = \sum_{j=1}^{n} \frac{1}{\lambda_{j}} \left(\frac{\mathbb{E}_{\alpha_{j},\beta_{j},\lambda_{j}}^{"}(z)}{\mathbb{E}_{\alpha_{j},\beta_{j},\lambda_{j}}(z)} - \frac{1}{z} \right)$$

$$1 + \frac{z F_{\alpha_{j},\beta_{j},\lambda_{j}}^{"}(z)}{F_{\alpha_{j},\beta_{j},\lambda_{j}}^{"}(z)} = 1 + \sum_{j=1}^{n} \frac{1}{\lambda_{j}} \left(\frac{z \mathbb{E}_{\alpha_{j},\beta_{j},\lambda_{j}}^{"}(z)}{\mathbb{E}_{\alpha_{j},\beta_{j},\lambda_{j}}(z)} - 1 \right)$$

$$\Re \left\{ 1 + \frac{z F_{\alpha_{j},\beta_{j},\lambda_{j}}^{"}(z)}{F_{\alpha_{j},\beta_{j},\lambda_{j}}^{"}(z)} \right\} = \sum_{j=1}^{n} \frac{1}{\lambda_{j}} \Re \left\{ \frac{z \mathbb{E}_{\alpha_{j},\beta_{j},\lambda_{j}}^{"}(z)}{\mathbb{E}_{\alpha_{j},\beta_{j},\lambda_{j}}(z)} - 1 \right\} + 1$$

$$\leq \sum_{j=1}^{n} \frac{1}{\lambda_{j}} \left(\frac{2\beta_{j} + 1}{\beta_{j}^{2} - \beta_{j} - 1} \right) + 1 \qquad \leq 1 + \frac{2\beta + 1}{\beta^{2} - \beta - 1} \sum_{j=1}^{n} \frac{1}{\lambda_{j}}.$$

for all $z \in \Delta$ and $(\beta_1, \beta_2, \dots, \beta_n) \ge \frac{1}{2}(1 + \sqrt{5})$. Here, we used that the function $\phi: \left(\frac{1}{2}(1+\sqrt{5}), \infty\right) \to \mathbb{R}$, defined by $\phi(x) = \frac{2x+1}{x^2-x-1}$ is a decreasing function. Therefore, for all $j \in \{1, 2, \dots, n\}$, we have

$$\frac{2\beta_j + 1}{\beta_j^2 - \beta_j - 1} \le \frac{2\beta + 1}{\beta^2 - \beta - 1}.$$

Because

$$1 \le 1 + \frac{2\beta + 1}{\beta^2 - \beta - 1} \sum_{i=1}^{n} \frac{1}{\lambda_i} \le \frac{3}{2}.$$

Further, we obtain $F_{\alpha_j,\beta_j,\lambda_j}(z) \in N(\delta)$, where $\delta = 1 + \frac{2\beta + 1}{\beta^2 - \beta - 1} \sum_{j=1}^n \frac{1}{\lambda_j}$. Thus, the proof of Theorem 2 is complete.

Let $n = 1, \alpha_1 = \alpha, \beta_1 = \beta$ and $\lambda_1 = \lambda$ in Theorem 2, we obtain the following result.

Corollary 3. Let $\alpha \geq 1, \beta \geq \frac{1}{2}(1+\sqrt{5})$, and $\lambda > 0$. Moreover, suppose that these numbers satisfy the following inequality $0 < \frac{2\beta+1}{\lambda(\beta^2-\beta-1)} \leq \frac{1}{2}$. Then the function $F_{\alpha,\beta,\lambda}(z)$ is defined by

$$F_{\alpha,\beta,\lambda}(z) = \int_{0}^{z} \left(\frac{\mathbb{E}_{\alpha,\beta}(t)}{t}\right)^{1/\lambda} dt$$

is in
$$N(\delta)$$
, where $\delta = 1 + \frac{2\beta + 1}{\lambda(\beta^2 - \beta - 1)}$.

Example 1.

1. If
$$0 < \frac{5}{\lambda} \le \frac{1}{2}$$
, then $\int_{0}^{z} \left(\frac{\sinh \sqrt{t}}{\sqrt{t}} \right)^{1/\lambda} dt \in N(\delta)$, $\delta = 1 + \frac{5}{\lambda}$; $\lambda \ge 10$.

2. If
$$0 < \frac{7}{5\lambda} \le \frac{1}{2}$$
, then $\int_{0}^{z} \left(\frac{2[\cosh\sqrt{t}-1]}{t}\right)^{1/\lambda} dt \in N(\delta)$, $\delta = 1 + \frac{7}{5\lambda}$; $\lambda \ge \frac{14}{5}$.

3. If
$$0 < \frac{9}{11\lambda} \le \frac{1}{2}$$
, then $\int_{0}^{z} \left(\frac{6[\sinh \sqrt{t} - \sqrt{t}]}{t^{3/2}} \right)^{1/\lambda} dt \in N(\delta)$, $\delta = 1 + \frac{9}{11\lambda}$; $\lambda \ge \frac{18}{11}$.

References

- [1] A. A. Attiya, Some applications of Mittag-Leffler function in the unit disk, Filomat, 30(7) (2016), 2075-2081.
- [2] D. Bansal and J. K. Prajapat, Certain geometric properties of the Mittag-Leffler functions, Complex Var. Elliptic Equ., 61(3) (2016), 338-350.
- [3] D. Breaz, Certain integral operators on the classes $M(\beta_i)$ and $N(\beta_i)$, J. Inequal. Appl., (2008), Art. ID 719354, 1-4.
- [4] A. Baricz and B. A. Frasin, Univalence of integral operators involving Bessel functions, Appl. Math. Lett., 23(4) (2010), 371-376.
- [5] K. K. Dixit and V. Chandra, On subclass of univalent function with positive coefficients, The Aligarh Bull. Math., 27(2)(2008), 87-93.
- [6] K.K. Dixit and A.L. Pathak, A new class of analytic functions with positive coefficients, Indian J. Pure Appl. Math., 34(2) (2003), 209-218.
- [7] K. K. Dixit, A. Dixit and S. Porwal, A class of univalent functions with positive coefficients associated with the convolution structure, J. Rajasthan Acad. Physical Sciences, 15(3)(2016), 199-209.
- [8] B.A. Frasin, Sufficient conditions for integral operator defined by Bessel functions, J. Math. Inequal., 4 (3) (2010), 301-306.
- [9] N. Magesh, S. Porwal and S.P. Singh, Some geometric properties of an integral operator involving Bessel functions, Novi Sad J. Math., 47(2) (2017), 149 156.
- [10] S. Porwal, Mapping properties of an integral operator, Acta Univ. Apul., 27(2011), 151-155.

- [11] S. Porwal and D. Breaz, *Mapping properties of an integral operator involving Bessel functions*, Analytic Number Theory, Approximation Theory and Spect. Funct., 821-826, Springer, New York, 2014.
- [12] S. Porwal and K.K. Dixit, An application of certain convolution operator involving hypergeometric functions, J. Rajasthan Acad. Physical Sciences, 9 (2), (2010), 173-186.
- [13] S. Porwal and M. Kumar, Mapping properties of an integral operator involving Bessel function, Afr. Math., 28(1-2)(2017), 165-170,
- [14] S. Porwal, A. Gupta and G. Murugusundaramoorthy, New sufficient conditions for starlikeness of certain integral operators involving Bessel functions, Acta Universitatis Matthiae Belii, series Mathematics, 2017, 79-85.
- [15] S. Porwal, K. K. Dixit, V. Kumar and P. Dixit, A subclass of analytic functions defined by convolution, Gen. Math., 19(3) (2011), 57-65.
- [16] G. M. Mittag-Leffler, Sur la nouvelle function E(x), C. R. Acad. Sci. Paris, 137 (1903), 554-558.
- [17] H. M. Srivastava, B. A. Frasin and V. Pescar, *Univalence of integral operators involving Mittag-Leffler functions*, Appl. Math. Inf. Sci., 11(3) (2017), 635-641.
- [18] B. A. Uralegaddi, M. D. Ganigi and S. M. Sarangi, *Univalent functions with positive coefficients*, Tamkang J. Math., 25(3) (1994), 225-230.
- [19] A. Wiman, Über den fundamental satz in der Theorie der Funcktionen E(x), Acta Math., 29(1905), 191-201.
- [20] A. Wiman, $\check{U}ber\ die\ Nullstellum\ der\ Funcktionen\ E(x)$, Acta Math., 29(1905), 271-234.

Saurabh Porwal

Department of Mathematics, Ram Sahay Government Degree College, Bairi-Shivrajpur, Kanpur-209205, (U.P.), India email: saurabhjcb@rediffmail.com

Nanjundan Magesh

Post-Graduate and Research Department of Mathematics Govt Arts College (Men), Krishnagiri - 635 001, Tamilnadu, India email: nmagi2000@gmail.com