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1. Introduction

Let N = { a ∈ Z : a ≥ 0 } and Z be integers set. φ 6= S ⊆ N, S is called a numerical
semigroup if it satisfied following conditions

• 0 ∈ S,

• a1 + a2 ∈ S, for all a1, a2 ∈ S,

• Card(N\S) <∞. (this condition equivalent to gcd(S) = 1 and gcd(S) =greatest
common divisor the element of S).

We define the following integers for numerical semigroup S:

F (S) = max{x ∈ Z : x /∈ S } is the Frobenius number of S;
m(S) = min{a ∈ S : a 6= 0 } is the multiplicity of S;
n(S) = Card ({0, 1, 2, ..., F (S)} ∩ S) is determine number of S ([1, 5, 9]).

The numerical semigroup S is symmetric if f(S)−a ∈ S for all a ∈ Z\S. It is known
that every numerical semigroupS =< k1, k2 > is symmetric, f(S) = k1k2 − k1 − k2
and n(S) = f(S)+1

2 ([1, 12]) .
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If S is a numerical semigroup such that S =< x1, x2, ..., xu >, then we ob-
serve that S =< x1, x2, ..., xu >= {s0 = 0, s1,, s2, ..., sn−1, sn = F (S) + 1,→ ...}
where si < si+1, n = n(S), and the arrow means that every integer greater than
F (S) + 1 belongs to S, for i = 1, 2, ..., n = n(S). Here, we say the number
K = K(S) = F (S) + 1 is conductor of S. Let S =< x1, x2, ..., xu > be a numerical
semigroup. Then e(S) = u is called embedding dimension of S. It is known that
e(S) ≤ m(S). The numerical semigroup is maximal embedding dimension (MED)
if e(S) = m(S) ([5, 9]).

We give following definitions for a numerical semigroup S

Si = {s ∈ S : s ≥ si} for i ≥ 0, si ∈ S;

S(i) = {k ∈ N : k + Si ⊆ S}.

Here, every the set S(i) is a numerical semigroup and we write the following
chain:

Sn ⊂ Sn−1 ⊂ ... ⊂ S1 ⊂ S0 = S = S(0) ⊂ S(1) ⊂ ... ⊂ S(n− 1) ⊂ S(n) = N.

The number t(S) = Card(S(1) \S) is called the type of S. Likewise, we put for
i = 1, 2, ..., n = n(S); ti(S) = Card(S(i) \S(i − 1)). In this way, it is possible to
associate with every numerical semigroup S a numerical sequence {t1, t2, ..., tn(S)}
which is called the type sequence of S. It is known that, 1 ≤ ti(S) ≤ t1(S) and
t1(S) = t(S) ([7]).

Let S a numerical semigroup then S has maximal length if n(S)(t(S) + 1) =
F (S) + 1. Also, S has almost maximal length if n(S)(t(S) + 1) = F (S) + 2 (for
details see [6,11]).

A numerical semigroup S is Arf if s1 + s2 − s3 ∈ S, for all s1, s2, s3 ∈ S such
that s1 ≥ s2 ≥ s3. It is well known that any Arf numerical semigroup is maximal
embedding dimension (MED), but its inverse is not true. For example, the numerical
semigroup S =< 3, 10, 14 > is MED but it is not Arf. S is called saturated numerical
semigroup if s + n1s1 + n2s2 + ... + nksk ∈ S, where sj ∈ S and nj ∈ Z such that
n1s1 + n2s2 + ... + nksk ≥ 0 and sj ≤ s for j = 1, 2, ..., k. Also, it is known that a
saturated numerical semigroup is Arf. But, an Arf numerical semigroup need not be
saturated. For example, the numerical semigroup S =< 4, 14, 17, 19 > is Arf but it
is not saturated (for details see [2,3,4]). It is known that if

{
t1, t2, ..., tn(S)

}
the type
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sequence of S Arf numerical semigroup, then ti = si− si−1− 1 , for i = 1, 2, ..., n(S)
([10]).

2. MAIN RESULTS

Theorem 1. ([4]) Let S be a numerical semigroup and dS(a) = gcd{x ∈ S : x ≤ a }.
Then the following conditions are equalities:

(1) S is saturated.

(2) a+ dS(a) ∈ S for all a ∈ S\{0}.

(3) a+ k.dS(a) ∈ S for all a ∈ S\{0} and k ∈ N.

Theorem 2. ([8]) Let S be a numerical semigroup with m(S) = 2 and conductor K
such that K ≡ 0(2). Then S =< 2, 2K + 1 > is saturated.

Theorem 3. ([8]) Let S be a numerical semigroup with m(S) = 3 and conductor
K. Then, S is saturated if S is one of following numerical semigroups:

(1) S =< 3,K + 1,K + 2 > for K ≡ 0(3);

(2) S =< 3,K,K + 2 > for K ≡ 2(3).

Theorem 4. ([8]) Let S be a numerical semigroup with m(S) = 5 and conductor
K. Then, S is saturated if S is one of following numerical semigroups:

(1) S =< 5,K + 1,K + 2,K + 3,K + 4 > for K ≡ 0(5);

(2) S =< 5,K,K + 1,K + 2,K + 4 > for K ≡ 2(5);

(3) S =< 5,K,K + 1,K + 3,K + 4 > for K ≡ 3(5);

(4) S =< 5,K,K + 2,K + 3,K + 4 > for K ≡ 4(5).

Theorem 5. ([8]) Let S be a numerical semigroup with m(S) = 7 and conductor
K. Then, S is saturated if S is one of following numerical semigroups:
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(1) S = 〈7,K,K + 1,K + 2,K + 3,K + 4,K + 5,K + 6〉 for K ≡ 0(7);

(2) S = 〈7,K,K + 1,K + 2,K + 3,K + 4,K + 6〉 for K ≡ 2(7);

(3) S = 〈7,K,K + 1,K + 2,K + 3,K + 5,K + 6〉 for K ≡ 3(7);

(4) S = 〈7,K,K + 1,K + 2,K + 4,K + 5,K + 6〉 for K ≡ 4(7);

(5) S = 〈7,K,K + 1,K + 3,K + 4,K + 5,K + 6〉 for K ≡ 5(7);

(6) S = 〈7,K,K + 2,K + 3,K + 4,K + 5,K + 6〉 for K ≡ 6(7).

Theorem 6. ([7]) If S is symmetric numerical semigroup then the type of S is
t(S) = 1.

Theorem 7. Let S be a saturated numerical semigroup with p < 10 multiplicity be
prime number and the conductor K > p. If

K ≡ 0(p)

then ti = p − 1 for ∀i, 1 ≤ i ≤ n(S), where
{
t1, t2, ..., tn(S)

}
is the type sequence of

S.

Proof. Let S be a saturated numerical semigroup with p < 10, p = 2, 3, 5, 7 and
conductor K.

(1) If p = 2 forK ≡ 0(2). Then we write S = 〈2, 2K + 1〉 = {0, 2, 4, 6, ..., 2K,→ ...} .
Let {ti : ∀i, 1 ≤ i ≤ n(S)} be the type sequence of positive integers number. Then,
we get this ti = 1 for ∀i, 1 ≤ i ≤ n(S) from S is symmetric.

(2) If p = 3 for K ≡ 0(3). Then we write
S = 〈3,K + 1,K + 2〉 = {0, 3, 6, 9, ...,K − 3,K,→ ...}. Let {ti : ∀i, 1 ≤ i ≤ n(S)}

be the type sequence of positive integers number. Then

S1 = {s ∈ S : s ≥ s1 = 3} = {3, 6, 9, ...,K − 3,K,→ ...},

S(1) = {x ∈ N : x+ S1 ⊆ S} = {0, 3, 6, 9, ...,K − 6,K − 3,K − 2,K − 1,K,→ ...},

t1(S) = t(S) = Card (S(1)\S) = Card ({K − 2,K − 1}) = 2.
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S2 = {s ∈ S : s ≥ s2 = 6} = {6, 9, ...,K − 3,K,→ ...},

S(2) = {x ∈ N : x+ S2 ⊆ S} = {0, 3, 6, 9, ...,K − 6,K − 5,K − 4,K − 3,K − 2,K − 1,K,→ ...},

t2(S) = Card (S(2)\S(1)) = Card ({K − 5,K − 4}) = 2.

S3 = {s ∈ S : s ≥ s3 = 9} = {9, ...,K − 6,K − 3,K,→ ...},

S(3) = {x ∈ N : x+ S3 ⊆ S} = {0, 3, 6, 9, ...,K − 8,K − 7,K − 6,K − 5, ...,K − 2,K − 1,K,→ ...},

t3(S) = Card (S(3)\S(2)) = Card ({K − 8,K − 7}) = 2.

...

tn(S) = Card (S(n)\S(n− 1)) = Card ({K − (K − 2),K − (K − 1)})
= Card ({2, 1}) = 2.

Thus, we obtain ti = 2 for ∀i, 1 ≤ i ≤ n(S).

(3) If p = 5 for K ≡ 0(5). Then we write S = 〈5,K + 1,K + 2,K + 3,K + 4〉 =
{0, 5, 10, 15, ...,K,→ ...}. Let {ti : ∀i, 1 ≤ i ≤ n(S)} be the type sequence of positive
integers number. Then,

S1 = {s ∈ S : s ≥ s1 = 5} = {5, 10, 15, ...,K − 5,K,→ ...},

S(1) = {x ∈ N : x + S1 ⊆ S} = {0, 5, 10, 15, ..., K − 10, K − 5, K − 4, K − 3, K − 2, K − 1, K,→ ...},

t1(S) = t(S) = Card (S(1)\S) = Card ({K − 4,K − 3,K − 2,K − 1}) = 4.

S2 = {s ∈ S : s ≥ s2 = 10} = {10, 15, ...,K − 5,K,→ ...},

S(2) = {x ∈ N : x+ S2 ⊆ S} = {0, 5, 10, 15, ...,K − 10,K − 9,K − 8,K − 7,K − 6, ...,K,→ ...},

t2(S) = Card (S(2)\S(1)) = Card ({K − 9,K − 8,K − 7,K − 6}) = 4.

...
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tn(S) = Card (S(n)\S(n− 1)) = Card ({K − (K − 4),K − (K − 3),K − (K − 2),K − (K − 1)})
= Card ({4, 3, 2, 1}) = 4

Thus, we obtain ti = 4 for ∀i, 1 ≤ i ≤ n(S).

(4) If p = 7 forK ≡ 0(7). Then we write S = 〈7,K + 1,K + 2,K + 3,K + 4,K + 5,K + 6〉 =
{0, 7, 14, 21, ...,K,→ ...}. If we make some operations in above. We find that ti = 6,
for ∀i, 1 ≤ i ≤ n(S). Therefore, if K ≡ 0(p)then we obtain that ti = p − 1, for
∀i, 1 ≤ i ≤ n(S).

Theorem 8. Let S be a saturated numerical semigroup with P < 10 multiplicity be
prime number, j = 2, 3, ..., p− 1 and the conductor K > p+ j. If

K ≡ j(p)

then the type sequence of S is
{
t1 = p− 1, t2 = p− 1, ..., tn(S)−1 = p− 1, tn(S) = j − 1

}
.

Proof. Let S be a saturated numerical semigroup with p < 10, p = 2, 3, 5, 7 and
conductor K.

(1) If p = 3 and j = 2. for K ≡ j(p). Then we write S = 〈3,K,K + 2〉 =
{0, 3, 6, 9, ...,K − 5,K − 2,K,→ ...} . Let {ti : ∀i, 1 ≤ i ≤ n(S)} be the type sequence
of positive integers number.

S1 = {s ∈ S : s ≥ s1 = 3} = {3, 6, 9, ...,K − 2,K,→ ...},

S(1) = {x ∈ N : x+ S1 ⊆ S} = {0, 3, 6, 9, ...,K − 8,K − 3,K − 2,K − 1,K,→ ...},

t1(S) = t(S) = Card (S(1)\S) = Card ({K − 1,K − 3}) = 2.

S2 = {s ∈ S : s ≥ s2 = 6} = {6, 9, ...,K − 5,K − 2,K,→ ...},

S(2) = {x ∈ N : x+ S2 ⊆ S} = {0, 3, 6, 9, ...,K − 8,K − 6,K − 5,K − 4, ...,K − 2,K − 1,K,→ ...},

t2(S) = Card (S(2)\S(1)) = Card ({K − 6,K − 4}) = 2.

...
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for i = n(S)− 1

Sn(S)−1 =
{
s ∈ S : s ≥ sn(S)−1 = K − 2

}
= {K − 2,K,→ ...},

S(n(S)− 1) =
{
x ∈ N : x+ Sn(S)−1 ⊆ S

}
= {0, 2, 3, 4, ...,K − 2,K,→ ...},

Sn(S)−2 =
{
s ∈ S : s ≥ sn(S)−2 = K − 5

}
= {K − 5,K − 2,K,→ ...},

S(n(S)−2) =
{
x ∈ N : x+ Sn(S)−2 ⊆ S

}
= {0, 3, 5, 6, 7, ...,K − 5,K − 2,K,→ ...},

tn(S)−1 = Card (S(n(S)− 1)\S(n(S)− 2)) = Card ({2, 4}) = 2.

Thus, we obtain ti = 2 for ∀i, 1 ≤ i ≤ n(S)− 1.

Finally, for i = n(S),

Sn(S) =
{
s ∈ S : s ≥ sn(S) = K

}
= {K,→ ...} and

S(n(S)) =
{
x ∈ N : x+ Sn(S) ⊆ S

}
= {0, 1, 2, ...} = N. So, we find that tn(S) =

Card (S(n(S))\S(n(S)− 1) = Card ({1}) = 1.

(2) i) If p = 5 and j = 2 forK ≡ j(p). Then we write S = 〈5,K,K + 1,K + 2,K + 4〉 =
{0, 5, 10, 15, ...,K − 2,K,→ ...} . S is Arf since S is saturated. Thus, we write that
ti = si − si−1 − 1, for ∀i, 1 ≤ i ≤ n(S) from S is Arf. In this case, we have
ti = si− si−1− 1 = 4 = p− 1; for ∀i, 1 ≤ i ≤ n(S), and tn(S) = sn(S)− sn(S)−1− 1 =
K − (K − 2)− 1 = 1 = j − 1.

ii) If p = 5 and j = 3 forK ≡ j(p). Then we write S = 〈5,K,K + 1,K + 3,K + 4〉 =
{0, 5, 10, 15, ...,K − 3,K,→ ...} . So, S is Arf since S is saturated. Thus, we write
that ti = si − si−1 − 1, for ∀i, 1 ≤ i ≤ n(S) from S is Arf. In this case, we have
ti = si− si−1− 1 = 4 = p− 1; for ∀i, 1 ≤ i ≤ n(S), and tn(S) = sn(S)− sn(S)−1− 1 =
K − (K − 3)− 1 = 2 = j − 1.

iii) If p = 5 and j = 4 forK ≡ j(p). Then we write S = 〈5,K,K + 2,K + 3,K + 4〉 =
{0, 5, 10, 15, ...,K − 4,K,→ ...} . So, S is Arf since S is saturated. Thus, we write
that ti = si − si−1 − 1, for ∀i, 1 ≤ i ≤ n(S) from S is Arf. In this case, we have
ti = si− si−1− 1 = 4 = p− 1; for ∀i, 1 ≤ i ≤ n(S), and tn(S) = sn(S)− sn(S)−1− 1 =
K − (K − 4)− 1 = 3 = j − 1.
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(3) i) If p = 7 and j = 2 for K ≡ j(p). Then we write
S = 〈7,K,K + 1,K + 2,K + 3,K + 4,K + 6〉 = {0, 7, 14, 21, ...,K − 2,K,→ ...} .

So, S is Arf since S is saturated. Thus, we write that ti = si − si−1 − 1, for
∀i, 1 ≤ i ≤ n(S) from S is Arf. So, we have ti = si − si−1 − 1 = 6 = p − 1; for
∀i, 1 ≤ i ≤ n(S), and tn(S) = sn(S) − sn(S)−1 − 1 = K − (K − 2)− 1 = 1 = j − 1.

ii) If p = 7 and j = 3 for K ≡ j(p). Then we write
S = 〈7,K,K + 1,K + 2,K + 3,K + 5,K + 6〉 = {0, 7, 14, 21, ...,K − 3,K,→ ...} .

So, S is Arf since S is saturated. In this case, we write that ti = si − si−1 − 1, for
∀i, 1 ≤ i ≤ n(S) from S is Arf. Thus, we have ti = si − si−1 − 1 = 6 = p − 1; for
∀i, 1 ≤ i ≤ n(S), and tn(S) = sn(S) − sn(S)−1 − 1 = K − (K − 3)− 1 = 2 = j − 1.

iii) If p = 7 and j = 4 for K ≡ j(p). Then we write
S = 〈7,K,K + 1,K + 2,K + 4,K + 5,K + 6〉 = {0, 7, 14, 21, ...,K − 4,K,→ ...} .

S is Arf since S is saturated. Thus, we write that ti = si − si−1 − 1, for ∀i, 1 ≤ i ≤
n(S) from S is Arf. We have ti = si − si−1 − 1 = 6 = p − 1; for ∀i, 1 ≤ i ≤ n(S),
and tn(S) = sn(S) − sn(S)−1 − 1 = K − (K − 4)− 1 = 3 = j − 1.

iv) If p = 7 and j = 5 for K ≡ j(p). Then we write
S = 〈7,K,K + 1,K + 3,K + 4,K + 5,K + 6〉 = {0, 7, 14, 21, ...,K − 5,K,→ ...} .

In this case, S is Arf since S is saturated. Thus, we write that ti = si − si−1 − 1,
for ∀i, 1 ≤ i ≤ n(S) from S is Arf. So, we have ti = si − si−1 − 1 = 6 = p − 1; for
∀i, 1 ≤ i ≤ n(S), and tn(S) = sn(S) − sn(S)−1 − 1 = K − (K − 5)− 1 = 4 = j − 1.

v) If p = 7 and j = 6 for K ≡ j(p). Then we write
S = 〈7,K,K + 2,K + 3,K + 4,K + 5,K + 6〉 = {0, 7, 14, 21, ...,K − 6,K,→ ...} .

In this case, S is Arf since S is saturated. Thus, we write that ti = si − si−1 − 1,
for ∀i, 1 ≤ i ≤ n(S) from S is Arf. We have ti = si − si−1 − 1 = 6 = p − 1; for
∀i, 1 ≤ i ≤ n(S), and tn(S) = sn(S) − sn(S)−1 − 1 = K − (K − 6)− 1 = 5 = j − 1.

Corollary 9. If S is a saturated numerical semigroup in the Theorem 7 and the
conductor of S is K = pn(S) then S has a maximal length.

Proof. Let S be as in Theorem 7 and K = pn(S). Then, t(S) = p− 1 and, we write
that t(S)n(S) = (p− 1)n(S) = pn(S)−n(S) = K −n(S) = F (S) + 1−n(S). Thus,
S has maximal length.

Corollary 10. Let S be as in Theorem 8. If the conductor of S is K = pn(S)− 1
then S has almost maximal length.
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Proof. Let S be as in Theorem 8. and K = pn(S) − 1. Then, t(S) = p − 1 and
we obtain that n(S)(t(S) + 1) = n(S)(p − 1 + 1) = pn(S) = K + 1 = F (S) + 2.
Therefore, S has almost maximal length.

Example 1. Let’s take j = 0,K = 10 and p = 5 for K ≡ j(p). Then we write
S = 〈5, 11, 12, 13, 14〉 = {0, 5, 10,→ ...} saturated numerical semigroup from Theo-
rem 4(1). In this case, we obtain m(S) = 5, f(S) = 9, n(S) = 2 and K = pn(S) =
5.2 = 10. Also, t(S) = p − 1 = 5 − 1 = 4 from Theorem 7. Thus, S has maximal
length, since n(S) (t(S) + 1) = 2 (4 + 1) = 10 = K = F (S) + 1.

Example 2. If we put j = 6, p = 7 and K = K(S) = 27 in Theorem 5(6). Then
we write S = 〈7, 27, 29, 30, 31, 32, 33〉 = {0, 7, 14, 21, 27,→ ...}. Thus we find that
m(S) = 7, f(S) = 26, n(S) = 4, t(S) = 6 and K = 27 = 7.4 − 1 = pn(S) − 1.
Therefore, S has almost maximal length since n(S) (t(S) + 1) = 4. (6 + 1) = 28 =
26 + 2 = F (S) + 2.
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