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1. Introduction

In this paper, we consider the following higher order Klein-Gordon equation with
logarithmic source term

utt + Pu+ u+ ut = 2u ln |u| , x ∈ Ω, t > 0,
∂iu(x,t)
∂υi

= 0, i = 0, 1, 2, ...,m− 1, x ∈ ∂Ω,

u (x, 0) = u0 (x) , ut (x, 0) = u1 (x) , x ∈ Ω

(1)

where P = (−∆)m, m ≥ 1 is positive integer, Ω is a bounded domain in Rn with

smooth boundary ∂Ω, υ denotes the unit outward normal vector on ∂Ω, and ∂i

∂υi

denotes the i-th order normal derivation.
The model equation (1) arises in logarithmic quantum mechanics, nuclear physics,

optics, supersymmetry and geophysics [5, 6, 7, 21].
When m = 1, (1) becomes

utt −∆u+ u+ ut = u ln |u|2 . (2)

In 2020, Ye [36] proved the existence, exponential decay and blow up of solutions of
the equation (2). Hu et al. [33] studied the following equation

utt −∆u+ u+ ut = u ln |u|k . (3)

47

http://www.uab.ro/auajournal/
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They studied exponential growth and decay of solutions for the equation (3).
In [13], Gorka studied the following Klein-Gordon equation

utt − uxx + u = εu ln |u|2 .

Ye and Li [38] considered the following Klein-Gordon equation

utt −∆u+ u = u ln |u| .

They obtained global existence and blow up of solutions. Hiramatsu et al. [16]
studied the following Klein-Gordon equation

utt −∆u+ u+ ut + |u|2 u = u lnu. (4)

They proved the dynamics of Q-balls in theoretical physics. Later, Han [15] stud-
ied global existence of weak solutions (4). Pişkin and Çalışır [29] investigated the
following Petrovsky equation

utt + ∆2u+ ∆2ut = u ln |u|2 .

They proved energy decay and blow up at infinite time of solutions. Recently,
some authors studied the hyperbolic or parabolic type equations with logarithmic
nonlinearity (see [3, 4, 8, 9, 10, 11, 17, 19, 20, 25, 30, 31, 26, 27, 28, 37, 39]).

The main purpose of this paper is to proved the global existence, the decay and
the global nonexistence of solution to the higher order Klein-Gordon equation with
logarithmic source term (1).

This paper is organized as follows: In Section 2, we present some notations and
lemmas. In Section 3, we prove the global existence and decay of solutions. In
Section 4, we prove the global nonexistence of solutions.

2. Preliminaries

In this section, we denote

‖u‖ = ‖u‖L2(Ω) , ‖u‖p = ‖u‖Lp(Ω) ,

for 1 < p <∞. Also, let Lp (Ω) denote the Lebesgue spaces and Wm,2
0 (Ω) = Hm

0 (Ω)
the Sobolev spaces (see [1, 32], for details).

Next, we define the potential energy functional and Nehari functional of problem
(1)

J(u) =
1

2

∥∥∥P 1
2u
∥∥∥2

+ ‖u‖2 − 1

2

∫
Ω
u2 ln |u|2dx, (5)

I(u) =
∥∥∥P 1

2u
∥∥∥2

+ ‖u‖2 −
∫

Ω
u2 ln |u|2dx, (6)
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E. Pişkin, R. Aksoy – Higher Order Logarithmic Klein-Gordon . . .

and the total energy functional

E(t) =
1

2
‖ut‖2 +

1

2

∥∥∥P 1
2u
∥∥∥2

+ ‖u‖2 − 1

2

∫
Ω
u2 ln |u|2dx

=
1

2
‖ut‖2 + J(u) (7)

for u ∈ Hm
0 (Ω), t ≥ 0 and

E(0) =
1

2
‖u1‖2 +

1

2

∥∥∥P 1
2u0

∥∥∥2
+ ‖u0‖2 −

1

2

∫
Ω
u2

0 ln |u0|2dx (8)

is the initial total energy.
As in Payne and Sattinger [24], The mountain pass value of J(u) (also known as

potential well depth) is defined as

d = inf

{
sup
λ≥0

J(λu) : u ∈ Hm
0 (Ω)/{0}

}
. (9)

Now, we define the so called Nehari manifold (see [23, 24, 34, 35]) as follows

N = {u ∈ Hm
0 (Ω)/{0} : K(u) = 0}

N separates the two unbounded sets

N+ = {u ∈ Hm
0 (Ω)/{0} : K(u) > 0} ∪ {0}

N− = {u ∈ Hm
0 (Ω)/{0} : K(u) < 0} .

Then, the stable set W and the unstable set U as follows

W = {u ∈ Hm
0 (Ω)/{0} : J(u) ≤ d} ∩ N+

U = {u ∈ Hm
0 (Ω)/{0} : J(u) ≤ d} ∩ N−.

It is readily seen that the potential well depht d defined in (9) may also be charac-
terized as

d = inf
u∈N

J(u). (10)

Definition 1. The function u (x, t) is a weak solution of (1) on [0, T ], if

u ∈ C([0, T ], Hm
0 (Ω)), ut ∈ C([0, T ], L2(Ω))

and u satisfies∫
Ω
uttϕdx+

∫
Ω
P

1
2uP

1
2ϕdx+

∫
Ω
utϕdx+

∫
Ω
uϕdx =

∫
Ω
u ln |u|2ϕdx

for each test function ϕ ∈ Hm
0 (Ω) and for almost all t ∈ [0, T ].
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The proof of the following lemma can be done as in [17].

Lemma 1. Let u(x, t) be a solution of the problem (1). Then E(t) is a non-
increasing function for t > 0 and

E′(t) = −‖ut‖2 ≤ 0.

Lemma 2. [1, 32]. Let r be a number with{
2 ≤ r < +∞, if n ≤ 2m,

2 ≤ r ≤ 2n
n−2m , if n > 2m.

Then there is constant C depending on Ω and r such that

‖u‖r ≤ C
∥∥∥P 1

2u
∥∥∥ , ∀u ∈ Hm

0 (Ω).

Lemma 3. [12, 14]. If u ∈ H1
0 (Ω), then for each a > 0, one has the inequality∫

Ω
u2 ln |u|dx ≤ ‖u‖2 ln ‖u‖+

α2

2π
‖∇u‖2 − n

2
(1 + lnα) ‖u‖2 .

Lemma 4. If u ∈ Hm
0 (Ω), then for each a > 0,∫

Ω
u2 ln |u|dx ≤ ‖u‖2 ln ‖u‖+

cpα
2

2π

∥∥∥P 1
2u
∥∥∥2
− n

2
(1 + lnα) ‖u‖2 .

Proof. By using the embedding theorem (‖∇u‖2 ≤ cp
∥∥∥P 1

2u
∥∥∥2

), we arrive at∫
Ω
u2 ln |u|dx ≤ ‖u‖2 ln ‖ u ‖ +

cpα
2

2π

∥∥∥P 1
2u
∥∥∥2
− n

2
(1 + lnα) ‖u‖2 ,

where cp constant.

We conclude this section by stating a local existence result of the problem (1),
which can be established by similar way as done in combination of the arguments
in [2, 18, 22].

Theorem 5. (Local existence). Assume that u0 ∈ Hm
0 (Ω), u1 ∈ L2(Ω). Then there

exists T > 0 such that the problem (1) has a unique local solution u(x, t) which
satisfies

u ∈ C ([0, T );Hm
0 (Ω)) , ut ∈ C([0, T );L2(Ω)).

Moreover, at least one of the following statements holds true:

i. ‖ut‖2 +
∥∥∥P 1

2u
∥∥∥2

+ ‖u‖2 −→∞ as t −→ T−;

ii. T = +∞.
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E. Pişkin, R. Aksoy – Higher Order Logarithmic Klein-Gordon . . .

3. Global existence and decay of solutions

In this section, we establish the global existence and decay of solutions of (1).

Lemma 6. Let u ∈ Hm
0 (Ω) and ‖u‖ 6= 0. Then

I(λu) = λ
d

dλ
J(λu)


> 0, 0 < λ < λ∗,
= 0, λ = λ∗,
< 0, λ∗ < λ < +∞,

where

λ∗ = exp


∥∥∥P 1

2u
∥∥∥2

+ ‖u‖2 − 2
∫

Ω u
2 lnudx

2 ‖u‖2

 .

Proof. From (5) it implies

J(λu) =
λ2

2

∥∥∥P 1
2u
∥∥∥2

+ λ2 ‖u‖2 − λ2

∫
Ω
u2 lnλudx.

A direct computation on above equality, we have

d

dλ
J(λu) = λ

(∥∥∥P 1
2u
∥∥∥2

+ ‖u‖2 − 2 lnλ ‖u‖2 − 2

∫
Ω
u2 lnudx

)
. (11)

Let d
dλJ(λu) = 0, then we have

λ∗ = exp


∥∥∥P 1

2u
∥∥∥2

+ ‖u‖2 − 2
∫

Ω u
2 lnudx

2 ‖u‖2

 .

It follows from (6) that

I(λu) = λ2
∥∥∥P 1

2u
∥∥∥2

+ λ2 ‖u‖2 − 2λ2

∫
Ω
u2 lnudx− 2λ2 lnλ ‖u‖2 . (12)

By (11) and (12), the conclusion in Lemma 6 is valid.

Lemma 7. Assume that u ∈ Hm
0 (Ω). The depth of potential well d is defined as

d =
1

2

(
π

cp

)n
2

en. (13)
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Proof. By definition of I(u) and using Lemma 4, we get

I(u) =
∥∥∥P 1

2u
∥∥∥2

+ ‖u‖2 −
∫

Ω
u2 ln |u|2dx

≥
(

1− cpα
2

π

)(∥∥∥P 1
2u
∥∥∥2

+ ‖u‖2
)

+ [n(1 + lnα)− 2 ln ‖u‖ ] ‖u‖2 (14)

for any α > 0. Taking α =
√

π
cp
, we obtain from (14) that

I(u) ≥ [n(1 + lnα)− 2 ln ‖u‖ ] ‖u‖2 . (15)

We have from Lemma 6 that

sup
λ≥0

J(λu) = J(λ∗u) =
1

2
I(λ∗u) +

1

2
‖λ∗u‖2 . (16)

We obtain from (15) and Lemma 6 that

0 = I(λ∗u) ≥ [n(1 + lnα)− 2 ln ‖λ∗u‖] ‖λ∗u‖2 ,

then
‖λ∗u‖2 ≥ αnen (17)

It follows from (16) and (17) that

sup
λ≥0

J(λu) ≥ 1

2
αnen (18)

By (9) and (18), we get

d =
1

2

(
π

cp

)n
2

en.

Lemma 8. Let E(0) < d. If u0 ∈ N+ and u1 ∈ L2(Ω), then u(t) ∈ N+ for each
t ∈ [0, T ).

Proof. From (7) ve Lemma 1, we obtain

E(t) =
1

2
‖ut‖2 + J(u)

≤ 1

2
‖u1‖2 + J(u0)

= E(0) < d
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for ∀t ∈ [0, T ), which implies that

J(u) < d. (19)

Assume that there exists a number t∗ ∈ [0, T ) such that u(t) ∈ N+ on [0, t∗) and
u(t∗) /∈ N+. Then, in virtue of continuity of u(t),we see u(t∗) ∈ ∂N+. From the
definition of N+ and the continuity of I(u) with respect to t, we have

I(u(t∗)) = 0. (20)

Suppose that (20) holds, then we get from (18) and (15) that

‖u(t∗)‖2 ≥ 2d. (21)

By (5), (6), (20) and (21), we have

J(u(t∗)) =
1

2
‖u(t∗)‖2 +

1

2
I(u(t∗)) ≥ d,

which is contradictive with (19). Hence, the case (20) is impossible. Consequently,
we conclude that u(t) ∈ N+ on [0, T ).

Theorem 9. (Global existence). Assume that u0 ∈ W, u1 ∈ L2(Ω) and E(0) < d.
Then the local solution furnished in Theorem 5 is a global solution and T may be
taken arbitrarily large.

Proof. It suffices to show that

‖ut‖2 +
∥∥∥P 1

2u
∥∥∥2

+ ‖u‖2

is bounded independently of t. Under the hypotheses Theorem 9, we get from Lemma
8 that u ∈ W on [0, T ). So, the following formula holds on [0, T ) by Lemma 4

J(u) =
1

2

∥∥∥P 1
2u
∥∥∥2

+ ‖u‖2 − 1

2

∫
Ω
u2 ln |u|2dx

≥ 1

2

(
1− cpα

2

π

)∥∥∥P 1
2u
∥∥∥2

+
(

1− ln ‖u‖+
n

2
(1 + lnα)

)
‖u‖2 . (22)

By (5), (6) and u ∈ W, we have

J(u) =
1

2
‖u‖2 +

1

2
I(u) ≥ 1

2
‖u‖2 , (23)

which implies that
‖u‖2 ≤ 2J(u) ≤ 2d. (24)
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It follows from (22) and (24), we obtain

J(u) ≥ 1

2

(
1− cpα

2

π

)∥∥∥P 1
2u
∥∥∥2

+

(
1− 1

2
ln 2d+

n

2
(1 + lnα)

)
‖u‖2 . (25)

By Lemma 7 and 0 < α <
√

π
cp
, we have

1− cpα
2

π
≥ 0, 1− 1

2
ln 2d+

n

2
(1 + lnα) > 0.

Thus, we have from (25) that

J(u) ≥ C1

(∥∥∥P 1
2u
∥∥∥2

+ ‖u‖2
)
, (26)

where

C1 = min

{
1

2
− cpα

2

2π
, 1− 1

2
ln 2d+

n

2
(1 + lnα)

}
.

We have from (26) that

1

2
‖ ut ‖2 +C1

(∥∥∥P 1
2u
∥∥∥2

+ ‖u‖2
)
≤ 1

2
‖ut‖2 + J(u) = E(t) ≤ E(0) < d, (27)

which implies that

‖ut‖2 +
∥∥∥P 1

2u
∥∥∥2

+ ‖u‖2 ≤ d

C2
<∞,

where C2 = min {C1, 1} . The above inequality and the continuation principle lead
to the global existence of solution u for the problem (1).

Theorem 10. (Decay). Suppose that E(0) < 1
2

(
π
cp

)n
2
enβ ≤ d, where β is a positive

number which satisfies 0 < β ≤ 1. If u0 ∈ W, u1 ∈ L2(Ω), then there exist two
positive constants κ and k independent of t such that the global solution has the
following exponential decay property

0 < E(t) ≤ κe−kt, ∀t ≥ 0.

Proof. By Lemma 8, we see that u(t) ∈ N+ for all t ≥ 0. Thus, we have 0 < E(t) < d
for all t ≥ 0. In order to prove the decay of solution. We define

F (t) = E(t) + ε

∫
Ω
utudx, (28)

where ε > 0 will be determined later.
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It is easy to prove that there exist two positive constants ξ1 and ξ2 depending
on ε such that

ξ1E(t) ≤ F (t) ≤ ξ2E(t), (29)

for ∀t ≥ 0. In fact, we get from (27) and (28) that

F (t) ≤ E(t) +
ε

2

(
‖ut‖2 + ‖u‖2

)
≤

(
1 + ε+

ε

2C1

)
E(t)

= ξ2E(t). (30)

On the other hand, by (27) and (28), we obtain the following inequality

F (t) ≥ E(t)− ε

2
‖ut‖2 −

ε

2
‖u‖2

≥ 1

2
(1− ε) ‖ut‖2 + J(u)− ε

2C1
E(t). (31)

By choosing ε small enough such that 0 < ε ≤ min
{

1, 2C1
2C1+1

}
, it follows from (31)

that

F (t) ≥
(

1− ε− ε

2C1

)
E(t)

= ξ1E(t). (32)

From (30) and (32), the inequality (29) is valid.
We now differentiate (28), by using the equation (1) and Lemma 1, to obtain

F
′
(t) = (ε− 1) ‖ut‖2 − ε

∥∥∥P 1
2u
∥∥∥2
− ε ‖u‖2 − ε

∫
Ω
utudx+ ε

∫
Ω
u2 ln |u|2dx. (33)

For any ζ > 0, we have from Young’s inequality that∣∣∣∣∫
Ω
utudx

∣∣∣∣ ≤ 1

4ζ
‖ut‖2 + ζ ‖u‖2 . (34)

Therefore, inserting (34) into (33), we obtain

F
′
(t) ≤

(
ε+

ε

4ζ
− 1

)
‖ut‖2 − ε

∥∥∥P 1
2u
∥∥∥2

+ ε(ζ − 1) ‖u‖2 + ε

∫
Ω
u2 ln |u|2dx. (35)
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By using (7) and (35), for any positive constant η, we have

F
′
(t) ≤ −ηεE(t) +

[
ε

(
1 +

η

2
+

1

4η

)
− 1

]
‖ut‖2

+ε
(η

2
− 1
)∥∥∥P 1

2u
∥∥∥2

+ ε(η + ζ − 1) ‖u‖2

+ε
(

1− η

2

)∫
Ω
u2 ln |u|2dx. (36)

Now, choosing 0 < η ≤ 1, and by Lemma 3 and (24), we get

F
′
(t) ≤ −ηεE(t) +

[
ε

(
1 +

η

2
+

1

4η

)
− 1

]
‖ut‖2

−ε
(

1− η

2

)(
1− α2

π

)∥∥∥P 1
2u
∥∥∥2

+ε
{
η + ζ − 1 +

(
1− η

2

)
[ln(2J(t))− n(1 + lnα)]

}
‖u‖2 . (37)

By 0 < η ≤ 1 and J(t) < E(0) < 1
2

(
π
cp

)n
2
enβ ≤ d, we select the constant α to meet√

π
cp
β

1
n ≤ α ≤

√
π
cp
, and take ζ > 0 small sufficiently such that

ζ < 1− η +
(η

2
− 1
)

[ln(2J(t))− n(1 + lnα)]

< 1− η +
(η

2
− 1
)[

ln

((
π

cp

)n
2

enβ

)
− n(1 + lnα)

]

= 1− η +
(η

2
− 1
)

ln


(
π
cp

)n
2
β

α

 .

Then, we obtain

F
′
(t) ≤ −ηεE(t) +

[
ε

(
1 +

η

2
+

1

4η

)
− 1

]
‖ut‖2 . (38)

Now, choosing ε so small enough that

ε

(
1 +

η

2
+

1

4η

)
− 1 < 0,

then the inequality (38) implies that

F
′
(t) ≤ −ηεE(t), ∀t ≥ 0. (39)
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We conclude from (29) and (39) that

F
′
(t) ≤ −kF (t), ∀t ≥ 0, (40)

where k = ηε/ξ2 > 0.
Integrating the differential inequality (40) from 0 to t gives the following expo-

nential decay estimate for function F (t)

F (t) ≤ F (0)e−kt,∀t ≥ 0. (41)

Consequently, we obtain from (29) once again that

E(t) ≤ κe−kt, ∀t ≥ 0,

where κ = F (0)/ξ1.This completes the proof of Theorem 10.

4. Global nonexistence of solutions

In this section, we establish the global nonexistence of solutions of (1).

Lemma 11. Let u(t) be a solution of (1) which is given by Theorem 5. If u0 ∈ U
and E(0) < d, then u(t) ∈ U and E(t) < d, for all t ≥ 0.

Proof. It follows from the conditions in Lemma 11 and Lemma 1 that

E(t) ≤ E(0) < d,∀t ∈ [0, T ).

Therefore, we have from (7) that

J(u) ≤ E(t) < d,∀t ∈ [0, T ). (42)

Next, let us assume by contradiction that there exists t∗ ∈ [0, T ) such that u(t∗) /∈ U ,
then by continuity, we have I(u(t∗)) = 0. This implies that u(t∗) ∈ N . We get
from (10) that J(u(t∗)) ≥ d, which is contradiction with (42). Consequantly, the
conclusion in Lemma 11 holds.

Theorem 12. (Global nonexistence) Suppose that u0 ∈ U , u1 ∈ L2(Ω) satisfies∫
Ω u0(x)u1(x)dx 6= 0 and

0 < E(0) < min

{
d,

3

4

(
π

cp

)n
2

en

}
.

Then the solution u(t) in Theorem 5 of the problem (1) blows up in finite T∗ < +∞,
this means that

lim
t−→T−∗

‖u(t)‖2 = +∞.
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Proof. By u0 ∈ U , E(0) < d and Lemma 11, we obtain u ∈ U for all t ∈ [0, T ]. Thus,
we get

I(u) =
∥∥∥P 1

2u
∥∥∥2

+ ‖u‖2 −
∫

Ω
u2 ln |u|2dx < 0, ∀t ∈ [0, T ]. (43)

We have from (43) and Lemma 4 that(
1− cpα

2

π

)∥∥∥P 1
2u
∥∥∥2

+ ‖u‖2 + [n(1 + lnα)− ln ‖u‖2] ‖u‖2 < 0. (44)

We conclude from α =
√

π
cp

and (44) that

n(1 + lnα)− ln ‖u‖2 < 0,

which implies that
‖u(t)‖2 > 2d,∀t ∈ [0, T ]. (45)

Assume by contradiction that the solution u(t) is global. Then for any T > 0, we
define G(t) : [0, T ] −→ [0,+∞] by

G(t) = ‖u(t)‖2 +

∫ t

0
‖u(s)‖2 ds+ (T − t) ‖u0‖2 . (46)

Noting that G(t) > 0 for all t ∈ [0, T ]. By the continuity of the function G(t), there
exists µ > 0 (independent of the choice of T ) such that

G(t) ≥ µ > 0, ∀t ∈ [0, T ]. (47)

By differentiating on both sides of (46), we get

G
′
(t) = 2

∫
Ω
uutdx+ ‖u(t)‖2 − ‖u0‖2

= 2

∫
Ω
uutdx+ 2

∫ t

0

∫
Ω
u(s)ut(s)dxds. (48)

Taking the derivative of the function G
′
(t) in (48), we obtain

G
′′
(t) = 2 ‖ut‖2 + 2

∫
Ω
uttudx+ 2

∫
Ω
utudx. (49)

We get from (1) and (49) that

G
′′
(t) = 2

[
‖ut(t)‖2 +

∫
Ω
u2 ln |u|2dx−

∥∥∥P 1
2u(t)

∥∥∥2
− ‖u(t)‖2

]
. (50)
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We have from (46), (48) and (50) that

G(t)G′′(t)− 3

2
[G′(t)]2 = 2G(t)

[
‖ut(t)‖2 +

∫
Ω
u2 ln |u|2dx

]
−2G (t)

[∥∥∥P 1
2u(t)

∥∥∥2
+ ‖u(t)‖2

]
−6[G(t)− (T − t) ‖u0‖2]×

[
‖ut(t)‖2 +

∫ t

0
‖ut(s)‖2 ds

]
+6K(t) (51)

where

K(t) =

[
‖u(t)‖2 +

∫ t

0
‖u(s)‖2 ds

]
×
[
‖ut(t)‖2 +

∫ t

0
‖ut(s)‖2 ds

]
−
[∫

Ω
uutdx+

∫ t

0

∫
Ω
u(s)ut(s)dxds

]2

. (52)

By using Schwarz inequality, we have(∫
Ω
uutdx

)2

≤ ‖u(t)‖2 ‖ut(t)‖2 , (53)

(∫ t

0

∫
Ω
uutdxds

)2

≤
∫ t

0
‖u(s)‖2 ds

∫ t

0
‖ut(s)‖2 ds, (54)

and

2

∫ t

0

∫
Ω
u(s)ut(s)dxds

∫
Ω
uutdx ≤ ‖ut(t)‖2

∫ t

0
‖u(s)‖2 ds+ ‖u(t)‖2

∫ t

0
‖ut(s)‖2 ds.

(55)
These inequalities (52)-(55) entail K(t) ≥ 0 for all t ∈ [0, T ]. Therefore, we reach
the following differential inequality from (51) that

G(t)G
′′
(t)− 3

2
[G
′
(t)]2 ≥ G(t)χ(t),∀t ∈ [0, T ], (56)

where

χ(t) = 2

[
‖ut(t)‖2 +

∫
Ω
u2 ln |u|2dx−

∥∥∥P 1
2u(t)

∥∥∥2
− ‖u(t)‖2

]
−6

[
‖ut(t)‖2 +

∫ t

0
‖ut(s)‖2 ds

]
. (57)
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We have from (7) and Lemma 4 that

χ(t) ≥ −8E(t) + 2

(
1− cpα

2

π

)∥∥∥P 1
2u(t)

∥∥∥2
+ 6 ‖u(t)‖2

+2
[
n (1 + lnα)− ln ‖u(t)‖2

]
‖u(t)‖2 − 6

∫ t

0
‖ut(s)‖2 ds. (58)

By (13), (45) and α =
√

π
cp
, we have from (58) that

χ(t) ≥ −8E(t) + 6 ‖u(t)‖2 − 6

∫ t

0
‖ut(s)‖2 ds. (59)

By Lemma 1, we get

χ(t) ≥ −8E(0) + 6 ‖u(t)‖2 + 2

∫ t

0
‖ut(s)‖2 ds. (60)

Hence, we conclude from (45) and E(0) < d that

χ(t) ≥ −8E(0) + 12d

= 8 [d− E(0)] + 4d > 0. (61)

Therefore, there exists γ > 0 which is independent of T such that

χ(t) ≥ γ > 0, ∀t ≥ 0. (62)

It follows from (47), (56) and (62) that

G(t)G
′′
(t)− 3

2
[G
′
(t)]2 ≥ µγ > 0, ∀t ∈ [0, T ]. (63)

By the differential inequality (63), we have

G(t) ≥ G(0)(
1− G

′
(0)

2G(0) t
)2 . (64)

Hence, there exists T∗ such that

0 < T∗ <
2G(0)

G′(0)
≤ T, (65)

and we have
lim

t−→T−∗
G(t) = +∞. (66)

From the definition (46) of G(t), (66) means that

lim
t−→T−∗

‖u(t)‖2 = +∞.

Thus we can not suppose that the solution of (1) is global.
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[17] N. Irkıl, E. Pişkin, Global existence and decay of solutions for a higher-order
Kirchhoff-type systems with logarithmic nonlinearities, Quaest. Math. 45(4) (2022),
523-546.
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