# $(F, \varphi, \omega)$ - GREGUS TYPE CONTRACTION CONDITION APPROACH TO $\varphi$ -FIXED POINT RESULTS IN METRIC SPACES

A. K. Singh, Koti N.V.V.Vara Prasad

ABSTRACT. In this paper, we introduce  $(F, \varphi, \omega)$  - Gregus type contraction,  $(F, \varphi, \omega)$  - weak Gregus type contraction condition mappings and establish results of  $\varphi$  - fixed point for such mappings. Our results generalize some results of [1] and [2]. To support our results we illustrate example with numerical experiment for approximating the  $\varphi$  - fixed point.

2010 Mathematics Subject Classification: 47H10, 54H25.

Keywords:  $\varphi$  - fixed point,  $\varphi$  - Picard mapping, weakly  $\varphi$  - Picard mapping,  $(F, \varphi, \omega)$  - Gregus type contraction,  $(F, \varphi, \omega)$  - weak Gregus type contraction condition.

#### 1. INTRODUCTION

## **1.1** $\varphi$ - fixed points and $(F, \varphi)$ - contraction mappings:

Recently, Jleli et al.[1] introduced an interesting concept of  $\varphi$  - fixed points,  $\varphi$  -Picard mappings and weakly  $\varphi$  - Picard mappings as follows:

Let X be a nonempty set,  $\varphi : X \to [0, \infty)$  be a given function and  $T : X \to X$ be a mapping. We denote the set of all fixed points of T by  $F_T := \{x \in X : Tx = x\}$ and denote the set of all zeros of the function  $\varphi$  by  $Z_{\varphi} := \{x \in X : \varphi(x) = 0\}$ .

**Definition 1.** [1] An element  $z \in X$  is said to be a  $\varphi$  - fixed point of the operator T if and only if  $z \in F_T \cap Z_{\varphi}$ .

**Definition 2.** [1] The operator T is said

(1) to be a  $\varphi$  - Picard mapping if and only if

(i)  $F_T \cap Z_{\varphi} = \{z\},$ (ii)  $T^n x \to z \text{ as } n \to \infty, \text{ for each } x \in X.$ 

(2) to be a weakly  $\varphi$  - Picard mapping if and only if

- (i) T has at least one  $\varphi$  fixed point,
- (ii) the sequence  $\{T^nx\}$  converges for each  $x \in X$ , and the limit is a  $\varphi$  fixed point T.

Also, Jleli et.al [1] introduced a new type of control function  $F : [0, \infty)^3 \to [0, \infty)$  satisfying the following conditions:

 $(F_1) \quad \max\{a, b\} \le F(a, b, c)$ 

 $(F_2) \quad F(0,0,0) = 0$ 

 $(F_3)$  F is continuous

In this paper we are inserting the fourth condition as follows:

(F<sub>4</sub>)  $F(0, b, c) \leq F(a, b, c)$ . Throughout this paper, the class of all functions satisfying the conditions (F<sub>1</sub>) – (F<sub>4</sub>) is denoted by  $\mathcal{F}$ .

**Example 1.** Let  $f_1, f_2, f_3 : [0, \infty)^3 \to [0, \infty)$  be defined by  $f_1(a, b, c) = a + b + c,$  $f_2(a, b, c) = max\{a, b\} + c,$  $f_3(a, b, c) = a + a^2 + b + c,$ for all  $a, b, c \in [0, \infty)$ . Then  $f_1, f_2, f_3 \in \mathcal{F}$ .

**Definition 3.** [1] Let (X, d) be a metric space and  $\varphi : X \to [0, \infty)$  be a given function and  $F \in \mathcal{F}$ . We say that the mapping  $T : X \to X$  is a  $(F, \varphi)$  - contraction with respect to the metric d if and only if for each  $x, y \in X$  and for some constant  $k \in (0, 1)$  such that

$$F(d(Tx, Ty), \varphi(Tx), \varphi(Ty)) \le kF(d(x, y), \varphi(x), \varphi(y)).$$
(1)

**Theorem 1.** [1] Let (X, d) be a complete metric space and  $\varphi : X \to [0, \infty)$  be a given function and  $F \in \mathcal{F}$ . Suppose that the following condition holds:

(a)  $\varphi$  is lower semi-continuous,

(b)  $T: X \to X$  is a  $(F, \varphi)$  - contraction with respect to the metric d.

- Then the following assertions hold:
- (i)  $F_T \subseteq Z_{\varphi}$ ,
- (ii) T is a  $\varphi$  Picard mapping,
- (iii) if  $x \in X$  and for  $n \in N$ , we have

$$d(T^n x, z) \leq \frac{k^n}{1-k} F(d(Tx, x), \varphi(Tx), \varphi(x)) \text{ where } \{z\} = F_T \cap Z_{\varphi}$$

Let  $\Omega$  be the set of all functions  $\omega : [0, \infty) \to [0, \infty)$  satisfying the following conditions:

- $(j_1) \omega$  is nondecreasing function,
- $(j_2) \omega$  is continuous,
- **Definition 4.** [2] Let (X, d) be a metric space,  $\varphi : X \to [0, \infty)$  be a given function,

**Definition 4.** [2] Let (X, d) be a metric space,  $\varphi : X \to [0, \infty)$  be a given function,  $F \in \mathcal{F}$  and  $\omega \in \Omega$ . The mapping  $T : X \to X$  is said to be a  $(F, \varphi, \omega)$  - contraction with respect to the metric d if and only if

$$F(d(Tx,Ty),\varphi(Tx),\varphi(Ty)) \le \omega(F(d(x,y),\varphi(x),\varphi(y))) \quad \forall x,y \in X.$$

**Theorem 2.** [2] Let (X, d) be a metric space,  $\varphi : X \to [0, \infty)$  be a given function,  $F \in \mathcal{F}$  and  $\omega \in \Omega$ . Assume that the following conditions are satisfied:

 $(H_1) \varphi$  is lower semi continuous,

 $(H_2)$   $T: X \to X$  is an  $(F, \varphi, \omega)$  - contraction with respect to the metric d.

Then the following assertion hold:

(i)  $F_T \subseteq Z_{\varphi}$ , (ii) T is a  $\varphi$  - Picard mapping.

**Lemma 3.** [2] If  $\omega \in \Omega$ , then  $\omega(t) < t \quad \forall t > 0$ .

**Remark 1.** [2] From  $j_1$  and Lemma 3, we have  $\omega(0) = 0$ .

The aim of the work: The main purpose of this paper is to be introduce the concept of  $(F, \varphi, \omega)$  - Gregus type contraction mapping and  $(F, \varphi, \omega)$  - weak Gregus type contraction mapping in metric space setting and establish  $\varphi$  - fixed point results. These results are partially extend and generalize the results of Jleli et al.[1] and Kumrod et al.[2]. Also proved and example to illustrate the results presented herein.

## 2. Main Results

## **2.1.** $(F, \varphi, \omega)$ - Gregus type contraction condition

**Definition 5.** Let (X, d) be a metric space and  $\varphi : X \to [0, \infty)$  be a given function,  $F \in \mathcal{F}$  and  $\omega \in \Omega$ . We say that the mapping  $T : X \to X$  is an  $(F, \varphi, \omega)$  – Gregus type contraction condition with respect to the metric d if and only if for any  $x, y \in X$  and some  $a \in (0, 1]$ 

$$F(d(Tx,Ty),\varphi(Tx),\varphi(Ty)) \leq \omega \Big( a \ F(d(x,y),\varphi(x),\varphi(y)) + (1-a) \max \{F(d(x,Tx),\varphi(x),\varphi(y)), (2) F(d(y,Tx),\varphi(x),\varphi(y))\} \Big).$$

Now, we give the existence of  $\varphi$ - fixed point result for  $(F, \varphi, \omega)$  - Gregus type contraction mapping.

**Theorem 4.** Let (X, d) be a metric space and  $\varphi : X \to [0, \infty)$  be a given function,  $F \in \mathcal{F}$  and  $\omega \in \Omega$ . Suppose that the following conditions are satisfied:  $(K1) \varphi$  is lower semi-continuous,  $(K2) T : X \to X$  is an  $(F, \varphi, \omega)$  - Gregus type contraction with respect to the metric d. Then the following conditions hold: (i)  $F_T \subseteq Z_{\varphi}$ , (ii) T is a  $\varphi$  - Picard mapping.

*Proof.* (i) Suppose that  $\eta \in F_T$ . Taking equation (1) with  $x = y = \eta$ , we have

$$\begin{split} F(0,\varphi(\eta),\varphi(\eta)) &\leq \omega \big( a \ F(0,\varphi(\eta),\varphi(\eta)) \\ &+ (1-a) \max \left\{ F(0,\varphi(\eta),\varphi(\eta)), F(0,\varphi(\eta),\varphi(\eta)) \right\} \big) \\ &= \omega \big( a \ F(0,\varphi(\eta),\varphi(\eta)) + (1-a) F(0,\varphi(\eta),\varphi(\eta)) \big) \\ &= \omega (F(0,\varphi(\eta),\varphi(\eta))). \end{split}$$

Using Lemma 3, we obtain that

$$F(0,\varphi(\eta),\varphi(\eta)) = 0. \tag{3}$$

By the property of  $(F_1)$ , we get

$$\varphi(\eta) \le F(0, \varphi(\eta), \varphi(\eta)). \tag{4}$$

Using equation (3) and (4), we get  $\varphi(\eta) = 0$  and then  $\eta \in Z_{\varphi}$ . Hence condition (*i*) holds.

(ii) Let x be a arbitrary point in X, then, we have  $F(d(T^{n}x, T^{n+1}x), \varphi(T^{n}x), \varphi(T^{n+1}x))$   $\leq \omega \Big( aF(d(T^{n-1}x, T^{n}x), \varphi(T^{n-1}x), \varphi(T^{n}x)) \Big)$ 

$$\begin{split} +(1-a)\max\left\{F(d(T^{n-1}x,T^nx),\varphi(T^{n-1}x),\varphi(T^nx)),\\ F(d(T^nx,T^nx),\varphi(T^{n-1}x),\varphi(T^nx))\right\}\right)\\ = &\omega\Big(a(F(d(T^{n-1}x,T^nx),\varphi(T^{n-1}x)),\varphi(T^nx))\\ +(1-a)\max\left\{F(d(T^{n-1}x,T^nx),\varphi(T^{n-1}x),\varphi(T^nx)),\\ F(0,\varphi(T^{n-1}x),\varphi(T^nx))\right\}\Big) \end{split}$$

Now, from  $(F_4)$ , we get

$$\begin{split} F(d(T^{n}x,T^{n+1}x),\varphi(T^{n}x),\varphi(T^{n+1}x)) \\ &\leq \omega \Big( a(F(d(T^{n-1}x,T^{n}x),\varphi(T^{n-1}x)),\varphi(T^{n}x)) \\ &\quad + (1-a)F(d(T^{n-1}x,T^{n}x),\varphi(T^{n-1}x),\varphi(T^{n}x)) \Big) \\ &= \omega (F(d(T^{n-1}x,T^{n}x),\varphi(T^{n-1}x),\varphi(T^{n}x))). \end{split}$$

By induction for each  $n \in N$  and using the property  $(F_1)$ , we obtain that

$$\max\{d(T^n x, T^{n+1} x), \varphi(T^n x)\} \leq F(d(T^{n-1} x, T^n x), \varphi(T^{n-1} x), \varphi(T^n x))$$
  
$$\leq \omega^n (F(d(x, T x), \varphi(x), \varphi(T x))).$$
(5)

From equation (5), we have

$$d(T^n x, T^{n+1} x) \le \omega^n (F(d(x, Tx), \varphi(x), \varphi(Tx))).$$
(6)

Now, we prove that  $\{T^nx\}$  is a Cauchy sequence. Suppose that  $m, n \in$  such that m > n, we have

$$\begin{split} d(T^{n}x,T^{m}x) &\leq d(T^{n}x,T^{n+1}x) + d(T^{n+1}x,T^{n+2}x) + \ldots + d(T^{m-1}x,T^{m}x) \\ &= \omega^{n}(F(d(Tx,x),\varphi(Tx),\varphi(x))) + \omega^{n+1}(F(d(Tx,x),\varphi(Tx),\varphi(x))) \\ &+ \ldots + \omega^{m-1}(F(d(Tx,x),\varphi(Tx),\varphi(x))) \\ &= \omega^{n}(1+\omega+\ldots)(F(d(Tx,x),\varphi(Tx),\varphi(x))) \\ &= \sum_{i=1}^{m-1} \omega^{i}(F(d(Tx,x),\varphi(Tx),\varphi(x))) - \sum_{k=1}^{n-1} \omega^{k}(F(d(Tx,x),\varphi(Tx),\varphi(x))). \end{split}$$

Since  $\omega \in \Omega$ , then we get  $\lim_{m,n\to\infty} d(T^nx,T^mx) = 0$ , its leads to the sequence  $\{T^nx\}$  is a Cauchy sequence. Since (X,d) is a complete metric space, then there is some point  $z \in X$  such that

$$\lim_{n \to \infty} d(T^n x, z) = 0.$$
(7)

Finally, we have to prove that z is  $\varphi$  - fixed point of T. From (5), we can write,

$$\varphi(T^n x) \le \omega^n \big( F(d(x, Tx), \varphi(x), \varphi(Tx)) \big).$$
(8)

On taking limits in (8) and using  $j_3$ , we get

$$\lim_{n \to \infty} \varphi(T^n x) = 0. \tag{9}$$

Since  $\varphi$  is lower semi continuous and using (7), then we get

$$\varphi(z) \le \liminf_{n \to \infty} \varphi(T^n x) = 0.$$
(10)

Taking  $x = T^{n-1}x$  and y = z in (2), we have

$$\begin{aligned} F(d(T^n x, Tz), \varphi(T^n x), \varphi(Tz)) \\ &\leq \omega \Big( a \ F(d(T^{n-1} x, z), \varphi(T^{n-1} x), \varphi(z)) \\ &+ (1-a) max \Big\{ F(d(T^{n-1} x, T^n x), \varphi(T^{n-1} x), \varphi(z)), \\ & F(d(z, T^n x), \varphi(T^{n-1} x), \varphi(z)) \Big\} \Big) \end{aligned}$$

On taking limits as  $n \to \infty$  in above inequality, using (7), (8) and (9),  $(F_2)$ ,  $(F_3)$  and using Lemma 3, we get

$$F(d(z,Tz),0,\varphi(Tz)) \le \omega \big(F(0,0,0)\big) = 0,$$

which imply that

$$d(z,Tz) = 0. (11)$$

Then from equation (10) and (11) that z is  $\varphi$  - fixed point of T.

Uniqueness: Assume that z and  $z^*$  are two  $\varphi$ -fixed points of T. Applying equation(2) with x = z and  $y = z^*$ . Then we obtain

$$\begin{aligned} F(d(Tz,Tz^*),\varphi(Tz),\varphi(Tz^*)) \\ &\leq \omega \Big( a \ F(d(z,z^*),\varphi(z),\varphi(z^*)) \\ &\quad + (1-a)max \Big\{ F(d(z,Tz),\varphi(z),\varphi(z^*)), F(d(z^*,Tz),\varphi(z),\varphi(z^*) \Big\} \Big) \end{aligned}$$

$$\begin{aligned} F(d(z, z^*), 0, 0)) \\ &\leq \omega \Big( a \ F(d(z, z^*), 0, 0)) + (1 - a) max \big\{ F(0, 0, 0), F(d(z^*, Tz), 0, 0) \big\} \Big) \\ &= \omega (F(d(z, z^*), 0, 0)) = 0. \end{aligned}$$

By Lemma 3 and Remark 1, we obtain that  $F(d(z, z^*), 0, 0) = 0$  and hence  $d(z, z^*) = 0$ . This implies that the  $\varphi$  - fixed point of T is unique  $(\{z\} = F_T \cap Z_{\varphi}))$ . So T is a  $\varphi$  - Picard mapping.

**Theorem 5.** Under the hypothesis of Theorem 4, the following condition also hold T is a weakly  $\varphi$  - Picard operator.

*Proof.* From equation (7) and (9)-(11) of Theorem 4, we get T is weakly  $\varphi$  - Picard operator.

**Example 2.** Let X = [0,1] and  $d: X \times X \to R$  be defined as d(x,y) = |x-y| for all  $x, y \in X$ . Assume that  $T: X \to X$  is defined as

$$T(x) = \begin{cases} 0 & \text{if } 0 \le x < \frac{1}{2}, \\ \\ \frac{1-x}{2} & \text{if } \frac{1}{2} \le x \le 1. \end{cases}$$

The function  $\varphi : X \to [0,\infty)$  is define  $\varphi(x) = \frac{x}{2}$  for all  $x \in X$ , the function  $F : [0,+\infty)^3 \to [0,+\infty)$  is define by F(a,b,c) = a + b + c and  $\omega$  be a identity mapping on  $^+$ . At  $a = \frac{3}{8}$ .

| Cases                                            | LHS va | lue of $(2)$        |       | RHS value of $(2)$                   |
|--------------------------------------------------|--------|---------------------|-------|--------------------------------------|
| $x, y \in [0, \frac{1}{2}]$                      |        | 0                   |       | Positive                             |
| $x \in [0, \frac{1}{2}], y \in [\frac{1}{2}, 1]$ |        | $\frac{3(1-y)}{4}$  |       | $\frac{a(3y-2x)+(1-a)(3y)}{2}$       |
| $y \in [0, \frac{1}{2}], x \in [\frac{1}{2}, 1]$ |        | $\frac{3(1-x)}{4}$  |       | $\frac{a(3x-y)+(1-a)(4x+y-1)}{2}$    |
| $x, y \in [\frac{1}{2}, 1]$                      | x = y  | $\frac{1-x}{2}$     | x = y | $\frac{2ax+(1-a)(5x-1)}{2}$          |
|                                                  | x < y  | $\frac{3y-5x+2}{4}$ | x < y | $\frac{a(3x-y) + (1-a)(3y+2x-1)}{2}$ |
|                                                  | x > y  | $\frac{3x-5y+2}{4}$ | x > y | $\frac{a(3y-x) + (1-a)(3y+2x-1)}{2}$ |

It is easy to see that  $F \in \mathcal{F}, \omega \in \Omega$  and  $\varphi$  is lower semi continuous. Finally, the above table shows that the mapping T satisfies the condition (2).

Now, we extend the contractive condition (2) and prove the second main result.

#### **2.2.** $(F, \varphi, \omega)$ - weak Gregus type contraction condition

**Definition 6.** Let (X, d) be a metric space and  $\varphi : X \to [0, \infty)$  be a given function,  $F \in \mathcal{F}$  and  $\omega \in \Omega$ . We say that the mapping  $T : X \to X$  is an  $(F, \varphi, \omega)$  – weak Gregus type contraction condition with respect to the metric d if and only if

$$F(d(Tx,Ty),\varphi(Tx),\varphi(Ty)) \leq \omega \Big( a \left( F(d(x,y),\varphi(x),\varphi(y)) \right) \\ + (1-a) \max \Big\{ F(M(x,y),\varphi(x),\varphi(y)), F(N(x,y),\varphi(x),\varphi(y)) \Big\} \Big),$$
(12)

where  $M(x, y) = \max \{d(x, y), d(x, Tx)\}$  and  $N(x, y) = \min \{d(x, Ty), d(y, Tx), d(y, Ty)\}, \forall x, y \in X \text{ and for some } a \in (0, 1].$ 

Now, we give the existence of  $\varphi$ - fixed point result for  $(F, \varphi, \omega)$  - weak Gregus type contraction mapping.

**Theorem 6.** Let (X, d) be a metric space and  $\varphi : X \to [0, \infty)$  be a given function,  $F \in \mathcal{F}$  and  $\omega \in \Omega$ . Suppose that the following conditions are satisfied:

(K1)  $\varphi$  is lower semi-continuous,

(K2)  $T: X \to X$  is an  $(F, \varphi, \omega)$  - Gregus type contraction with respect to the metric d,

Then the following conditions hold:

(i) 
$$F_T \subseteq Z_{\varphi}$$
,

(ii) T is a  $\varphi$  - Picard mapping.

*Proof.* (i) Suppose that  $\eta \in F_T$ . Taking equation (12) with  $x = y = \eta$ , we have

$$\begin{split} F(0,\varphi(\eta),\varphi(\eta)) &\leq \omega \Big( a \ (F(0,\varphi(\eta),\varphi(\eta))) \\ &+ (1-a) \max \left\{ F(0,\varphi(\eta),\varphi(\eta)), F(0,\varphi(\eta),\varphi(\eta)) \right\} \Big) \\ &= \omega (F(0,\varphi(\eta),\varphi(\eta))). \end{split}$$

where M(x, y) = 0 = N(x, y). Using Lemma 3, we obtain that

$$F(0,\varphi(\eta),\varphi(\eta)) = 0. \tag{13}$$

By the property of  $(F_1)$ , we have

$$\varphi(\eta) \le F(0, \varphi(\eta), \varphi(\eta)). \tag{14}$$

Using equation (13) and (14), we get  $\varphi(\eta) = 0$  and then  $\eta \in Z_{\varphi}$ . Hence condition (*i*) holds.

(ii) Let x be arbitrary point in X, then we have

$$\begin{aligned} F(d(T^{n}x, T^{n+1}x), \varphi(T^{n}x), \varphi(T^{n+1}x)) \\ &\leq \omega \Big( a \ F(d(T^{n-1}x, T^{n}x), \varphi(T^{n}x), \varphi(T^{n-1}x)) \\ &+ (1-a) \ max \ \Big\{ F(M(T^{n-1}x, T^{n}x), \varphi(T^{n-1}x), \varphi(T^{n}x)) \Big\}, \\ &\qquad F(N(T^{n-1}x, T^{n}x), \varphi(T^{n-1}x), \varphi(T^{n}x)) \Big\} \Big) \end{aligned}$$

where  $M(x, y) = M(T^{n-1}x, T^nx) = d(T^{n-1}x, T^nx)$ and  $N(x, y) = N(T^{n-1}x, T^nx)$  $= min\{d(T^{n-1}x, T^{n+1}x), d(T^nx, T^nx), d(T^nx, T^{n+1}x) = 0.$  Then above inequality reduced to

$$\begin{split} F(d(T^{n}x, T^{n+1}x), \varphi(T^{n}x), \varphi(T^{n+1}x)) \\ &\leq \omega \Big( a \ F(d(T^{n-1}x, T^{n}x), \varphi(T^{n}x), \varphi(T^{n-1}x)) \\ &\quad + (1-a) \ max \ \Big\{ F(d(T^{n-1}x, T^{n}x), \varphi(T^{n-1}x), \varphi(T^{n}x)) \Big\}, \\ &\quad F(0, \varphi(T^{n-1}x), \varphi(T^{n}x)) \Big\} \\ &\leq \omega \Big( a \ F(d(T^{n-1}x, T^{n}x), \varphi(T^{n}x)), \varphi(T^{n-1})x) \\ &\quad + (1-a) F(d(T^{n-1}x, T^{n}x), \varphi(T^{n-1}x), \varphi(T^{n})x) \Big) \quad (\text{by } F_4) \\ &= \omega (F(d(T^{n-1}x, T^{n}x), \varphi(T^{n}x), \varphi(T^{n-1}x))) \end{split}$$

By induction for each  $n \in N$  and using the property  $(F_1)$ , we obtain that

$$max\{d(T^{n+1}x, T^nx), \varphi(T^{n+1}x)\} \leq F(d(T^{n+1}x, T^nx), \varphi(T^{n+1}x), \varphi(T^nx))$$
$$\leq \omega(F(d(T^{n-1}x, T^nx), \varphi(T^nx), \varphi(T^{n-1}x))) \quad (15)$$
$$\leq \omega^n(F(d(Tx, x), \varphi(Tx), \varphi(x))).$$

From (15), we have

$$d(T^{n+1}x, T^n x) \le \omega^n (F(d(Tx, x), \varphi(Tx), \varphi(x))).$$
(16)

Now, We prove that  $\{T^nx\}$  is a Cauchy sequence. Suppose that  $m, n \in$  such that m > n, we have

$$\begin{split} d(T^{n}x,T^{m}x) &\leq d(T^{n}x,T^{n+1}x) + d(T^{n+1}x,T^{n+2}x) + \ldots + d(T^{m-1}x,T^{m}x) \\ &= \omega^{n}(F(d(Tx,x),\varphi(Tx),\varphi(x))) + \omega^{n+1}(F(d(Tx,x),\varphi(Tx),\varphi(x))) \\ &+ \ldots + \omega^{m-1}(F(d(Tx,x),\varphi(Tx),\varphi(x))) \\ &= \omega^{n}(1+\omega+\ldots)(F(d(Tx,x),\varphi(Tx),\varphi(x))) \\ &= \sum_{i=1}^{m-1} \omega^{i}(F(d(Tx,x),\varphi(Tx),\varphi(x))) - \sum_{k=1}^{n-1} \omega^{k}(F(d(Tx,x),\varphi(Tx),\varphi(x))) \end{split}$$

By using  $(j_3)$  and  $(j_4)$ , then we get  $\lim_{m,n\to\infty} d(T^nx,T^mx) = 0$ , its leads to the sequence  $\{T^nx\}$  is a Cauchy sequence. Since (X,d) is a complete metric space, there is some  $z \in X$  such that

$$\lim_{n \to \infty} d(T^n x, z) = 0.$$
(17)

Finally, we have to prove that z is  $\varphi$  - fixed point of T. From (5), we can write,

$$\varphi(T^{n+1}x) \le \omega^n(F(d(Tx,x),\varphi(Tx),\varphi(x))).$$
(18)

On taking limits in (18) and from  $(j_2)$ , we get

$$\lim_{n \to \infty} \varphi(T^{n+1}x) = 0.$$
<sup>(19)</sup>

Since  $\varphi$  is lower semi continuous then the equation (17) - (19), then, we get

$$\varphi(z) \le \liminf_{n \to \infty} \varphi(T^{n+1}x) = 0.$$
<sup>(20)</sup>

On taking  $x = T^{n-1}x$  and y = z in (12), we get  $F(d(T^nx,Tz),\varphi(T^nx),\varphi(Tz))$ 

$$\leq \omega \Big( a \left( F(d(T^n x, z), \varphi(T^{n-1} x), \varphi(z)) \right) \\ + (1-a) \max \left\{ F(M(T^{n-1} x, z), \varphi(T^{n-1} x), \varphi(z)), \right. \\ \left. F(N(T^{n-1} x, z), \varphi(T^{n-1} x), \varphi(z)) \right\} \Big)$$

On taking limit as  $n \to \infty$  in above inequality and using equation (19) - (20), the properties  $F_2$ ,  $F_3$  and also using Lemma 3. and Remark 1. then, we get

$$F(d(z,Tz),0,\varphi(Tz)) \le \omega(F(0,0,0)) = 0,$$
  
which implies that

$$d(z,Tz) = 0. (21)$$

Then from equation (20) and (21) that z is  $\varphi$  - fixed point of T (i.e.,  $z \in F_T \cap Z_{\varphi}$ ). Finally, we have to show that T - is a  $\varphi$  - Picard mapping. It is sufficient to show that assume that z and  $z^*$  are two  $\varphi$  - fixed points of T. Applying equation (12) with x = z and  $y = z^*$ . Then we obtain that  $E(d(Tz, Tz^*), \varphi(Tz), \varphi(Tz^*))$ 

$$F(a(Iz, Iz^*), \varphi(Iz), \varphi(Iz^*))$$

$$\leq \omega \Big( a \left( F(d(z, z^*), \varphi(z), \varphi(z^*)) \right) + (1 - a) \max \Big\{ F(M(z, z^*), \varphi(z), \varphi(z^*)), F(N(z, z^*), \varphi(z), \varphi(z^*)) \Big\} \Big)$$

where  $M(x,y) = d(z,z^*)$  and N(x,y) = 0.

By using  $(F_4)$  and Lemma 3. and Remark 1., then we get

 $F(d(Tz, Tz^*), 0, 0)) \le \omega \big( F(d(z, z^*), 0, 0) \big) = 0.$ 

Hence  $d(z, z^*) = 0$ . This implies that the  $\varphi$  - fixed point of T is unique ( $\{z\} = F_T \cap Z_{\varphi}$ ). So T is a  $\varphi$  - Picard mapping.

**Theorem 7.** Under the hypothesis of Theorem 6., the following condition also hold T is a weakly  $\varphi$  - Picard operator.

*Proof.* From equation (17) and (19)-(21) of Theorem 6., we get T is weakly  $\varphi$  -Picard operator.

#### 3. Example

**Example 3.** Let X = [0,1] and  $d: X \times X \rightarrow be$  define by d(x,y) = |x-y| for all  $x, y \in X$ . Then (X, d) is a complete metric space. Suppose that  $T: X \to X$  is defined by

$$T(x) = \begin{cases} 0 & \text{if } 0 \le x < \frac{1}{2}, \\ k \log(x+1) & \text{if } \frac{1}{2} \le x \le 1. \end{cases}$$

where  $k \in [0,1)$ , the function  $\varphi: X \to [0,\infty)$  is define  $\varphi(x) = \frac{x}{2}$  for all  $x \in X$ , the function  $F: [0, +\infty)^3 \to [0, +\infty)$  is define by F(a, b, c) = a + b + c and the function  $\omega: [0, +\infty) \to [0, +\infty)$  is define by

$$\omega(t) = \begin{cases} 0 & \text{if } 0 \le t \le 1, \\ 5k \log 6t & \text{if } t > 1. \end{cases}$$

It is easy to see that  $F \in \mathcal{F}$ ,  $\omega \in \Omega$  and  $\varphi$  satisfies lower semi-continuous condition.

Now, we have to show that T satisfies condition equation (12). **Case 1:** Suppose that  $x, y \in [0 \le x < \frac{1}{2})$ , then T holds equation (12) trivially. **Case 2:** Suppose that  $x, y \in [\frac{1}{2} \le x \le 1]$ . We assume that  $y \le x$ . Then we have

$$\begin{aligned} F(d(Tx,Ty),\varphi(Tx),\varphi(Ty)) &= d(Tx,Ty) + \varphi(Tx) + \varphi(Ty) \\ &= |k\log(x+1) - k\log(y+1)| + \frac{k\log(x+1)}{2} + \frac{k\log(y+1)}{2} \\ &\leq k\log(x+1) \\ &< 5k\log(6) \leq RHS \text{ of } (12). \end{aligned}$$

**Case 3:** Suppose that  $x \in [\frac{1}{2}, 1)$  and  $y \in [0, \frac{1}{2})$ . Then we have

$$\begin{aligned} F(d(Tx,Ty),\varphi(Tx),\varphi(Ty)) &= d(Tx,Ty) + \varphi(Tx) + \varphi(Ty) \\ &= |k \log(x+1) - 0| + \frac{k \log(x+1)}{2} + 0 \\ &= k \log(x+1) + \frac{k \log(x+1)}{2} \\ &= \frac{3}{2}k \log(x+1) \\ &< 5k \log(6) \le RHS \text{ of } (12). \end{aligned}$$

All the hypothesis of Theorem 6., are satisfied and 0 is a  $\varphi$  - fixed point the operator T and also fixed point of T.

We can see from the following table approximating the  $\varphi$  - fixed point of T at two different values of k.

| k | = 0.4 | $x_0 = 0.5$ | $x_0 = 0.7$ | $x_0 = 0.9$ | k = 0.8 | $x_0 = 0.5$ | $x_0 = 0.7$ | $x_0 = 0.9$ |
|---|-------|-------------|-------------|-------------|---------|-------------|-------------|-------------|
|   | $x_1$ | 0.0704      | 0.0921      | 0.1115      | $x_1$   | 0.1408      | 0.1843      | 0.2230      |
|   | $x_2$ | 0.0118      | 0.0153      | 0.0184      | $x_2$   | 0.0458      | 0.0588      | 0.0699      |
|   | $x_3$ | 0.0020      | 0.0026      | 0.0031      | $x_3$   | 0.0155      | 0.0198      | 0.0234      |
|   | $x_4$ | 0.0000      | 0.0000      | 0.0000      | $x_4$   | 0.0054      | 0.0068      | 0.0080      |
|   | $x_5$ | 0.0000      | 0.0000      | 0.0000      | $x_5$   | 0.0000      | 0.0000      | 0.0000      |
|   | :     | :           | :           | :           | :       | :           | :           | :           |
|   | •     | ·           | •           | •           | · ·     | •           | •           | •           |

Table 1 and Table 2 iterates of Picard iteration for two different values of k

And also, the convergence behavior of these iterations in shown in Fig. 1



**Fig.1:** left figure for k = 0.4 and right figure for k = 0.8.

#### References

[1] M. Jleli, B. Samet and C. Vetro, Fixed point theory in partial metric spaces via  $\varphi$  - fixed point's concept in metric spaces, J. Inequal. Appl. (2014), 2014:426.

[2] P. Kumrod, W. Sintunavarat, A new contractive condition approch to  $\varphi$  - fixed point results in metric spaces and its applications, J. of Computational and Applied Mathematics. 311 (2017) 194-204.

A. K. Singh Department of Mathematics Guru Ghasidas Vishwavidyalaya, Bilaspur (C.G.) India. email: awnish.singh85@gmail.com

Koti N.V.V.Vara Prasad Department of Mathematics Guru Ghasidas Vishwavidyalaya, Bilaspur (C.G.) India. email: knvp71@yahoo.co.in