(F, φ, ω) - GREGUS TYPE CONTRACTION CONDITION APPROACH TO φ-FIXED POINT RESULTS IN METRIC SPACES

A. K. Singh, Koti N.V.V.Vara Prasad

Abstract. In this paper, we introduce (F, φ, ω) - Gregus type contraction, (F, φ, ω) - weak Gregus type contraction condition mappings and establish results of φ - fixed point for such mappings. Our results generalize some results of [1] and [2]. To support our results we illustrate example with numerical experiment for approximating the φ-fixed point.

2010 Mathematics Subject Classification: 47H10, 54H25.
Keywords: φ - fixed point, φ - Picard mapping, weakly φ - Picard mapping, (F, φ, ω) - Gregus type contraction, (F, φ, ω) - weak Gregus type contraction condition.

1. Introduction

1.1φ - fixed points and (F, φ) - contraction mappings:

Recently, Jleli et al.[1] introduced an interesting concept of φ - fixed points, φ Picard mappings and weakly φ - Picard mappings as follows:

Let X be a nonempty set, $\varphi: X \rightarrow[0, \infty)$ be a given function and $T: X \rightarrow X$ be a mapping. We denote the set of all fixed points of T by $F_{T}:=\{x \in X: T x=x\}$ and denote the set of all zeros of the function φ by $Z_{\varphi}:=\{x \in X: \varphi(x)=0\}$.

Definition 1. [1] An element $z \in X$ is said to be a φ - fixed point of the operator T if and only if $z \in F_{T} \cap Z_{\varphi}$.

Definition 2. [1] The operator T is said
(1) to be a φ - Picard mapping if and only if
(i) $F_{T} \cap Z_{\varphi}=\{z\}$,
(ii) $T^{n} x \rightarrow z$ as $n \rightarrow \infty$, for each $x \in X$.
(2) to be a weakly φ - Picard mapping if and only if
(i) T has at least one φ-fixed point,
(ii) the sequence $\left\{T^{n} x\right\}$ converges for each $x \in X$, and the limit is a φ - fixed point T.

Also, Jleli et.al [1] introduced a new type of control function $F:[0, \infty)^{3} \rightarrow[0, \infty)$ satisfying the following conditions:
$\left(F_{1}\right) \quad \max \{a, b\} \leq F(a, b, c)$
$\left(F_{2}\right) \quad F(0,0,0)=0$
$\left(F_{3}\right) \quad F$ is continuous
In this paper we are inserting the fourth condition as follows:
$\left(F_{4}\right) \quad F(0, b, c) \leq F(a, b, c)$.
Throughout this paper, the class of all functions satisfying the conditions $\left(F_{1}\right)-$ $\left(F_{4}\right)$ is denoted by \mathcal{F}.

Example 1. Let $f_{1}, f_{2}, f_{3}:[0, \infty)^{3} \rightarrow[0, \infty)$ be defined by
$f_{1}(a, b, c)=a+b+c$,
$f_{2}(a, b, c)=\max \{a, b\}+c$,
$f_{3}(a, b, c)=a+a^{2}+b+c$,
for all $a, b, c \in[0, \infty)$. Then $f_{1}, f_{2}, f_{3} \in \mathcal{F}$.

Definition 3. [1] Let (X, d) be a metric space and $\varphi: X \rightarrow[0, \infty)$ be a given function and $F \in \mathcal{F}$. We say that the mapping $T: X \rightarrow X$ is a (F, φ) - contraction with respect to the metric d if and only if for each $x, y \in X$ and for some constant $k \in(0,1)$ such that

$$
\begin{equation*}
F(d(T x, T y), \varphi(T x), \varphi(T y)) \leq k F(d(x, y), \varphi(x), \varphi(y)) . \tag{1}
\end{equation*}
$$

Theorem 1. [1] Let (X, d) be a complete metric space and $\varphi: X \rightarrow[0, \infty)$ be a given function and $F \in \mathcal{F}$. Suppose that the following condition holds:
(a) φ is lower semi-continuous,
(b) $T: X \rightarrow X$ is a (F, φ) - contraction with respect to the metric d.

Then the following assertions hold:
(i) $F_{T} \subseteq Z_{\varphi}$,
(ii) T is a φ - Picard mapping,
(iii) if $x \in X$ and for $n \in N$, we have

$$
d\left(T^{n} x, z\right) \leq \frac{k^{n}}{1-k} F(d(T x, x), \varphi(T x), \varphi(x)) \text { where }\{z\}=F_{T} \cap Z_{\varphi}
$$

Let Ω be the set of all functions $\omega:[0, \infty) \rightarrow[0, \infty)$ satisfying the following conditions:
$\left(j_{1}\right) \omega$ is nondecreasing function,
$\left(j_{2}\right) \omega$ is continuous,
$\left(j_{3}\right) \lim _{n \rightarrow \infty} \omega^{n}(t)=0, \quad \forall t \in(0, \infty)$
$\left(j_{4}\right) \sum_{n=0}^{n \rightarrow \infty} \omega^{n}(t)<\infty, \quad \forall t>0$.
Definition 4. [2] Let (X, d) be a metric space, $\varphi: X \rightarrow[0, \infty)$ be a given function, $F \in \mathcal{F}$ and $\omega \in \Omega$. The mapping $T: X \rightarrow X$ is said to be $a(F, \varphi, \omega)$ - contraction with respect to the metric d if and only if

$$
F(d(T x, T y), \varphi(T x), \varphi(T y)) \leq \omega(F(d(x, y), \varphi(x), \varphi(y))) \quad \forall x, y \in X
$$

Theorem 2. [2] Let (X, d) be a metric space, $\varphi: X \rightarrow[0, \infty)$ be a given function, $F \in \mathcal{F}$ and $\omega \in \Omega$. Assume that the following conditions are satisfied:
$\left(H_{1}\right) \varphi$ is lower semi continuous,
$\left(H_{2}\right) T: X \rightarrow X$ is an (F, φ, ω) - contraction with respect to the metric d.
Then the following assertion hold:
(i) $F_{T} \subseteq Z_{\varphi}$,
(ii) T is a φ - Picard mapping.

Lemma 3. [2] If $\omega \in \Omega$, then $\omega(t)<t \forall t>0$.

Remark 1. [2] From j_{1} and Lemma 3, we have $\omega(0)=0$.
The aim of the work: The main purpose of this paper is to be introduce the concept of (F, φ, ω) - Gregus type contraction mapping and (F, φ, ω) - weak Gregus type contraction mapping in metric space setting and establish φ - fixed point results. These results are partially extend and generalize the results of Jleli et al.[1] and Kumrod et al.[2]. Also proved and example to illustrate the results presented herein.

2. Main Results

2.1. (F, φ, ω) - Gregus type contraction condition

Definition 5. Let (X, d) be a metric space and $\varphi: X \rightarrow[0, \infty)$ be a given function, $F \in \mathcal{F}$ and $\omega \in \Omega$. We say that the mapping $T: X \rightarrow X$ is an (F, φ, ω) - Gregus
type contraction condition with respect to the metric d if and only if for any $x, y \in X$ and some $a \in(0,1]$

$$
\begin{align*}
F(d(T x, T y), \varphi(T x), \varphi(T y)) \leq \omega(& a
\end{aligned} \begin{aligned}
& F(d(x, y), \varphi(x), \varphi(y)) \\
& +(1-a) \max \{F(d(x, T x), \varphi(x), \varphi(y)) \tag{2}\\
& F(d(y, T x), \varphi(x), \varphi(y))\}) .
\end{align*}
$$

Now, we give the existence of φ - fixed point result for (F, φ, ω) - Gregus type contraction mapping.

Theorem 4. Let (X, d) be a metric space and $\varphi: X \rightarrow[0, \infty)$ be a given function, $F \in \mathcal{F}$ and $\omega \in \Omega$. Suppose that the following conditions are satisfied:
(K1) φ is lower semi-continuous,
$(K 2) T: X \rightarrow X$ is an (F, φ, ω) - Gregus type contraction with respect to the metric d.

Then the following conditions hold:
(i) $F_{T} \subseteq Z_{\varphi}$,
(ii) T is a φ - Picard mapping.

Proof. (i) Suppose that $\eta \in F_{T}$. Taking equation (1) with $x=y=\eta$, we have

$$
\begin{aligned}
F(0, \varphi(\eta), \varphi(\eta)) \leq & \omega(a F(0, \varphi(\eta), \varphi(\eta)) \\
& \quad+(1-a) \max \{F(0, \varphi(\eta), \varphi(\eta)), F(0, \varphi(\eta), \varphi(\eta))\}) \\
= & \omega(a F(0, \varphi(\eta), \varphi(\eta))+(1-a) F(0, \varphi(\eta), \varphi(\eta))) \\
= & \omega(F(0, \varphi(\eta), \varphi(\eta)))
\end{aligned}
$$

Using Lemma 3, we obtain that

$$
\begin{equation*}
F(0, \varphi(\eta), \varphi(\eta))=0 \tag{3}
\end{equation*}
$$

By the property of $\left(F_{1}\right)$, we get

$$
\begin{equation*}
\varphi(\eta) \leq F(0, \varphi(\eta), \varphi(\eta)) \tag{4}
\end{equation*}
$$

Using equation (3) and (4), we get $\varphi(\eta)=0$ and then $\eta \in Z_{\varphi}$.
Hence condition (i) holds.
(ii) Let x be a arbitrary point in X, then, we have

$$
\begin{aligned}
& F\left(d\left(T^{n} x, T^{n+1} x\right), \varphi\left(T^{n} x\right), \varphi\left(T^{n+1} x\right)\right) \\
& \quad \leq \omega\left(a F\left(d\left(T^{n-1} x, T^{n} x\right), \varphi\left(T^{n-1} x\right), \varphi\left(T^{n} x\right)\right)\right.
\end{aligned}
$$

$$
\begin{array}{r}
+(1-a) \max \left\{F\left(d\left(T^{n-1} x, T^{n} x\right), \varphi\left(T^{n-1} x\right), \varphi\left(T^{n} x\right)\right),\right. \\
\left.\left.\quad F\left(d\left(T^{n} x, T^{n} x\right), \varphi\left(T^{n-1} x\right), \varphi\left(T^{n} x\right)\right)\right\}\right) \\
=\omega\left(a\left(F\left(d\left(T^{n-1} x, T^{n} x\right), \varphi\left(T^{n-1} x\right)\right), \varphi\left(T^{n} x\right)\right)\right. \\
+(1-a) \max \left\{F\left(d\left(T^{n-1} x, T^{n} x\right), \varphi\left(T^{n-1} x\right), \varphi\left(T^{n} x\right)\right),\right. \\
\left.\left.\quad F\left(0, \varphi\left(T^{n-1} x\right), \varphi\left(T^{n} x\right)\right)\right\}\right)
\end{array}
$$

Now, from $\left(F_{4}\right)$, we get

$$
\begin{aligned}
& F\left(d\left(T^{n} x, T^{n+1} x\right), \varphi\left(T^{n} x\right), \varphi\left(T^{n+1} x\right)\right) \\
& \quad \leq \omega\left(a\left(F\left(d\left(T^{n-1} x, T^{n} x\right), \varphi\left(T^{n-1} x\right)\right), \varphi\left(T^{n} x\right)\right)\right. \\
& \quad+(1-a) F\left(d\left(T^{n-1} x, T^{n} x\right), \varphi\left(T^{n-1} x\right), \varphi\left(T^{n} x\right)\right) \\
& \quad=\omega\left(F\left(d\left(T^{n-1} x, T^{n} x\right), \varphi\left(T^{n-1} x\right), \varphi\left(T^{n} x\right)\right)\right) .
\end{aligned}
$$

By induction for each $n \in N$ and using the property (F_{1}), we obtain that

$$
\begin{align*}
\max \left\{d\left(T^{n} x, T^{n+1} x\right), \varphi\left(T^{n} x\right)\right\} & \leq F\left(d\left(T^{n-1} x, T^{n} x\right), \varphi\left(T^{n-1} x\right), \varphi\left(T^{n} x\right)\right) \tag{5}\\
& \leq \omega^{n}(F(d(x, T x), \varphi(x), \varphi(T x))) .
\end{align*}
$$

From equation (5), we have

$$
\begin{equation*}
d\left(T^{n} x, T^{n+1} x\right) \leq \omega^{n}(F(d(x, T x), \varphi(x), \varphi(T x))) \tag{6}
\end{equation*}
$$

Now, we prove that $\left\{T^{n} x\right\}$ is a Cauchy sequence. Suppose that $m, n \in \operatorname{such}$ that $m>n$, we have

$$
\begin{aligned}
d\left(T^{n} x, T^{m} x\right) \leq & d\left(T^{n} x, T^{n+1} x\right)+d\left(T^{n+1} x, T^{n+2} x\right)+\ldots+d\left(T^{m-1} x, T^{m} x\right) \\
= & \omega^{n}(F(d(T x, x), \varphi(T x), \varphi(x)))+\omega^{n+1}(F(d(T x, x), \varphi(T x), \varphi(x))) \\
& \quad+\ldots+\omega^{m-1}(F(d(T x, x), \varphi(T x), \varphi(x))) \\
= & \omega^{n}(1+\omega+\ldots)(F(d(T x, x), \varphi(T x), \varphi(x))) \\
= & \sum_{i=1}^{m-1} \omega^{i}(F(d(T x, x), \varphi(T x), \varphi(x)))-\sum_{k=1}^{n-1} \omega^{k}(F(d(T x, x), \varphi(T x), \varphi(x))) .
\end{aligned}
$$

Since $\omega \in \Omega$, then we get $\lim _{m, n \rightarrow \infty} d\left(T^{n} x, T^{m} x\right)=0$, its leads to the sequence $\left\{T^{n} x\right\}$ is a Cauchy sequence. Since (X, d) is a complete metric space, then there is some point $z \in X$ such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} d\left(T^{n} x, z\right)=0 \tag{7}
\end{equation*}
$$

Finally, we have to prove that z is φ - fixed point of T. From (5), we can write,

$$
\begin{equation*}
\varphi\left(T^{n} x\right) \leq \omega^{n}(F(d(x, T x), \varphi(x), \varphi(T x))) \tag{8}
\end{equation*}
$$

On taking limits in (8) and using j_{3}, we get

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \varphi\left(T^{n} x\right)=0 \tag{9}
\end{equation*}
$$

Since φ is lower semi continuous and using (7), then we get

$$
\begin{equation*}
\varphi(z) \leq \liminf _{n \rightarrow \infty} \varphi\left(T^{n} x\right)=0 \tag{10}
\end{equation*}
$$

Taking $x=T^{n-1} x$ and $y=z$ in (2), we have

$$
\begin{aligned}
& F\left(d\left(T^{n} x, T z\right), \varphi\left(T^{n} x\right), \varphi(T z)\right) \\
& \qquad \begin{array}{l}
\leq \omega\left(a F\left(d\left(T^{n-1} x, z\right), \varphi\left(T^{n-1} x\right), \varphi(z)\right)\right. \\
\quad+(1-a) \max \left\{F\left(d\left(T^{n-1} x, T^{n} x\right), \varphi\left(T^{n-1} x\right), \varphi(z)\right),\right. \\
\\
\left.\quad F\left(d\left(z, T^{n} x\right), \varphi\left(T^{n-1} x\right), \varphi(z)\right\}\right)
\end{array}
\end{aligned}
$$

On taking limits as $n \rightarrow \infty$ in above inequality, using (7), (8) and (9), (F_{2}), (F_{3}) and using Lemma 3, we get

$$
F(d(z, T z), 0, \varphi(T z)) \leq \omega(F(0,0,0))=0
$$

which imply that

$$
\begin{equation*}
d(z, T z)=0 . \tag{11}
\end{equation*}
$$

Then from equation (10) and (11) that z is φ - fixed point of T .
Uniqueness: Assume that z and z^{*} are two φ-fixed points of T. Applying equation(2) with $x=z$ and $y=z^{*}$. Then we obtain

$$
\begin{aligned}
& \begin{array}{l}
F\left(d\left(T z, T z^{*}\right), \varphi(T z), \varphi\left(T z^{*}\right)\right) \\
\leq \omega\left(a F\left(d\left(z, z^{*}\right), \varphi(z), \varphi\left(z^{*}\right)\right)\right. \\
\quad+(1-a) \max \left\{F\left(d(z, T z), \varphi(z), \varphi\left(z^{*}\right)\right), F\left(d\left(z^{*}, T z\right), \varphi(z), \varphi\left(z^{*}\right)\right\}\right) \\
\begin{aligned}
\left.F\left(d\left(z, z^{*}\right), 0,0\right)\right)
\end{aligned} \\
\left.\quad \leq \omega\left(a F\left(d\left(z, z^{*}\right), 0,0\right)\right)+(1-a) \max \left\{F(0,0,0), F\left(d\left(z^{*}, T z\right), 0,0\right)\right\}\right) \\
\quad=\omega\left(F\left(d\left(z, z^{*}\right), 0,0\right)\right)=0 .
\end{array}
\end{aligned}
$$

By Lemma 3 and Remark 1, we obtain that $F\left(d\left(z, z^{*}\right), 0,0\right)=0$ and hence $d\left(z, z^{*}\right)=$ 0 . This implies that the φ - fixed point of T is unique $\left.\left(\{z\}=F_{T} \cap Z_{\varphi}\right)\right)$. So T is a φ - Picard mapping.

Theorem 5. Under the hypothesis of Theorem 4, the following condition also hold T is a weakly φ - Picard operator.

Proof. From equation (7) and (9)-(11) of Theorem 4, we get T is weakly φ - Picard operator.

Example 2. Let $X=[0,1]$ and $d: X \times X \rightarrow R$ be defined as $d(x, y)=|x-y|$ for all $x, y \in X$. Assume that $T: X \rightarrow X$ is defined as

$$
T(x)= \begin{cases}0 & \text { if } 0 \leq x<\frac{1}{2} \\ \frac{1-x}{2} & \text { if } \frac{1}{2} \leq x \leq 1\end{cases}
$$

The function $\varphi: X \rightarrow[0, \infty)$ is define $\varphi(x)=\frac{x}{2}$ for all $x \in X$, the function $F:[0,+\infty)^{3} \rightarrow[0,+\infty)$ is define by $F(a, b, c)=a+b+c$ and ω be a identity mapping on ${ }^{+}$. At $a=\frac{3}{8}$.

Cases	LHS value of (2)	RHS value of (2)	
$x, y \in\left[0, \frac{1}{2}\right]$	0	Positive	
$x \in\left[0, \frac{1}{2}\right], y \in\left[\frac{1}{2}, 1\right]$	$\frac{3(1-y)}{4}$	$\frac{a(3 y-2 x)+(1-a)(3 y)}{2}$	
$y \in\left[0, \frac{1}{2}\right], x \in\left[\frac{1}{2}, 1\right]$	$\frac{3(1-x)}{4}$	$\frac{a(3 x-y)+(1-a)(4 x+y-1)}{2}$	
$x, y \in\left[\frac{1}{2}, 1\right]$	$x=y$	$\frac{1-x}{2}$	$x=y$
	$x<y$	$\frac{3 y-5 x+2}{4}$	$x<y$
	$x>y$	$\frac{3 x-5 y+2}{4}$	$x>y$
	$\frac{a(3 x-y)+(1-a)(3 y+2 x-1)(5 x-1)}{2}$		
		$\frac{a(3 y-x)+(1-a)(3 y+2 x-1)}{2}$	

It is easy to see that $F \in \mathcal{F}, \omega \in \Omega$ and φ is lower semi continuous. Finally, the above table shows that the mapping T satisfies the condition (2).

Now, we extend the contractive condition (2) and prove the second main result.

2.2. (F, φ, ω) - weak Gregus type contraction condition

Definition 6. Let (X, d) be a metric space and $\varphi: X \rightarrow[0, \infty)$ be a given function, $F \in \mathcal{F}$ and $\omega \in \Omega$. We say that the mapping $T: X \rightarrow X$ is an (F, φ, ω) - weak Gregus type contraction condition with respect to the metric d if and only if

$$
\begin{align*}
F(d(T x, T y), \varphi(T x), \varphi(T y)) & \leq \omega(a(F(d(x, y), \varphi(x), \varphi(y))) \\
& +(1-a) \max \{F(M(x, y), \varphi(x), \varphi(y)), F(N(x, y), \varphi(x), \varphi(y))\}), \tag{12}
\end{align*}
$$

where $M(x, y)=\max \{d(x, y), d(x, T x)\}$ and $N(x, y)=\min \{d(x, T y), d(y, T x), d(y, T y)\}, \forall x, y \in X$ and for some $a \in(0,1]$.

Now, we give the existence of φ - fixed point result for (F, φ, ω) - weak Gregus type contraction mapping.

Theorem 6. Let (X, d) be a metric space and $\varphi: X \rightarrow[0, \infty)$ be a given function, $F \in \mathcal{F}$ and $\omega \in \Omega$. Suppose that the following conditions are satisfied:
(K1) φ is lower semi-continuous,
(K2) $T: X \rightarrow X$ is an (F, φ, ω) - Gregus type contraction with respect to the metric d,
Then the following conditions hold:
(i) $F_{T} \subseteq Z_{\varphi}$,
(ii) T is a φ - Picard mapping.

Proof. (i) Suppose that $\eta \in F_{T}$. Taking equation (12) with $x=y=\eta$, we have

$$
\begin{aligned}
F(0, \varphi(\eta), \varphi(\eta)) \leq & \omega(a(F(0, \varphi(\eta), \varphi(\eta))) \\
& \quad+(1-a) \max \{F(0, \varphi(\eta), \varphi(\eta)), F(0, \varphi(\eta), \varphi(\eta))\}) \\
= & \omega(F(0, \varphi(\eta), \varphi(\eta)))
\end{aligned}
$$

where $M(x, y)=0=N(x, y)$.
Using Lemma 3, we obtain that

$$
\begin{equation*}
F(0, \varphi(\eta), \varphi(\eta))=0 \tag{13}
\end{equation*}
$$

By the property of $\left(F_{1}\right)$, we have

$$
\begin{equation*}
\varphi(\eta) \leq F(0, \varphi(\eta), \varphi(\eta)) \tag{14}
\end{equation*}
$$

Using equation (13) and (14), we get $\varphi(\eta)=0$ and then $\eta \in Z_{\varphi}$.
Hence condition (i) holds.
(ii) Let x be arbitrary point in X, then we have

$$
\begin{aligned}
& F\left(d\left(T^{n} x, T^{n+1} x\right), \varphi\left(T^{n} x\right), \varphi\left(T^{n+1} x\right)\right) \\
& \qquad \begin{array}{l}
\leq \omega\left(a F\left(d\left(T^{n-1} x, T^{n} x\right), \varphi\left(T^{n} x\right), \varphi\left(T^{n-1} x\right)\right)\right. \\
+(1-a) \max \left\{F\left(M\left(T^{n-1} x, T^{n} x\right), \varphi\left(T^{n-1} x\right), \varphi\left(T^{n} x\right)\right)\right\}, \\
\\
\left.\left.\quad F\left(N\left(T^{n-1} x, T^{n} x\right), \varphi\left(T^{n-1} x\right), \varphi\left(T^{n} x\right)\right)\right\}\right)
\end{array}
\end{aligned}
$$

where $M(x, y)=M\left(T^{n-1} x, T^{n} x\right)=d\left(T^{n-1} x, T^{n} x\right)$
and $N(x, y)=N\left(T^{n-1} x, T^{n} x\right)$

$$
=\min \left\{d\left(T^{n-1} x, T^{n+1} x\right), d\left(T^{n} x, T^{n} x\right), d\left(T^{n} x, T^{n+1} x\right)=0\right.
$$

Then above inequality reduced to

$$
\begin{aligned}
& F\left(d\left(T^{n} x, T^{n+1} x\right), \varphi\left(T^{n} x\right), \varphi\left(T^{n+1} x\right)\right) \\
& \leq \omega\left(a F\left(d\left(T^{n-1} x, T^{n} x\right), \varphi\left(T^{n} x\right), \varphi\left(T^{n-1} x\right)\right)\right. \\
& \quad+(1-a) \max \left\{F\left(d\left(T^{n-1} x, T^{n} x\right), \varphi\left(T^{n-1} x\right), \varphi\left(T^{n} x\right)\right)\right\} \\
& \left.\quad \quad F\left(0, \varphi\left(T^{n-1} x\right), \varphi\left(T^{n} x\right)\right)\right\} \\
& \leq \omega\left(a F\left(d\left(T^{n-1} x, T^{n} x\right), \varphi\left(T^{n} x\right)\right), \varphi\left(T^{n-1}\right) x\right) \\
& \left.\quad+(1-a) F\left(d\left(T^{n-1} x, T^{n} x\right), \varphi\left(T^{n-1} x\right), \varphi\left(T^{n}\right) x\right)\right) \quad\left(\text { by } F_{4}\right) \\
& =\omega\left(F\left(d\left(T^{n-1} x, T^{n} x\right), \varphi\left(T^{n} x\right), \varphi\left(T^{n-1} x\right)\right)\right)
\end{aligned}
$$

By induction for each $n \in N$ and using the property $\left(F_{1}\right)$, we obtain that

$$
\begin{align*}
\max \left\{d\left(T^{n+1} x, T^{n} x\right), \varphi\left(T^{n+1} x\right)\right\} & \leq F\left(d\left(T^{n+1} x, T^{n} x\right), \varphi\left(T^{n+1} x\right), \varphi\left(T^{n} x\right)\right) \\
& \leq \omega\left(F\left(d\left(T^{n-1} x, T^{n} x\right), \varphi\left(T^{n} x\right), \varphi\left(T^{n-1} x\right)\right)\right) \tag{15}\\
& \leq \omega^{n}(F(d(T x, x), \varphi(T x), \varphi(x)))
\end{align*}
$$

From (15), we have

$$
\begin{equation*}
d\left(T^{n+1} x, T^{n} x\right) \leq \omega^{n}(F(d(T x, x), \varphi(T x), \varphi(x))) \tag{16}
\end{equation*}
$$

Now, We prove that $\left\{T^{n} x\right\}$ is a Cauchy sequence. Suppose that $m, n \in$ such that $m>n$, we have

$$
\begin{aligned}
d\left(T^{n} x, T^{m} x\right) \leq & d\left(T^{n} x, T^{n+1} x\right)+d\left(T^{n+1} x, T^{n+2} x\right)+\ldots+d\left(T^{m-1} x, T^{m} x\right) \\
= & \omega^{n}(F(d(T x, x), \varphi(T x), \varphi(x)))+\omega^{n+1}(F(d(T x, x), \varphi(T x), \varphi(x))) \\
& \quad+\ldots+\omega^{m-1}(F(d(T x, x), \varphi(T x), \varphi(x))) \\
= & \omega^{n}(1+\omega+\ldots)(F(d(T x, x), \varphi(T x), \varphi(x))) \\
= & \sum_{i=1}^{m-1} \omega^{i}(F(d(T x, x), \varphi(T x), \varphi(x)))-\sum_{k=1}^{n-1} \omega^{k}(F(d(T x, x), \varphi(T x), \varphi(x))) .
\end{aligned}
$$

By using $\left(j_{3}\right)$ and $\left(j_{4}\right)$, then we get $\lim _{m, n \rightarrow \infty} d\left(T^{n} x, T^{m} x\right)=0$, its leads to the sequence $\left\{T^{n} x\right\}$ is a Cauchy sequence. Since (X, d) is a complete metric space, there is some $z \in X$ such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} d\left(T^{n} x, z\right)=0 \tag{17}
\end{equation*}
$$

Finally, we have to prove that z is φ - fixed point of T. From (5), we can write,

$$
\begin{equation*}
\varphi\left(T^{n+1} x\right) \leq \omega^{n}(F(d(T x, x), \varphi(T x), \varphi(x))) \tag{18}
\end{equation*}
$$

On taking limits in (18) and from (j_{2}), we get

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \varphi\left(T^{n+1} x\right)=0 . \tag{19}
\end{equation*}
$$

Since φ is lower semi continuous then the equation (17) - (19), then, we get

$$
\begin{equation*}
\varphi(z) \leq \liminf _{n \rightarrow \infty} \varphi\left(T^{n+1} x\right)=0 . \tag{20}
\end{equation*}
$$

On taking $x=T^{n-1} x$ and $y=z$ in (12), we get
$F\left(d\left(T^{n} x, T z\right), \varphi\left(T^{n} x\right), \varphi(T z)\right)$

$$
\begin{aligned}
& \leq \omega\left(a\left(F\left(d\left(T^{n} x, z\right), \varphi\left(T^{n-1} x\right), \varphi(z)\right)\right)\right. \\
& \quad+(1-a) \max \left\{F\left(M\left(T^{n-1} x, z\right), \varphi\left(T^{n-1} x\right), \varphi(z)\right)\right. \\
& \left.\left.\quad F\left(N\left(T^{n-1} x, z\right), \varphi\left(T^{n-1} x\right), \varphi(z)\right)\right\}\right)
\end{aligned}
$$

On taking limit as $n \rightarrow \infty$ in above inequality and using equation (19) - (20), the properties F_{2}, F_{3} and also using Lemma 3. and Remark 1. then, we get

$$
F(d(z, T z), 0, \varphi(T z)) \leq \omega(F(0,0,0))=0,
$$

which implies that

$$
\begin{equation*}
d(z, T z)=0 . \tag{21}
\end{equation*}
$$

Then from equation (20) and (21) that z is φ - fixed point of T (i.e., $z \in F_{T} \cap Z_{\varphi}$). Finally, we have to show that T - is a φ - Picard mapping. It is sufficient to show that assume that z and z^{*} are two φ - fixed points of T. Applying equation (12) with $x=z$ and $y=z^{*}$. Then we obtain that

$$
\begin{aligned}
& F\left(d\left(T z, T z^{*}\right), \varphi(T z), \varphi\left(T z^{*}\right)\right) \\
& \qquad \begin{array}{r}
\leq \omega\left(a\left(F\left(d\left(z, z^{*}\right), \varphi(z), \varphi\left(z^{*}\right)\right)\right)+(1-a) \max \{ \right.
\end{array} \begin{array}{r}
\\
\left.\quad F\left(N\left(z, z^{*}\right), \varphi(z), z^{*}\right), \varphi\left(z^{*}\right)\right),
\end{array} \\
& \left.\left.\left.\qquad(z), \varphi\left(z^{*}\right)\right)\right\}\right)
\end{aligned}
$$

where $M(x, y)=d\left(z, z^{*}\right)$ and $N(x, y)=0$.
By using (F_{4}) and Lemma 3. and Remark 1., then we get
$\left.F\left(d\left(T z, T z^{*}\right), 0,0\right)\right) \leq \omega\left(F\left(d\left(z, z^{*}\right), 0,0\right)=0\right.$.
Hence $d\left(z, z^{*}\right)=0$. This implies that the φ-fixed point of T is unique $(\{z\}=$ $F_{T} \cap Z_{\varphi}$). So T is a φ - Picard mapping.

Theorem 7. Under the hypothesis of Theorem 6., the following condition also hold T is a weakly φ - Picard operator.

Proof. From equation (17) and (19)-(21) of Theorem 6., we get T is weakly φ Picard operator.

3. Example

Example 3. Let $X=[0,1]$ and $d: X \times X \rightarrow$ be define by $d(x, y)=|x-y|$ for all $x, y \in X$. Then (X, d) is a complete metric space. Suppose that $T: X \rightarrow X$ is defined by

$$
T(x)=\left\{\begin{array}{lr}
0 & \text { if } 0 \leq x<\frac{1}{2} \\
k \log (x+1) & \text { if } \frac{1}{2} \leq x \leq 1
\end{array}\right.
$$

where $k \in[0,1)$, the function $\varphi: X \rightarrow[0, \infty)$ is define $\varphi(x)=\frac{x}{2}$ for all $x \in X$, the function $F:[0,+\infty)^{3} \rightarrow[0,+\infty)$ is define by $F(a, b, c)=a+b+c$ and the function $\omega:[0,+\infty) \rightarrow[0,+\infty)$ is define by

$$
\omega(t)= \begin{cases}0 & \text { if } 0 \leq t \leq 1, \\ 5 k \log 6 t & \text { if } t>1 .\end{cases}
$$

It is easy to see that $F \in \mathcal{F}, \omega \in \Omega$ and φ satisfies lower semi-continuous condition.
Now, we have to show that T satisfies condition equation (12).
Case 1: Suppose that $x, y \in\left[0 \leq x<\frac{1}{2}\right)$, then T holds equation (12) trivially.
Case 2: Suppose that $x, y \in\left[\frac{1}{2} \leq x \leq 1\right)$. We assume that $y \leq x$. Then we have

$$
\begin{aligned}
F(d(T x, T y), \varphi(T x), \varphi(T y)) & =d(T x, T y)+\varphi(T x)+\varphi(T y) \\
& =|k \log (x+1)-k \log (y+1)|+\frac{k \log (x+1)}{2}+\frac{k \log (y+1)}{2} \\
& \leq k \log (x+1) \\
& <5 k \log (6) \leq \text { RHS of }(12) .
\end{aligned}
$$

Case 3: Suppose that $x, \in\left[\frac{1}{2}, 1\right)$ and $y, \in\left[0, \frac{1}{2}\right)$. Then we have

$$
\begin{aligned}
F(d(T x, T y), \varphi(T x), \varphi(T y)) & =d(T x, T y)+\varphi(T x)+\varphi(T y) \\
& =|k \log (x+1)-0|+\frac{k \log (x+1)}{2}+0 \\
& =k \log (x+1)+\frac{k \log (x+1)}{2} \\
& =\frac{3}{2} k \log (x+1) \\
& <5 k \log (6) \leq \text { RHS of }(12) .
\end{aligned}
$$

A. K. Singh, Koti N.V.V.Vara Prasad - (F, φ, ω) - Gregus type contraction ...

All the hypothesis of Theorem 6., are satisfied and 0 is a φ - fixed point the operator T and also fixed point of T.
We can see from the following table approximating the φ - fixed point of T at two different values of k.

$\mathrm{k}=0.4$	$x_{0}=0.5$	$x_{0}=0.7$	$x_{0}=0.9$	$\mathrm{k}=0.8$	$x_{0}=0.5$	$x_{0}=0.7$	$x_{0}=0.9$
x_{1}	0.0704	0.0921	0.1115	x_{1}	0.1408	0.1843	0.2230
x_{2}	0.0118	0.0153	0.0184	x_{2}	0.0458	0.0588	0.0699
x_{3}	0.0020	0.0026	0.0031	x_{3}	0.0155	0.0198	0.0234
x_{4}	0.0000	0.0000	0.0000	x_{4}	0.0054	0.0068	0.0080
x_{5}	0.0000	0.0000	0.0000	x_{5}	0.0000	0.0000	0.0000
\vdots							

Table 1 and Table 2 iterates of Picard iteration for two different values of k
And also, the convergence behavior of these iterations in shown in Fig. 1

Fig.1: left figure for $k=0.4$ and right figure for $k=0.8$.

References

[1] M. Jleli, B. Samet and C. Vetro, Fixed point theory in partial metric spaces via φ - fixed point's concept in metric spaces, J. Inequal. Appl. (2014), 2014:426.
[2] P. Kumrod, W. Sintunavarat, A new contractive condition approch to φ - fixed point results in metric spaces and its applications, J. of Computational and Applied Mathematics. 311 (2017) 194-204.
A. K. Singh, Koti N.V.V.Vara Prasad - (F, φ, ω) - Gregus type contraction ...
A. K. Singh

Department of Mathematics
Guru Ghasidas Vishwavidyalaya, Bilaspur (C.G.)
India.
email: awnish.singh85@gmail.com

Koti N.V.V.Vara Prasad
Department of Mathematics
Guru Ghasidas Vishwavidyalaya, Bilaspur (C.G.)
India.
email: knvp71@yahoo.co.in

