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Abstract. The natural convection in an enclosure filled by a bidisperse porous
medium in the presence of internal heat generation is studied. The two velocities
- one temperature (thermal equilibrium between the macro- and micro -phases)
mathematical model is solved numerically using the finite difference method. For
different values of the governing parameters streamlines and isotherms are depicted
and maximum values of the stream functions and temperature are reported.
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1. Introduction

In the last years, there has been much interest in transfer phenomena in bidisperse
porous media (BDPM). A bidisperse porous medium is formed by voids filled with
fluid and a porous matrix composed by clusters of large particles (the macro-phase)
that are agglomerations of small particles (the micro-phase) (see, [6], [8]). In or-
der to model the momentum and the energy transfer in a BDPM, [7] proposed a
mathematical model with two momentum equations and two temperature equations.
Thus, for the transfer phenomena in the macro-phase we need two equations (mo-
mentum and energy) while other two equations (momentum and energy) are used
for the micro-phase. The momentum and the energy equations are interconnected
each other through inter-phases transfer terms. However, in [3] and [4] is reported
that when the porosities of the two phase are low, it is possible to consider a local
thermal equilibrium between the macro-phase and micro-phase and to use in the
mathematical model only one equation for energy. Several other authors studied
the transfer phenomena in BDPM, it is worth to mention: [9], [10], [11], [12].
In this paper we study the effect of internal heat generation in a cavity filled by a
BDPM with a local thermal equluibrium between the macro and micro phases.
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Figure 1: The geometry of the problem

2. Basic equations

Consider a square cavity filled by a BDPM in the presence of the internal heat
generation. The physical model is depicted in Fig. 1. The mathematical model is
given by (see, [4]):
Continuity equations:

∂uf
∂x

+
∂vf
∂y

= 0 (1)

∂up
∂x

+
∂vp
∂y

= 0 (2)
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Momentum equations:

∂p

∂x
= − µ

Kf
uf − ζ(uf − up) (3)

∂p

∂y
= − µ

Kf
vf − ζ(vf − vp) + ρgβ̂(T − T0) (4)

∂p

∂x
= − µ

Kp
up − ζ(up − uf ) (5)

∂p

∂y
= − µ

Kp
vp − ζ(vp − vf ) + ρgβ̂(T − T0) (6)

Energy equation:

(ρc)f

((
ϕuf + (1− ϕ)ε up

)∂T
∂x

+
(
ϕ vf + (1− ϕ)ε vp

)∂T
∂y

)
=

= km

(∂2T
∂x2

+
∂2T

∂y2

)
+ q′′′0 (7)

where
km = (1− ε)ks + (ϕ+ (1− ϕ)ε)kf (8)

(ρc)m = (1− ε)(1− ϕ)(ρc)s + (ϕ+ (1− ε)ϕ)(ρc)f . (9)

The boundary conditions are given by (see Fig. 1)

uf = 0, up = 0, T = T0 at x = 0 and x = L, 0 ≤ y ≤ L (10)

vf = 0, vp = 0,
∂T

∂y
= 0 at y = 0 and y = L, 0 ≤ x ≤ L (11)

Here µ, K, ζ, β̂, ρ, c, ϕ, ϵ, km, q′′′0 are the viscosity, permeability, volumetric
expansion coefficient, density, heat capacity, porosity for macro-phase, porosity for
micro-phase, thermal conductivity and heat generation term, while the subscripts f
and p refers to the macro- and micro -phases.
We eliminate the pressure term using standard arguments and introduce the effective
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thermal diffusivity. The governing equations (3)–(7) can be written as

−
( µ

Kf
+ ζ

)(∂uf
∂y

−
∂vf
∂x

)
+ ζ

(∂up
∂y

− ∂vp
∂x

)
= ρgβ̂

∂T

∂x
(12)

ζ
(∂uf
∂y

−
∂vf
∂x

)
−
( µ

Kp
+ ζ

)(∂up
∂y

− ∂vp
∂x

)
= ρgβ̂

∂T

∂x
(13)

β
((
ϕuf + (1− ϕ)ε up

)∂T
∂x

+
(
ϕ vf + (1− ϕ)ε vp

)∂T
∂y

)
=

= αm

(∂2T
∂x2

+
∂2T

∂y2

)
+

q′′′0
(ρc)m

(14)

where

β =
(ρc)f
(ρc)m

, αm =
km

(ρc)m
.

Next, we consider the dimensionless variables (see, [5])

(X,Y ) =
1

L
(x, y), (Uf , Up) =

L

αm
(uf , up),

(Vf , Vp) =
L

αm
(vf , vp), Θ =

(T − T0)

q′′′0 L
2/km

(15)

and equations (1)–(2) and (12)-(14) have the following dimensionless form

∂Uf

∂X
+
∂Vf
∂Y

= 0,
∂Up

∂X
+
∂Vp
∂Y

= 0 (16)

−(1 + σf )
(∂Uf

∂Y
−
∂Vf
∂X

)
+ σf

(∂Up

∂Y
− ∂Vp
∂X

)
= Ra

∂Θ

∂X
(17)

σf

(∂Uf

∂Y
−
∂Vf
∂X

)
−
( 1

Kr
+ σf

)(∂Up

∂Y
− ∂Vp
∂X

)
= Ra

∂Θ

∂X
(18)

β
((
ϕUf + (1− ϕ)εUp

) ∂Θ
∂X

+
(
ϕVf + (1− ϕ)ε Vp

)∂Θ
∂Y

)
=

=
∂2Θ

∂x2
+
∂2Θ

∂y2
+ 1, (19)

where

σf =
Kfζ

µ
, Kr =

Kp

Kf
, Ra =

ρgβ̂Kf

(
q′′′0 L

2/km
)
L

µαm
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Finally, we introduce the stream functions ψf and ψp given by (see, [10])

(Uf , Up) =
∂

∂Y
(ψf , ψp), (Vf , Vp) = − ∂

∂X
(ψf , ψp) (20)

and the governing equations (16)-(19) are transformed in the following nonlinear
system

−(1 + σf )
(∂2ψf

∂X2
+
∂2ψf

∂Y 2

)
+ σf

(∂2ψp

∂X2
+
∂2ψp

∂Y 2

)
= Ra

∂Θ

∂X
(21)

σf

(∂2ψf

∂X2
+
∂2ψf

∂Y 2

)
−

( 1

Kr
+ σf

)(∂2ψp

∂X2
+
∂2ψp

∂Y 2

)
= Ra

∂Θ

∂X
(22)

β
((
ϕ
∂ψf

∂Y
+ (1− ϕ)ε

∂ψp

∂Y

) ∂Θ
∂X

−
(
ϕ
∂ψf

∂X
+ (1− ϕ)ε

∂ψp

∂X

)∂Θ
∂Y

)
=

=
∂2Θ

∂X2
+
∂2Θ

∂Y 2
+ 1 (23)

The boundary conditions (10)–(11) are reduced to

ψf = ψp = 0, Θ = 0 at X = 0 and X = 1, 0 ≤ Y ≤ 1 (24)

ψf = ψp = 0,
∂Θ

∂Y
= 0 at Y = 0 and Y = 1, 0 ≤ X ≤ 1 (25)

3. Numerical results

In this section we provide and analyze the numerical solutions of nonlinear equations
(21)–(23) subject to boundary conditions (24)–(25). First of all, we give the following
equivalent form of (21) and (22)

∂2ψf

∂X2
+
∂2ψf

∂Y 2
= −

1 + 2σfKr

1 + σf + σfKr
Ra

∂Θ

∂X
(26)

∂2ψp

∂X2
+
∂2ψp

∂Y 2
= −

Kr + 2σfKr

1 + σf + σfKr
Ra

∂Θ

∂X
(27)

The governing equations (26), (27) and (23) are solved numerically using a central
finite difference method of second order along with a SOR iterative technique. We
used in our numerical calculations the cluster Kotys (see, [1]). A grid dependency
test was done and the chosen grid for these simulations was 101 × 101. Moreover,
the obtained solution was compared in the case of the monodisperse porous medium
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Table 1: Comparison on max |ψ| and max |Θ| for a rectangular cavity with the aspect
ratio height/length = 2 filled by a monodisperse porous medium

Ra
[2] [5] Present

max |ψ| max |Θ| max |ψ| max |Θ| max |ψ| max |Θ|
10 0.078 0.130 0.079 0.127 0.079 0.127
103 4.880 0.118 4.832 0.116 4.835 0.116

with that reported by [2] and [5] and a good agreement was obtained, see Table
1. The numerical simulations were performed for several values of the involved pa-
rameters. The porosities of the macrophases and microphase were fixed to typical
values for usual porous media: ϕ = 0.5 and ϵ = 0.3 and the ratio β at 0.7. The
other parameters lies in the ranges: Ra ∈ {102, 103, 104, 105}, Kr ∈ {10−3, 10−1}
and σf ∈ {0.1, 1}.
The variation of the maximum values of the stream functions ψf and ψp and tem-
perature Θ is given in Table 2. We notice that the lowest temperature is reached
for Ra = 103, Kr = 10−1 and σf = 0.1.

Table 2: Maximum absolute value of streamlines and temperature

Ra Kr σf max |ψf | max |ψp| max |Θ|

102
10−3 0.1 0.6631 0.0007 0.1302

1 0.3670 0.0010 0.1280

10−1 0.1 0.6698 0.0788 0.1304
1 0.4183 0.1045 0.1287

103
10−3 0.1 4.9939 0.0059 0.1271

1 3.1977 0.0095 0.1350

10−1 0.1 4.9773 0.5855 0.1262
1 3.4915 0.8728 0.1332

Streamlines for the macrophase and microphase and isotherms are depicted in
Figs. 2 to 5 for different values of the Rayleigh number, Ra. It is observed that two
cells of convection are formed in both macro-and micro -phases and the temperature
is higher in the middle of the cavity. When Ra increases the streamlines maximum
values is located closer to the top corners, while the location of the maximum of
the temperature goes closer to the middle of the top wall. This happen because
the convection streams push the hotter layers of fluids near the top wall. For large
values of the Rayleigh number a stratification of the temperature near the same wall
can be seen (Figs. 4 and 5).
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(a) max |ψf | = 0.6698 (b) max |ψp| = 0.0788 (c) max |Θ| = 0.1304

Figure 2: Streamlines for (a) macrophase, (b) microphase and (c) isotherms for
Ra = 102, Kr = 0.1, σf = 0.1

(a) max |ψf | = 4.9773 (b) max |ψp| = 0.5855 (c) max |Θ| = 0.1262

Figure 3: Streamlines for (a) macrophase, (b) microphase and (c) isotherms for
Ra = 103, Kr = 0.1, σf = 0.1

(a) max |ψf | = 13.9690 (b) max |ψp| = 3.4922 (c) max |Θ| = 0.0778

Figure 4: Streamlines for (a) macrophase, (b) microphase and (c) isotherms for
Ra = 104, Kr = 0.1, σf = 0.1
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(a) max |ψf | = 39.9481 (b) max |ψp| = 9.9870 (c) max |Θ| = 0.0368

Figure 5: Streamlines for (a) macrophase, (b) microphase and (c) isotherms for
Ra = 105, Kr = 0.1, σf = 0.1
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