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ABSTRACT. In this study, we take into account a class of fractional Caputo-
Atangana-Baleanu (CAB) integro-differential equations. We develop certain stan-
dards for determining the existence and uniqueness of solutions using the Banach
contraction principle, Arzela-Ascoli theorem, and Krasnoselskii’s fixed point theo-
rem. Finally, a few instances are provided to highlight our key findings.
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1. INTRODUCTION

The area of mathematics that focuses on the integration and differentiation of real or
complex orders is called fractional calculus. Even though this calculus is ancient, it
has only recently become incredibly popular. This is because of its many seemingly
diverse applications [1, 3, 4, 15, 31, 32, 33, 35, 36]. The most interesting speciality
of the fractional operators is that there are many of these operators. This enables
a researcher to choose the most suitable operator in order to describe the dynamics
in a real world problem.

Researches on fractional integro-differential equations have witnessed an unprece-
dented boom in current years on account of the far-reaching application in various
subjects, such as chemistry, physics, nuclear dynamics, biology, etc., for more details,
see [2, 4, 20, 21, 22, 23, 24, 25, 26, 27, 30] and the references therein.

It is undeniable that existence and uniqueness theorems are crucial for initial
value problems requiring the classical derivative operator because without them,
it is impossible to correctly understand modelled systems and forecast how they
will behave. Numerous mathematicians have also claimed that fractional integrals
and derivatives are more practical for simulating some disorder zones and inherited
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characteristics of a variety of complex phenomena than integer order integrals and
derivatives [19].

To reduce this problem, Atangana and Baleanu, a non-positional kernel hands a
non-singularity a more general memory solution under different configuration scales.
Several researchers have made their contributions to the development of FDEs re-
lated to the ABC derivative see [2, 5, 7, 14].

To describe complex problems, the concept of derivative of the fractional degree
and integral partial differential equations is used. One of the difficulties in solving
such equations is to predict the future behavior of a physical problem, the general
model with ML and exponential laws has been proposed by Atangana and Gomez-
Aguilar [10]. Koca and Atangana arrived at the results of the basic equation for ML
elastic thermal conductivity.

There have been many works related to fractional differential integral equa-
tions,for more information on FDEs, the reader can see [7, 8, 11, 12, 13, 16, 17, 18,
20, 33, 35].

Motivated by the research going on in this direction, in this paper, we study
existence and uniqueness of solutions for a new class of system of CAB sequential
fractional integro-differential equation with the initial condition:

ABC 1y [ﬁ(e) (0, n(e))] _
[}

0
o(0.00), [ (0. CHQNAC. [ ral(0.61O)NC). 0 0.1
h(0) = ho, (1)
where 54301)7 be the left CAB-derivative of fractional order v, 0 <~y <1,0,(,® €

[0,1]. A* :[0,1] x R — R and ¢ : [0,1] x R® — R are continuous functions satisfying
some assumptions that will be specified later.

2. AUXILIARY RESULTS

We now gather some definitions and preliminary facts which will be used throughout
this paper.

Definition 1. [31] For v > 0, Riemann-Liouville (R-L) fractional integral of order
v € R is defined as

1 0
I"h(0) = F(ry)/o (t—0)"1do, , 2 >0,R(a) >0 (2)
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Definition 2. [31] For 0 < v < 1, the R-L fractional derivative and Caputo frac-
tional derivative are defined as

DVh(t) = r(11_7)5t ( /O (t 9)—%19)

respectively.

Definition 3. [9] Let 0 < v < 1 and h € C'a,b], € L'[a,b] where 0 < a < b,
the Caputo AB-fractional derivative and the R-L AB- fractional derivative of order
~ are defined by

ABCvah(t) — M /t h/(a)E’y [ _ ,y(t — 9>7] dx
0

L1 —7)

and

.ABCD'yh(t) — F(\Ilj(j)v) % (/0 h,(g)Ev [ —y (tl—_e’))/’y] d@)

respectively, where ., is called the Mittag-Leffter function and given by

B0 =2 i, + 1

and W(7) is a normalizing positive function satisfying ¥(0) = ¥(1) = 1.

Definition 4. [9] Let 0 < v < 1 and h € C[a,b], € L'[a,b] where 0 < a < b, the
Caputo AB-fractional derivative and the R-L AB-fractional derivative of ordery are
defined by

ABTYR(9) = %@)Y)h(e) + \IE’(Q/)IVH(Q)

where I7 is the R-L fractional integral defined in 1.

The following results are based on the fixed point technique for the system (1).
The following assumptions are needed for establish the EU results.

Let T = C([0, 1], R) be the Banach space of continuous functions % : [0,1] — R,
with the norm ||A|| = supgepo,1)|A(0)]
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e (£1) Suppose that ¢ € ([0, 1]xR3, R) there exist positive constants M; and Mo
such that

|p(0, hi,vi,z1) — @(0, ho, v, 22)] < Mi(||hy — hal| + ||vr — vo| + ||z1 — 22]|)

for all hy,vy,21,h2,19,220 € 7,0 € [0,1] and My = em[%u%] |$(6,0,0,0)].
elo,

o (£9) Let z € [0,1] and A* € ([0,1] x R,R) there exist positive constants
w1 and po such that

[A*(0, ) = A"(6, he)| < pa (|1 — hol

for all hy,he € Y and po = max [|[A*(6,0)].
0,¢€[0,1]

o (£3)If6,¢ €[0,1] and k1 € ([0,1] x [0,1] x R, R) there exist positive constants
&1 and & such that

|K‘1(07C7 hl) - H1(97§7 h2)’ < 51(”7;"1 - h2”

f 11 A,k T d = 6.¢,0).
or all hy,ho €T and & e’g?gfuum(,c, i

o (£4) There exist positive constants 1, and Qo for k2 € ([0,1] x [0,1] x R, R)
such that
”i2(97 C7 hl) - K2(67 ga h?)‘ < Ql(th - h2||

for all 0,¢ €[0,1], By, he €T and Qy = max ||k1(6,¢,0)].
0,¢€[0,1]

o (£5) For any positive 7 we take Bz ={h €T : ||| <7} C7T. where

>

(i-7)

where

P:M1+M1(1+€1+¢Q1)<(1_j)—I— : )
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and

Q = pp + Ma(1+ & + BQy) (%{7’;) + I’(’y)l\Il(’y)>

henB7 is bounded, closed and convex subset in C([0, 1], R)

Lemma 1. If (£3) and (£4) are satisfied, then the estimate

11 A(0)]] < O(&a IRl + €2)

and
[127(0) ]| < (|7l + 2)

are hold true for any 0 € [0,1] and h € 1.

Corollary 2. [6, 14]
If 0 < v <1, then

(6431'7(6486177)}1)(9) = h(9) — R(0O)E,(£0v) — ﬁh(o)E%v—H(SQ’Y)

= R(6) — K(0) (3)

Theorem 3. (Krasnoselkii’s fived point theorem) [32] Let S is a nonempty, closed,
bounded and convex subset of a Banach space E. Let Ay, As be the operators from {2
to E such that:

(i) Ajuy + Agug € 2 whenever uy,ug € 2

(ii) Ay continuous and compact;

(iii) Az is a contraction map. Then there exists z € {2 such that z = A1z + Agz

3. MAIN RESULTS

Theorem 4. Let 0 < v < 1 and there exists ¢ € ([0;1] x R3;R) with
#*(0,k(0),0, foq) k2(0,¢, h(¢))d¢ = A*(0,R(0)) = 0. A function h € C[0,1] be a solu-
tion of the integral equation

o) = X(0,1(0)) — X*(0,h(0)) + ho
P

+ FET6(000), [ k(0. HEG, [ ka6, CHOME) @)

iff h(6) is a solution of the ABC—problem (1)
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Proof. Let h(6) satisfy (1). Applying the AB—fractional integarl of (1) we get
P27 (65 DY)(In(t) — X*(8, 1(6))]) =

T P
AB
S50 (0.100), [ ma(0.CONC. [ raf0.¢.1(0)) )
By using Proposition 2, we obtain

o) — A*(6, h(8)) — (R(0) — A™(0,1(0))) =
]

S50 (0.100), [ 10,6 ONC, [ ra(0.C.H(E)aC),
Since h(0) = ho, then (4) is satisfied. Now, consider /(6) satisfies the (4), then by
>

6*(0,1(0),0, /0 (0,¢, B(C))dC = X*(0, h(0)) =0,

it is visible that /(0) = hy using Applying AB—derivative in R-L sense of (4) and
by using (38D ({BD)h)(0) = h(h), we get

@R DIR)(0) = (o) (PRDN)I)(6) + (5 °F DY) (6, 1(6))
(]

0
HEERDEET6(6,1(0), /0 16, B(C))dC, /O wa(0, ¢, H())dC)
Thus

GEFDT)()(0) = (0. 1(0)) = (B, (1—-01)
P

+0(0.100), [ (6.6 HOMC [ a0, O)C)

Hence, the equation (1) can be obtained by the Theorem 1 in [9].
Now, let us define the operator F on B7 as follows

Fh(O) = X(0,h(0)) + ho
[

0
+ §5D76(6,1(6), /0 (6, ¢, A(C)dC, /0 rk2(6,C. h(C))dC)

It is observed that h() is the solution of (1) iff the operator F has a fixed point.
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Theorem 5. Assume that £1 — £5 are satisfied and
plos—01) = M9, v(0). /06»@1(9 GO, [ " 2(6,6,0(C)O) |
T w(&ﬂw,u(@)/ k1(0,C,v dc/ k2(0, ¢ v(0))d)))
4 B(]00(0), [ ri(6.¢ () /0 ka(0, ¢, ()OI

If yy <1 Then problem (1) has a solution.
Proof. Let us define the operators /7 and JF> on B7 such that
F=F+F

Fih(6) = X*(0,1(0)) + ho

P

0
Fah(0) 4% T6(0.1(6), | ra(0.CHEDAC, [ ra0.CHO)C).

The following three steps are required to apply the Theorem 2.

1) ||Fih+ Foz|]| <7 where 7 € B For any h,z € By

|| F1h + Foz|| = sup {
0€[0,1]

A™(0,1(0)) + To

1_ 0]

+gro(6.20), /09K1<e,<,z<o>d<, || b a0pac)

d
+

L0T76(6,2(6), /0 ’ 11 (6,C,2(O)C, /0 mz(f),CvZ(C))dC)\}

¥(v)

< sup {M*(f),h(ﬂ))lﬂﬁol
0€[0,1]

P

1—7 o
g 0(0:20), [ w1(0.C.2(0)aC.200) [ ra(0.¢. 20|

0 P
(0.200). [ mo.cxt0ac.z0) [

Lo (0, h(<)>dc)|}
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< sup {]/\*(0,71(0)) — X*(6, 1(0)) + X*(8, h(0))| + | Ag|

— 0 >
i 9020, /0 1 (6, G, 2(0))d, /0 ra(0, ¢, 2(C))dc

+0(0.20), [ 100,200 [ ralo.¢.200)ac),
P

bl 9(0.20), [ w0620 [ ra00.¢20c)

~6(0.20, [ ma0.c.200C, [ rato, ¢ 20)c)

(0.4
(6.200), / (6, C.2(0))dc, /j@(e,c,z(o»dc)}

< plnll + ip(_,y’)y <M1Hﬁ|| +0(&u 1]l + &2) + D(Quzl| + Q2)]>

+¢

1
U(y)T'(7)

_l’_

<M1[Iﬁll + 0GRl + &2) + 2(ullz] + Q2)]>

(1; N )mu T @(911] M

1—7 1
(‘I/(’Y) + Ty )>M2[|1+§2+q}(92]]
=|z|P+Q<Pr+Q<T.

< p2+

2) Fi is the contraction on B For any h,z € B7 by using £o and £s.

|Fih(0) — Fiz(0)|| = ozl[tpu{ A*(0,h(0)) + hg — \*(0,2(0)) — ho‘}
< sup {IA*(Gvﬁ(f))) - A*(972(9))H}
0€[0,1]
< ullh—2].
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As p1 < 1. Thus F; is a contraction operator.

3) We prove that Fj is completely continuous operator.

For completeness of Fo, firstly we prove that F» is continuous.
With lim,,—, ||hn — A|| =0, for any h,,h € Brn=1,2,..
Then lim,,—, i, (0) = R(0) ,V0 € [0, 1].

Therefore
®

im0 (0.1 0). 6,6, (), | rato.cmcnac)

n—-=>00
(0]

0
= o(0.00). [ ma(0.C.HQC, [ ral0.CO)C).
Now, for 6 € [0, 1]

| F2hn (0) — Fah(0)]

_ }{] O (0.1, /00 k16, C. ha())dC, /0@ k2(0.¢, ()¢

sew || ¥
— o(6.n( /Oem 6., h( czc,fI> 5200, ¢, () dC )
'7

+ o (0,hn(0), / 16, C. hn())dC. /jm(e,c,hn(o)dc)
- ¢(9,h /Oomew dc,/q)m(e,c,h(c))dc)}

(1 1
< (%) * were)

0 d
< sup [9(01(0). [ w1(0.C (O, [ a(0.Cn(O)C)

0€[0,1]

o000, [ 0.6000c, [ e )

Thus || Fahn(0) — Foh(0)|| — 0 as n — oo.
Now, we prove that Fy is compact.
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(1-79)
U(y)

|F2h(0)] = sup {\ 6(0.h(0), /Oemw,c,h(c»dc, /0 " 6., 1)) dc)

0€[0,1]

+ \I]Zwof%(@,hn(m?/oe /€1(0,C,hn(0)d€,/j ng(e,g,hn(g))dg)‘}

(1-1v) 1
< 5o T emre)
0

(0]
sup ||¢>(e,h(0>, /0 (6.6 HONG, [ ma8,C RO |

0€[0,1]

(55 * wore)

(M llhll + £1Hh|! + &) + B[] + )] + M)
<(

)

[Ml 1+6&+ cp(szl]unu + Ma[1+ & + 20|

< [(P—Hl) +(Q—N2)] < 00,

which shows that F> is bounded on Br.
Next, we prove that F» is equicontinuous. For any 0 < 61 < 63 < 0 < 1, we
have

X

X

X

| F2h(02) — F2h(01) ||

— s {( o Do(tnanten) [ wa0n,nOC, [ a0, 0)C)

ocp) |1 (V)
b oo (@), [ O HOMC, [ e, HOC)
Do), [ wioncnoc, [ raionnnone)
— glma(onen, [ moncnoc [ n2<01,<7h(<>>d<)'}
< S D6(000, [ o NG, [ rattn, ¢ hEC)

01 P
= (o). [ mCHONC [ ralor.HE)aC)]
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P

g &
oD 002102, [ (0 CHQAC [ a0, €. C)

01 P
= (o). [ m@CHONC [ ralor.HE)aC)]

(1—-7)
®) (M[

0.106), [ ra(0, B, [ wa(60,C. KOG
(o.nt00. [

(0,500, /0 ’ 1 (0,C, Q) C, /0 ’ %z<9,<,h<<>>d<)H>D

P

P

IN

0
(0.00). [ mat0.chcpac. |

a6, h(C))dC) H

M1[ (.00, [ mat0.cnonec, [

k26, ¢, h())d) H

(0. n(), /0 " (6,C. MG, /0 " (6,20 H)

(0,7‘&(9)7/06 /-61(9,4“,h(())dg‘,/o(I> K2(0,C, h(C))dC) H)}) (03 — 601)7

7T()
gl (02 —61)"
< (62— 61) + G e(02 = )
o+ o

H.Fgﬁ(gz) — fgh(&l)H — 0 as 92 — 91

Consequently, F» is equicontinuous operator on®87. Therefore by the Arzela-
Ascoli theorem F3 is relatively compact on Br. Hence by the Theorem 3 F has at
least one fixed point. Thus A is that fixed point of F. Consequently, & is solution of

the system (1).

4. UNIQUENESS RESULT

Theorem 6. Assume that £1 — £5 are satisfied. If

P
0" (0100 [ £(0.¢.HE)AC) = X' (0.4(0) = 0
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and

u1+M1(1+§1+¢>Ql)<(;@7)+ ! )gl

Then problem (1) has unique solution on [0, 1].

Proof. For any h € B

|FAh|| = sup { A (0,h(0)) + ho

0€[0,1]
1—7 0 &
g0 (0.m0). [ mo.chOc [ wa0.¢0)c)
d

T o
+ 7T (6:100) /0 r1 (0, ¢ B(C))dc, /0

< sup {!A*(H, h(6))[ + |hol
0€[0,1]

ka(0, ¢, H())dC ) }

1—7 0 )
+w|¢(9,ﬁ(9)7/0 /ﬁ?1(9,(,h(§))d§,/0 “2(97Cah(C))dC)|

0
gD le(0.000). [ maco.coneac. [

< sup {IA*(H, 8)) — A*(0,1(0)) + A*(0, 1(0))[ + [ o

(0]
+

ra(6,C. h(C))dC ) r}

1—7 o ®
10000, [ ma0.Cnic, [ a0, 0)ac)
0 ®

~0(6.100) [ (0. (0.6 BO)C, [ ra(6.¢, (0.0

0 P
+¢(97h(0)’/0 ’il(eac’ h((e,c,h(O))dC,/o ’i2(9ac’ (G,C, h(O))d§)|

‘I’Z’Y oI“qug(e h(o /9 r1(6,¢, h(C))dC, /q) Ko (0, ¢, ﬁ(g))d<>

~o(6,h(0) /Oemec 0.c.0ONC, [ 20,6, 10)ac)
(0.1

+(0,1(0 /Oemem dc/wch<>>d<)|}
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< [l + W (Ml[!ﬁH +0(& 1]l + &2) + 2(u[R] + 92)]>
1

1
+W (MIUHH + 0(&l|A]l + &2) + (Al + Q2)]> T()

1 - ¥ 1
o) [TCI R (‘I’(V)M2> ()

1-— 1

< bl + Iyl

i + (“H L >M2[11+§2+@(QQ]

U(y)  AL(7)
=|AP+Q<PFr+Q<T7T

which shows that F is bounded on 87 Now to prove uniqueness

|Fh(6) ~ Fha(6)]| = sup {)A (6, 11(6)) + ho
6€[0,1]

1—~ 0

P
o (8.mo). [ m@.C 0N [ ra(0.cm@)ac)

+-J Om(e,w),/:mw,c,m(o)dc,/ (0, ¢ M (C )\}

Y(v)
1

—\*(0, ha(0)) — ho—W¢<9 ha(0), /09/11(9 ¢, ha(C )dCa/ k2(0, ¢, ha(C))d )

~y 0
_W(V)Ozvgb(e,@(e),/o m(e,g,@(g))dg,/ K (6, C, hia(C )‘}
< pallhy — he|

5] (Mmm(e) — a(0)]] + 06 11 () = ha(6) ) + (11 (6) ~ h2<9>|>]>
1y

¥ (y)

1—7 1
< [Ml + <‘I/(7) + M>M1[1+£1 + @] |71 — hel

41 (Ml[thw) — R (0)|| + 0(&11171(0) — h2(0) ) + @([[| 21 (0) — h2(9)||)]> ST()
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Since

1—7 1
Hn1 + <\IJ(’)/)+’)T("Y)>M1[1 —|—§1+(I)Ql] <1

Consequently, F is a contraction mapping. Therefore by the Banach contraction
principle, the operator F has a unique fixed point. Hence the system (1) has a
unique solution.

5. EXAMPLES

This section of the article produce examples related to EU of solutions of the dis-
cussed problem.

Example 1. Consider the following ABC-fractional initial value problem.:

3 4 0
n 615/04692“ sin(h(g)))dg), 0 € 0,1],
1(0) = ho

o

where yv=% and
1
X (0,7(0)) = ——=e**h(0)

100
,mamm»=;W+”uT%m

52(6,6,H(0) = g sin(h(C))

Now
X 0,1(0)) = A0 m(O)] = |15 h(6) — e (0)
62<I>
< ﬁ”h*hlﬂ
1(6,0(0) (0, C (O] = (Ot 42O L) MO
< « T (S [EAA TE A (s

A

1
—||h—"h
=]
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L P+ sin(h (0))))

52(60,G, Q) — a6, G Ia(O)] = e sin(A(0))) — e

2
—||h—h
=

4 0 [
(g [t o / o+ sin(h(C)))

[1+n
4 0 h P e

3 (1 e(e?-1)
<2 =4+8° IV n=n
_35<15+ 65 )H ill

thus assumptions (£1); (£2); (£3) and (£4) are hold true. Hence, Consequently,

e2® e2 1 3

_ _ < - —0.00972, W(2)=1
M=t YT Y- M : (7)

the Theorem 5 implies that the system (5) has a solution. In addition,

1-— 1
1+ Mi(L+& + P) <( 7) + > = 0.05676 < 1

U(y)  I()¥()

hence using the Theorem 6, then the system (5) has a unique solution.

Example 2. Consider the following ABC-fractional initial value problem:

ABC 13 1 _ 1 L0 4
AEDR [h0) + 0] = o (o /0 (0 + CHR(C)dc

1 (7

T RS SLO R (R
1(0) = hy,
where’y—% and
1
X*(6.h(6)) = {z5uh(®)

1(0.6,1(0)) = 50+ ¢
52(6,G,h(Q)) = 5 (6" cos(C)H(Q)
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Now
x x 1 1
X 0H0) = X 0RO = Iz gahl0) — 125l (0)
< oslh— ]
£1(6,6,5(0) = (0,6 ()] = 50"+ CHRIC) — oo (0 + ()]
< ln-ml
5206, G,h(C)) = 26 G Ba(O)] = 155 (6" cos(C)R(E) — 550 cos( Q) Q)
1
< 2*0”71—711”

1 1 I
g3 (a5 |, 0+ MO+ 55 [0t costcomcrac)

S04 1+ 30\60

1 ({1 sin(®)
< —
=10 (50 T 50 )Hh full,

thus assumptions (£1); (£2); (£3)and(L4) are hold true. Hence, Consequently,

0 P
(5 | 0+ cmoic+ 55 | 04cos<<>h1<<>d<)‘

1 1 1

3
el = — = — = 0.002615 U(-)=1
1507 1 201 51 307 Ml ) (4)

H1 =
the Theorem 5 implies that the system (6) has a solution. In addition,

1+ Mi(14 € + Q) (QII?V;) + F(W)l‘lf(v)> = 0.00904 < 1,

hence using the Theorem 6, the system (6) has a unique solution.
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6. CONCLUSION

In this research, we investigate the existence and uniqueness of fractional order
integro-differential equations in Banach spaces with initial conditions and CAB-
derivative of fractional order. By using fractional calculus, Banach’s contraction
principle, and other techniques, existence and uniqueness results of solutions are es-
tablished, the theorem of Krasnoselskii fixed points. A few applications are provided
to highlight the key findings.
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