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INVARIANT (o, 5)—METRICS ON REDUCED YX-SPACES
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ABSTRACT. In this paper we study the geometric properties of Finsler X—spaces.
We prove that Matsumoto ¥ —spaces, infinite series ¥ —spaces and exponential ¥—spaces
are Riemannian.
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1. INTRODUCTION

Let M be a C* manifold and p: M x M — M, p(z,y) = x.y be a differentiable
multiplication. The space M with the multiplication p is said to be symmetric if
the following conditions hold:

(1) zx=x

(2) z.(zy) =y

(3) z.(y-2) = (z.y)(2.2)

(4) every point x has a neighborhood U such that z.y = y implies

y=uxa, forally eU.

The notion of symmetric spaces is due to E. Cartan and reformulated by O. Loos as
pair (M, u) with conditions (1) —(4) in [16]. A. J. Ledger [13, 14] initiated the study
later, generalized symmetric spaces or regular s—spaces. Let M be a C'*°*—manifold
with a family of maps {s;}serr. The space M is said to be a regular s—space if the
following conditions hold:

)
)

(C) 8208y = Ss,y O Sz,
)

(sz)« has only one fixed vector, the zero vector.
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Y —spaces and reduced X—spaces where first introduced by O. Loos [16] as generali-
sation of reflection spaces and symmetric spaces [17]. They include also the class of
regular s—manifolds [7].

The definition of symmetric Finsler space is a natural generalization of E. Car-

tan’s definition of Riemannian symmetric spaces. We call a Finsler space (M, F) as
a symmetric Finsler space if for any point p € M there exists an involutive isometry
sp of (M, F') such that p is an isolated fixed point of s,,.
If we drop the involution property in the definition of symmetric Finsler space keep-
ing the property s, o0 s,y = 5,05, 2 = s;(y) we get a bigger class of Finsler manifolds
as symmetric Finsler spaces [2, 5, 6, 8, 10, 11, 12, 19]. Finsler ¥ —spaces were first
proposed and studied by the second and third authors in [9].

2. PRELIMINARIES

A Finsler metric on a C'* manifold of dimension n, is a function F : TM — [0, c0)
which has the following properties:
(i) FisC>®on TMy=TM —{0},
(ii) F is positively 1—homogeneous on the fibers of tangent bundle T'M ,
(iii) For any non-zero y € T, M, the fundamental tensor g, : T, M X
T.M — R on T,.M is positive definite,

19
gy(u,v) = 5888t[F2(y+ su ~+ tv)]|s=t=0, u,v € TpM.

Then (M, F') is called n—dimensional Finsler manifold.
One of the main quantities in Finsler geometry is the flag curvature which is
defined as follows:
gy(R(% y)y7 ’LL)
9y (Y, y)gy(u, u) = g5 (y,u)’

where P = span{u,y} is a 2—plane in T,M, R(u,y)y = V,Vyy — V,Vy,y —
Viuyy and V is the Chern connection induced by F' [18, 4]. For a Finsler met-
ric F' on n—dimensional manifold M, the Busemann-Hausdorff volume form dVp =
op(x)dzt...dx™ is defined by

K(P7y):

_ Vol(B™(1))
Vol{(y') € RP|F(yi 5% 1s) < 1}

op(z)
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. 2
Let G* := }1 g”[gx%y%y — 8(0Fl )] denote the geodesic coefficients of F' in the same

local coordinate system. The S—curvature can be defined by

S(0) = 5 (e.0) ~ ¥ g clinoe(a),

where y = ¢ aii |z € Ty M (see [4]). The Finsler metric F' is said to be of isotropic
S—curvature if

S = (n+1)cF,

where ¢ = ¢(z) is a scalar function on M.

3. INVARIANT (v, )—METRICS ON X —SPACES

We first recall the definition and some basic results concerning ¥—spaces [15, 20].

Definition 1. Let M be a smooth connected manifold, > a Lie group, and p :
M x ¥ x M — M a smooth map. Then the triple (M,%, 1) is a X—space if it
satisfies

(1) w(z,0,2) ==,

(22) p(z,e,y) =y,

(E3) wlz,o,pu(z,7y)) = p(z, o7, y)

(35) w(z,0,pu(y,7,2)) = p((z,0,y), 010, p(z, 0, 2))

where z,y,z € M, o,7 € ¥ and e is the identity element of . The triple (M, %, p)
s usually dinoted by M.

For a fixed point x € M we define a map o, : M — M by o,(y) = u(z,0,y)
and a map o” : M — M by 0*(y) = oy(x). With respect to these maps the above
conditions became

(31) ox(z) = =,
(2,2) er = idy,
(2/3) OgTy = (0'7')90

(24) 0utyo, ' = (070 )ou(y).
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For each x € M by 3, we denote the image of ¥ under the map ¥ — ¥,, 0 — 0,.
For each o € ¥ we define (1,1) tensor field S? on the ¥—space M by

S7Xy =(04)+ Xy YreM,X,eT,M.
Clearly S is smooth.
Definition 2. A Y—space M is a reduced X—space if for each x € M,
1. Ty M is generated by the set of all 0*(X;), that is
ToM = gen{(I — S?)X,| X, € T,M,0 € X},
2. If X, € T,M and 0*X, =0 for all 0 € 3 then X, =0, and thus no non-zero
vector in T, M s fived by all S°.

Definition 3. A Finsler ¥—space, denoted by (M,%, F) is a reduced X—space to-
gether with a Finsler metric F' which is invariant under X, for p € M.

Definition 4. Let a = \/a;j(x)y'y’ be a norm induced by a Riemannian metric a
and B(x,y) = bi(x)y* be a 1-form on an n-dimensional manifold M , and let

1B()lla := /@ bi(2)b; (). (1)
Now , the function F is defined by ,
. _#B
F = a¢(s) 5=, (2)

where ¢ = ¢(s) is a positive ¢ function on (—by,by) satisfying
d(s) — s¢'(s) + (b* — s2)pH (s) > 0, | s|< b < b. (3)

Then by lemma 1.1.2 of [4], F is a Finsler metric if ||f(x)||a < bo for any x € M
. A Finsler metric in the form (2) is called an («, )— metric [1, 3, 4]. A Finsler
space having the Finsler function :

o?(@,y)
a(m,y)—ﬁ(m,y)’ (4)

is called a Matsumoto space. A Finsler space having the Finsler function ,

B (@, y)
,B(CU, y) - Oé(x?y)?

F(Sﬂ,y) =

F(IB,y) =

4



S. Zolfegharzadeh, M. Toomanian, D. Latifi — Invariant (a, 3)—metrics ...

is called a Finsler space with an infinite series (c, B)—metric. A Finsler space having
the Finsler function:
B(z,y)

6
a(z,y)” )
is called a Finsler space with an exponential metric («, f)—metric.

Now we present the main results.

Lemma 1. Let (M,%, F) be a Matsumoto X—space with F defined by the Rieman-
nian metric & and the vector field X. Then (M,X,a) is a Riemannian ¥—space.

F(z,y) = a(z,y) exp(

Proof: Let o, be a diffecomorphism o, : M — M defined by o, (y) = u(z,0,y).
Then for p € M and for any y € T,M we have

F(p,Y) = F(oz(p),do,(Y)),
A(X,,Y) a(do,Y,do,Y)
(X, Y) =
: JaldoY, do,Y) = a(X,, ), oY)

a(v,Y)
Vay,Y)

Substituting Y with —Y in (7) we get:
a(Y,Y) a(do,Y,do,Y)

_ , 8
a(Y,Y) +a(X,,Y) a(do,Y, do,Y) + (X, (p) dosY) (®)

, (7)

Combining the equation (7) and (8), we get
QYY) = a(dou(Y),doy(Y)),
a(Xp,Y) = a(X,,p),do.(Y)).
Thus o, is an isometry with respect to the Riemannian metric a. [J

Lemma 2. Let (M,¥%,a) be a Riemannian ¥—space. Let F' be a Matsumoto metric
defined by the Riemannian metric a and the vector field X. Then (M,%,F) is a
Matsumoto ¥—space if and only if X is o,—invariant for all € M.

Proof: Let X be oy—invariant. Then for any p € M, we have X, () = doyX).
Then for any y € T, M we have
a(doyyp, dogyp)
a(doyy, doyy) + a(Xo, p)> dory)

F(ox(p), dozyp) =

_ a(y,y)
a(y,y) — a(doy Xp, doyy)
_ a(y,y)
Vva(y,y) — a(Xp,y)
= F(p,y).
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conversely, let ' be a Yj;— invariant, then for any p € M and y € T,M, we have
F(p,Y) = F(ox(p),do(Y))

d(y> y) _ d(do-xyp, damyp)

&(ya y) - &(X]% y) \% &(daw:% daxy) - C~Z(‘Xro'gg(p)v dazy) ’

so we have

a(doy Xp, — Xoo(p)s doyyp) =0,
Therefore do, X), = X, (p)- U

Theorem 3. A Matsumoto Y—space must be Riemannian.

Proof: Let (M, 3, F') be a Matsumoto X—space where F' is a Riemannian metric
a and the vector field X. Let o, be a diffeomorphism defined by o, (y) = u(z,0,y).
By lemma 1, (M, X, a) is a Riemannian ¥—space. Thus we have

d(daxy, daxy)

F(fL'7 do'xy) = \/m — &(an dey)
a(y,y)
Valy,y) — a(Xy, dogy)
= F(z,y).

Therefore a(X,, doyy) = a(Xz,y), Yy € Tz M. The tangent map S = (do,), is an
orthogonal transformation of T, M without any nonzero fixed vectors. So we have
a(Xz, (S7 —id)z(y)) =0, Vy € T, M. Since (S — id), is an invertible linear
transformation, we have X, = 0, Vz € M. Hence F is Riemannian. [J

,62

-«
the Riemannian metric a and the vector field X. Then (M,%,a) is a Riemannian
>.—space.

Lemma 4. Let (M,%, F) be a infinite series ¥— space with F' =

defined by

Proof: Let o, be a diffecomorphism o, : M — M defined by o, (y) = u(z,0,y).
Then for p € M and for any Y € T, M we have

F(p,Y) = F(oz(p), dox(Y)).
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Applying equation (5) we get
a(Xp, Y)? B a(X,, (p), dogY)?

a(Xp,Y) = Va(Y)Y)  a(X,, (). dosY) — \/a(doyY,do,Y)

which implies

a(Xp, Y)a( Xy, (), donY) — a(Xp, Y)*Va(do,Y, do,Y')

= a(X,,(p): dooY)a(X,, Y) — (X, (). dogY)?/a(Y,Y). (9)
Applying the above equation to =Y, we get

a(Xp, Y)?a(X,, (), doaY) + @(Xp, Y)*Va(do,Y, dog )

= a(X,, (), dosY)?a(X,, Y) + @(X,, (). dogY)?Va(Y,Y). (10)
Applying the above equations we get
a(Xp,Y) = a(X,, (), dozY), (11)

so we have
a(Y,Y) =a(do,Y,do,Y).
Thus o, is an isometry with respect to the Riemannian metric a .00

Lemma 5. Let (M,X,a) be a Riemannian ¥—space. Let F' be an infinite series
defined by the Riemannian metric a and the vector field X. Then (M,%, F) is an
infinite series X —space if and only if X is o,—invariant for all x € M.
Proof: The proof is similar to the proof of lemma 2.0J
Theorem 6. An infinite series X—space must be Riemannian
2

B defined by
-«

the Riemannian metric a and the vector field X. Let o, be a diffeomorphism defined
by o.(y) = p(x,0,y). by lemma 4, (M,3,a) is a Riemannian ¥ —space. Thus we
have

Proof: Let (M,X, F) be an infinet series ¥ —space with F' =

a(Xy, dog(y))?
A(Xz, doa(y)) — Va(dow(y), dow(y))
d(X.Tv dUz(y>)2

a( Xy, doz(y)) — va(y,y)

= F(x,y).

F(z,doyy) =
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Therefore a(X,, doyy) = a(Xz,y), Yy € Tz M. The tangent map S? = (do,), is an
orthogonal transformation of T, M without any nonzero fixed vectors. So we have
a(Xz, (S7 —id)z(y)) =0, Vy € T, M. Since (S — id), is an invertible linear
transformation, we have X, =0, Vz € M. Hence F is Riemannian. [J

Lemma 7. Let (M, X, F) be Finsler ¥—space. with exponential metric F = « exp(é)
a

defined by the Riemannian metric a and the vector field X. Then (M,%,a) is a Rie-
mannian X spaces.

Proof: Let o, be a diffecomorphism o, : M — M defined by o, (y) = u(z,0,y).
Then for p € M and for any y € T, M we have

F(p,y) = F(ox(p),do(y)),

Applying equation (6) we get
,do,Y)

Va(y,y) exp(M) =/a(do,Y,do,Y) exp( iXo. 0 ), (12)

a(Y,Y) a(do,Y, do,Y)

Replacing Y by -Y in equation (12) we get

= —a(Xp,Y) = —&(ng(p),daxY)
a(y,y) exp(———=) = v a(do,Y,do,Y ) e
(y,y) exp( d(Y,Y)) Va( ) exp( (oY do.Y)

), (13)

combining the above equation (12) and (13) we have

Q(X,,Y %X, (), doY)
(~ P ) ) — exp( _ (p)
a(Y,Y) Va(,doyY,,do.Y)

),

exp(

which implies
a(X,,Y) (X, (p),dosY)

Va(yY)  a(do,Y,do,Y)

(14)

From equation (12) and (14), we have
a(Y,Y) =a(do,Y,do,Y).
Thus o, is an isometry with respect to the Riemannian metric a. [

Lemma 8. Let (M,X,a) be a Riemannian ¥—space. Let F' be an exponential metric
defined by the Riemannian metric a and the vector field X. Then (M,%X,F) is an
exponential X—space if and only if X is op—invariant for all x € M.
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Proof: Let X be o,—invariant. Then for any p € M, we have X, (,) = doyXp.
Then for any y € T,M we have

_ &(XU,,(p),dU:BY)
F(oz(p),do.(Y; = dosY, dosY :
(02(p), dos(Yy)) a(do oaY) exp( a(doY, domy))

i(do,Y, do,Y
= +a(do,Y,do,Y)exp( a(do 9:Y) )

a(do,Y,do,Y)

Conversely, let F' be a ¥j/— invariant, then for any p € M and y € T,M , we have

F(p,Y) = F(oz(p),dox(Y)).
Applying the lemma 7, we get

&(va Y) _ d(XUx(P)’ dO’xY) (15)
a(Y,Y) a(do,Y,do,Y)’

which implies
a(Y,Y) =a(do,Y),do,Y). (16)

From equation (15) and (16), we have

a(Xz,Y) = a(Xo, (p), dozY).
Therefore (dos)pX, = Xo,(p) -0
Theorem 9. An exponential X spaces must be Riemannian.

Proof: The proof is similar to the above cases.[J
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