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1. Introduction

Hermite-Hadamard(H-H) inequality for convex functions was first discovered by Her-
mite and Hadamard in 1881 [4, 15]. Since its announcement, Hermite-Hadamard
inequality has been regarded as one of the most useful inequalities in mathematical
analysis and optimization theory. Several authors have extended, generalized and
improved the Hermite-Hadamard integral inequality for uni- and multi-variate con-
vex functions, as well as other classes of convex functions on classical intervals, see
[9, 17, 18, 19, 20] and the references therein.

Interval analysis was initiated by Moore for providing reliable computations
[16]. Significant work on the theory of interval analysis did not appear until the
1950’s, though it dates back to Archimedes’ computation of the circumference of a
circle. Since then, interval analysis and interval-valued functions(IVF) have been
extensively studied both in mathematics and its applications, [16, 23]. Several au-
thors have, in recent times, extended, generalized, improved, varied and applied the
Hermite-Hadamard inequality for different classes of interval-valued convex func-
tions on classical intervals [2, 23, 25], but only a few authors have obtained results
for H-H inequalities on time scales especially the ones involving Fh-convex functions,
see [12, 13].
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Recently, new developments of the theory and applications of the notions of
convexity on time scales to Hermite-Hadamard inequalities, Calculus of Variations
and Economics were made (see [1, 4, 8, 9, 12, 13, 14, 22]).

Definition 1. [11] A mapping f : IT → R is said to be Fh-convex, f ∈ SX(Fh)
on time scales if

f(λx+ (1− λ)y) ≤
(

λ

h(λ)

)s

f(x) +

(
1− λ

h(1− λ)

)s

f(y), (1.1)

for all s ∈ [0, 1], 0 ≤ λ ≤ 1 and x, y ∈ IT.
If inequality (1.1) is reversed, then f is Fh-concave, that is, f ∈ SV (Fh).

Definition 2. [11] The diamond-Fh integral of a function f : T → R from a to b,
where a, b ∈ T is given by;∫ b

a
f(t) ⋄(Fh(λ))

s t =

(
λ

h(λ)

)s ∫ b

a
f(t)∆t+

(
1− λ

h(1− λ)

)s ∫ b

a
f(t)∇t, (1.2)

where s ∈ [0, 1], 0 ≤ λ ≤ 1, provided that f has a delta and nabla integral on [a, b]T
or IT.

Definitions 1.1 and 1.2 have been employed to establish H-H type integral in-
equalities on time scales, see [12, 13] and the references therein. The results obtained
are as follows.

Theorem 1. [12] Let h : JT ⊂ T → R be a non zero non negative function with
the property that h(t) > 0 for all t ≥ 0, where JT is Fh-convex subset of the real
T and f : IT → R be a continuous Fh-convex function, a, b, t ∈ IT with a < b and
s ∈ [0, 1]. Then

2s
[
h(

1

2
)

]s
f

(
a+ b

2

)
≤ 1

b− a

∫ b

a
f(x) ⋄(Fh(λ))

s x

≤ f(a)

[∫ 1

0

(
λ

h(λ)

)s

∆λ−
∫ 1

0

(
1− λ

h(1− λ)

)s

∇λ

]
+ [f(a) + f(b)]

∫ 1

0

(
1− λ

h(1− λ)

)s

∇λ.

Theorem 2. [13] Let h : JT ⊂ T → R be a non zero non negative function with
the property that h(t) > 0 for all t ≥ 0, where JT is an Fh-convex subset of the real
T and f : IT → R be a continuous Fh-convex function, a, b, t ∈ IT with a < b and
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s ∈ [0, 1]. Then for real numbers lf (λ) and Lf (λ); the lower and upper bounds of f
respectively, we have

2s
(
h(

1

2
)

)s

f

(
a+ b

2

)

≤ lf (λ) ≤

(
λ

h(λ)

)s(
λ

h(λ)

)s
b+

((
1−λ

h(1−λ)

)s
− 1
)
a

∫ (
λ

h(λ)

)s
b+

(
1−λ

h(1−λ)

)s
a

a
f(t)⋄ 1

2
t

+

(
1−λ

h(1−λ)

)s(
1−

(
λ

h(λ)

)s)
b−

(
1−λ

h(1−λ)

)s
a

∫ b(
λ

h(λ)

)s
b+

(
1−λ

h(1−λ)

)s
a
f(t)⋄ 1

2
t

≤ Lf (λ) ≤

(
1
2

h
(
1
2

))s [∫ b

a
f (t)∆t+

∫ b

a
f (t)∇t

]
,

where

lf (λ) = 2s
(
h(

1

2
)

)s 1

2

[(
λ

h(λ)

)s

f

((
λ

h(λ)

)s

b+

((
1− λ

h(1− λ)

)s

+ 1

)
a

)]

+ 2s
(
h(

1

2
)

)s 1

2

[(
1− λ

h(1− λ)

)s((( λ

h(λ)

)s

+ 1

)
b+

(
1− λ

h(1− λ)

)s

a

)]
and

Lf (λ) =

(
λ

h(λ)

)s
(

1
2

h(12)

)s
∫ (

λ
h(λ)

)s
b+

(
1−λ

h(1−λ)

)s
a

a
f(t)∆t+

∫ (
λ

h(λ)

)s
b+

(
1−λ

h(1−λ)

)s
a

a
f(t)∇t


+

(
1− λ

h(1− λ)

)s
(

1
2

h(12)

)s [∫ b(
λ

h(λ)

)s
b+

(
1−λ

h(1−λ)

)s
a
f(t)∆t+

∫ b(
λ

h(λ)

)s
b+

(
1−λ

h(1−λ)

)s
a
f(t)∇t

]
.

On the other hand, several authors have, in recent times, extended their research
by obtaining Hermite-Hadamard type inequalities for convex and classes of convex
IVF on classical intervals, see [2, 6, 23, 25].

In [24], Zhao et al. introduced the concept of IVF to the theory of time scales
for convex interval-valued functions on time scales thus:
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Definition 3. We say that f : [a, b]T → RI is a convex interval-valued function if
for all x, y ∈ [a, b]T and α ∈ (0, 1), we have

αf(x) + (1− α)f(y) ⊆ f(αx+ (1− α)y), (1.3)

for which αx+ (1− α)y ∈ [a, b]T.

Remark 1. If the set inclusion (1.3) is reversed, then f is said to be a concave
interval-valued function on time scales. If f is both convex and concave, then f is
said to be affine. The set of all convex, concave and affine interval-valued functions
are denoted by
SX([a, b]T,RI), SV ([a, b]T,RI) and SA([a, b]T,RI), respectively.

It is the purpose of this paper to establish New Hermite-Hadamard-type integral
inequalities for Fh-convex interval-valued functions on time scales. Some economic
applications are provided to illustrate our results.

2. Preliminaries

First, we give some basic concepts used in this paper and also refer interested re-
searcher to the books [5, 16] for a detailed theory of time scales and interval analysis.

A real interval [z] is the bounded, closed subset of R defined by

[z] = [z, z] = {x ∈ R| z ≤ x ≤ z},

where z, z ∈ R and z ≤ z. The left and right endpoints of [z, z] are z and z
respectively.

A time scale, denoted T, is any arbitrary nonempty closed subset of the real
numbers. The interval [a, b]T of T is defined by

[a, b]T = {t ∈ T : a ≤ t ≤ b}.

Time scale T allows for classification of points in the following ways:

For all t ∈ T, σ denotes the forward jump operator σ(t) = inf{τ ∈ T : τ ≥ t}
while ρ denotes the backward jump operator ρ(t) = sup{τ ∈ T : τ ≤ t} ∀ t ∈ T.

The point t is said to be right-scattered if σ(t) > t, respectively left-scattered
if ρ(t) < t. Points that are right-scattered and left-scattered at the same time are
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called isolated. The point t is called right-dense if t < supT and σ(t) = t, respec-
tively left-dense if t > inf T and ρ(t) = t. Points that are simultaneously right-dense
and left-dense are called dense.

The forward and backward graininess functions µ and ν are defined by
µ(t) := σ(t)− t and ν(t) = t− ρ(t) respectively.

A mapping f : [a, b]T → R is said to be rd-continuous if it is continuous
at all right-dense point or maximal element of T and the left-sided limit exists (fi-
nite) at each left-dense point t ∈ T. Crd([a, b]T,R) denotes the set of rd-continuous
functions; f is said to be ld-continuous if it is continuous at all left-dense point or
minimal element of T and the right-sided limit exists (finite) at each right-dense
point t ∈ T. Cld([a, b]T,R) denotes the set of ld-continuous functions. The set of
continuous functions C([a, b]T,R) on [a, b]T contains both Crd and Cld.

A function f : [a, b]T → RI is said to be an interval-valued function of t on [a, b]T
if it assigns a nonempty interval

f(t) = [f(t), f(t)]

to each t ∈ [a, b]T. Thus, f : [a, b]T → RI is said to be continuous at t0 ∈ [a, b]T if
for each ϵ > 0, there exists a δ > 0 such that

d(f(t), f(t0)) < ϵ,

whenever |t − t0| < δ. C([a, b]T,RI) denotes the set of continuous functions f :
[a, b]T → RI . Thus, f is continuous at t0 if and only if f and f are continuous at t0.

3. Main Results

We introduce new concept of Fh-convex interval-valued functions on time scales,
which is useful in the sequel.

Throughout this paper: Let T be a time scale and h : JT ⊂ T → R be a non
zero non negative function with the property that h(t) > 0 for all t ≥ 0, where JT is
Fh-convex interval-valued subset of the real T.

Definition 4. A mapping f : [a, b]T → RI is said to be Fh-convex interval-valued
function on time scales or f ∈ SX(Fh, [a, b]T,RI) if

f(λx+ (1− λ)y) ⊇
(

λ

h(λ)

)s

f(x) +

(
1− λ

h(1− λ)

)s

f(y), (3.1)

37



B.O. Fagbemigun, A.A. Mogbademu – H-H Type Inequalities for Fh-Convex . . .

∀ λ ∈ [0, 1], s ∈ [0, 1] and for all x, y ∈ [a, b]T.

Remark 2. If the set inclusion (3.1) is reversed, then f is said to be Fh-concave
interval-valued function on time scales. If f is both Fh-convex and Fh-concave, then
f is Fh-affine interval-valued function on time scales.
We denote by SV (Fh, [a, b]T,RI), SA(Fh, [a, b]T,RI) the set of all Fh-concave, Fh-
affine interval-valued functions on time scales.

Remark 3. Special cases of Definition 3.1 are discussed below.

(i) h(λ) = λ
s

s+1 , then f is h-convex interval-valued function on time scales.

(ii) Choosing s = 1 and h(λ) = 1, then f ∈ SX([a, b]T,RI), i.e, f satisfies defini-
tion 1.2 above. (see [24]).

(iii) If f is real-valued, then definition 1.1 is valid for Fh-convex function on time
scales. (see [11]).

(iv) If f(x) = f(x) and h(λ) = λ
s

s+1 , then f is h-convex on time scales, see [11].

(v) For s = 1, h(λ) = 1, where f is real-valued, we say f is convex on time scales,
see [8].

(vi) When h(λ) = λ
s

s+1 and T = R, f is h-convex interval-valued function on
classical intervals, see [25].

(vii) The concept of h-convexity on classical intervals is obtained if h(λ) = λ
s

s+1 ,
T = R and f(x) = f(x) (see [21]).

(viii) For s = 1, h(λ) = 1, and T = R, we recapture the concept of convex interval-
valued function on classical intervals.

(ix) If s = 1, h(λ) = 1, T = R, where f is real-valued, then f is convex on classical
intervals (see [4]).

The following Proposition follows.

Proposition 1. Let f : [a, b]T → RI be such that f(t) = [f(t), f(t)] for all t ∈ [a, b]T.
Then,

(i) f ∈ SX(Fh, [a, b]T,RI) if and only if f ∈ SX(Fh, [a, b]T,RI)

and f ∈ SV (Fh, [a, b]T,RI),
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(ii) f ∈ SV (Fh, [a, b]T,RI) if and only if f ∈ SV (Fh, [a, b]T,RI)

and f ∈ SX(Fh, [a, b]T,RI),

(iii) f ∈ SA(Fh, [a, b]T,RI) if and only if f, f ∈ SA(Fh, [a, b]T,RI).

Proof. According to definition 3.1, the proof is obvious.

Definition 5. The diamond-Fh integral of an interval-valued function f : [a, b]T →
RI such that f(t) = [f(t), f(t)] for all t ∈ [a, b]T from a to b, where a, b ∈ T is given
by(

λ

h(λ)

)s ∫ b

a
[f(t), f(t)]∆t+

(
1− λ

h(1− λ)

)s ∫ b

a
[f(t), f(t)]∇t =

∫ b

a
[f(t), f(t)]⋄(Fh(λ))

s t,

(3.2)
where s ∈ [0, 1] and 0 ≤ λ ≤ 1.

The following result holds.

Theorem 3. Let f : [a, b]T → RI be such that f(t) = [f(t), f(t)] for all t ∈ [a, b]T
from a to b, where a, b ∈ T. If f ∈ SX(Fh, [a, b]T,RI) ∪ SV (Fh, [a, b]T,RI) ∪
SA(Fh, [a, b]T,RI), then f ∈ IR(⋄(Fh(λ))

s , [a,b]T).

Proof. Let f(t) = [f(t), f(t)] ∈ SX(Fh, [a, b]T,RI)∪ SV (Fh, [a, b]T,RI)∪ SA(Fh, [a, b]T,RI),
for all t ∈ [a, b]T. According to proposition 3.1 and Theorem 3.3 of [?], it implies
that f(t) and f(t) are continuous. Thus, by definition 3.2, f ∈ IR(⋄(Fh(λ))

s , [a,b]T).

Theorem 4. Let f : [a, b]T → RI be an interval-valued function on a time scale T
with f ∈ R(⋄(Fh(λ))

s ,[a,b]T); h : JT ⊂ T → R be a non zero non negative function with

the property that h(t) > 0 for all t ≥ 0, where JT is an interval Fh-convex subset of
the real T. If f ∈ C(Fh, [a, b]T,RI), then f ∈ IR(⋄(Fh(λ))

s , [a,b]T) and

(IR)
∫ b

a

f(t)⋄(Fh(λ))
st =

(
λ

h(λ)

)s
[∫ b

a

f(t)∆t, f(t)∆t

]
+

(
1− λ

h(1− λ)

)s
[∫ b

a

f(t)∇t, f(t)∇t

]
,

∀ λ ∈ [0, 1], s ∈ [0, 1] and t ∈ [a, b]T.

Proof. From Definition 3.2 and Theorem 3.1, the proof is obvious.

Now, we show representative applications of Fh-convex interval-valued functions,
by establishing some new inequalities of H-H type via Fh-convex interval-valued func-
tions on time scales.
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Theorem 5. Let f : [a, b]T → RI be an interval-valued function on a time scale T
with f ∈ R(⋄(Fh(λ))

s ,[a,b]T); h : JT ⊂ T → R be a non zero non negative continuous

function with the property that h(t) > 0 for all t ≥ 0, where JT is Fh-convex interval-
valued subset of the real T. If f ∈ SX(Fh, [a, b]T,RI), then

2s
[
h(

1

2
)

]s
f

(
a+ b

2

)
⊇ 1

b− a

∫ b

a
f(x) ⋄(Fh(λ))

s x

⊇ f(a)

[∫ 1

0

(
λ

h(λ)

)s

∆λ−
∫ 1

0

(
1− λ

h(1− λ)

)s

∇λ

]
+ [f(a) + f(b)]

∫ 1

0

(
1− λ

h(1− λ)

)s

∇λ. (3.3)

If f ∈ SV (Fh, [a, b]T,RI), then

2s
[
h(

1

2
)

]s
f

(
a+ b

2

)
⊆ 1

b− a

∫ b

a
f(x) ⋄(Fh(λ))

s x

⊆ f(a)

[∫ 1

0

(
λ

h(λ)

)s

∆λ−
∫ 1

0

(
1− λ

h(1− λ)

)s

∇λ

]
+ [f(a) + f(b)]

∫ 1

0

(
1− λ

h(1− λ)

)s

∇λ.

Proof. By definition 3.1, f is Fh-convex interval-valued on T.
By making the change of variables x = λa+(1−λ)b, y = (1−λ)a+λb and λ = 1

2 ,
inequality (3.1) can be rewritten as

f

(
a+ b

2

)
⊇

(
1
2

h(12)

)s

[f(λa+ (1− λ)b) + f((1− λ)a+ λb)].

By Proposition 3.1,

f

(
a+ b

2

)
⊇

(
1
2

h(12)

)s

[f(λa+(1−λ)b)+f((1−λ)a+λb), f(λx+(1−λ)b)+f((1−λ)a+λb)].

=

(
1
2

h(12)

)s

[f(λa+ (1− λ)b)∆λ+ f((1− λ)a+ λb)∇λ] . (3.4)

Thus, integrating (3.4) with respect to λ on [0, 1], we get

f

(
a+ b

2

)
⊇

(
1
2

h(12)

)s [∫ 1

0
f(λa+ (1− λ)b)∆λ+

∫ 1

0
f((1− λ)a+ λb)∇λ

]
.

(3.5)
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Substituting x = λa+(1−λ)b,∆x = (a− b)∆λ; y = (1−λ)a+λb,∇y = (b−a)∇λ
into (3.5), we obtain

2s
(
h(

1

2
)

)s

f

(
a+ b

2

)
⊇ 1

b− a

∫ b

a
f(x) ⋄(Fh(λ))

s x, (3.6)

and the first inclusion is established.
Similarly, in light of Proposition 3.1, we have

[f(λx+ (1− λ)y), f(λx+ (1− λ)y)]

⊇
[(

λ

h(λ)

)s

f(x) +

(
1− λ

h(1− λ)

)s

f(y),

(
λ

h(λ)

)s

f(x) +

(
1− λ

h(1− λ)

)s

f(y)

]
=

(
λ

h(λ)

)s

[f(x), f(x)] +

(
1− λ

h(1− λ)

)s

[f(y), f(y)].

i.e.,

f(λx+ (1− λ)y) ⊇
(

λ

h(λ)

)s

f(x) +

(
1− λ

h(1− λ)

)s

f(y). (3.7)

Integrating (3.7) with x = a and y = b, we get∫ 1

0
f(λx+ (1− λ)y) ⋄(Fh(λ))

s λ ⊇ f(a)

[∫ 1

0

(
λ

h(λ)

)s

∆λ−
∫ 1

0

(
1− λ

h(1− λ)

)s

∇λ

]
+ [f(a) + f(b)]

∫ 1

0

(
1− λ

h(1− λ)

)s

∇λ. (3.8)

The second inclusion is established by performing the change of variable x = λa +
(1− λ)b in (3.8) to get

1

b− a

∫ b

a
f(x) ⋄(Fh(λ))

s x ⊇ f(a)

[∫ 1

0

(
λ

h(λ)

)s

∆λ−
∫ 1

0

(
1− λ

h(1− λ)

)s

∇λ

]
+ [f(a) + f(b)]

∫ 1

0

(
1− λ

h(1− λ)

)s

∇λ. (3.9)

Combining (3.6) and (3.9), the result follows easily.

Remark 4. (i) If h(λ) = λ
s

s+1 , then Theorem 3.3 can be obtained for an h-convex
interval-valued function on time scales.

(ii) A result for h-convex function on time scales is obtained if h(λ) = λ
s

s+1 and f
is real-valued.
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(iii) If f(x) = f(x), then Theorem 3.3 reduces to the result of Fagbemigun et
al.([12], Theorem 2.1).

(iv) By choosing x = λa + (1 − λ)b, s = 1 and h(·) = 1 in (3.3), where f is
real-valued, we recover the second inequality in Theorem 3.9 of Dinu [9].

(v) When T = R, h(12) =
1
2 s = 1 and f real-valued in (3.3), we recover the first

part of the classical Hermite-Hadamard inequality. (see [4, 18]).

(vi) If h(λ) = λ
s

s+1 , f is real-valued and T = R, we obtain Theorem 6 due to
Sarikaya et al. [19].

(vii) If s = 1, h(12) =
1
4 , T = R and f is real-valued, we recover the first inequality

of Theorem 3.1 due to [10].

(viii) If h(λ) = λ
s

s+1 , T = R, where s = 1, we recover Theorem 4.1 in [23].

Theorem 6. Let f : [a, b]T → RI be an interval-valued function on a time scale T
with f ∈ R(⋄(Fh(λ))

s ,[a,b]T); h : JT ⊂ T → R be a non zero non negative continuous

function with the property that h(t) > 0 for all t ≥ 0, where JT is Fh-convex interval-
valued subset of the real T. Then for real numbers lf (λ) and Lf (λ); the lower and
upper bounds of f respectively, and for f ∈ SX(Fh, [a, b]T,RI), we have

2s
(
h(

1

2
)

)s

f

(
a+ b

2

)

⊇ lf (λ) ⊇

(
λ

h(λ)

)s(
λ

h(λ)

)s
b+

((
1−λ

h(1−λ)

)s
− 1
)
a

∫ (
λ

h(λ)

)s
b+

(
1−λ

h(1−λ)

)s
a

a
f(t)⋄ 1

2
t

+

(
1−λ

h(1−λ)

)s(
1−

(
λ

h(λ)

)s)
b−

(
1−λ

h(1−λ)

)s
a

∫ b(
λ

h(λ)

)s
b+

(
1−λ

h(1−λ)

)s
a
f(t)⋄ 1

2
t

⊇ Lf (λ) ⊇

(
1
2

h
(
1
2

))s [∫ b

a
f (t)∆t+

∫ b

a
f (t)∇t

]
, (3.10)

where lf (λ) and Lf (λ) are as stated in Theorem 1.2 above.
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If f ∈ SX(Fh, [a, b]T,RI), then

2s
(
h(

1

2
)

)s

f

(
a+ b

2

)

⊆ lf (λ) ⊆

(
λ

h(λ)

)s(
λ

h(λ)

)s
b+

((
1−λ

h(1−λ)

)s
− 1
)
a

∫ (
λ

h(λ)

)s
b+

(
1−λ

h(1−λ)

)s
a

a
f(t)⋄ 1

2
t

+

(
1−λ

h(1−λ)

)s(
1−

(
λ

h(λ)

)s)
b−

(
1−λ

h(1−λ)

)s
a

∫ b(
λ

h(λ)

)s
b+

(
1−λ

h(1−λ)

)s
a
f(t)⋄ 1

2
t

⊆ Lf (λ) ⊆

(
1
2

h
(
1
2

))s [∫ b

a
f (t)∆t+

∫ b

a
f (t)∇t

]
.

Proof. Using Proposition 3.1, Theorem 3.2 and the results of Fagbemigun and Mog-
bademu ([11], Theorem 2.1), the proof follows easily.

Remark 5. Theorem 3.4 refines and generalizes previous results in literature as
follows:

(i) If f(x) = f(x), then a result of Fagbemigun and Mogbademu ([11], Theorem
2.1) is obtained.

(ii) For f(x) = f(x), the first three inequalities in ([9], (5.7)) are obtained by

applying (3.3) for λ=1
2 , s= 1, h(λ) = 1 and h(12) =

1
2 in (3.10), which is a

further refinement and improvement of ([9], Theorem 3.9), ([15], Theorem
1.1.) and ([22], Theorem 2.E.).

(iii) If T=R, and f is real-valued, then (3.10) is the same as inequality (5.1) of [9].

Corollary 7. Let f : [a, b]T → RI be an interval-valued function on a time scale T
such that f(t) = [f(t), f(t)] with f ∈ R(⋄(Fh(λ))

s ,[a,b]T); h : JT ⊂ T → R be a non zero

non negative continuous function with the property that h(t) > 0 for all t ≥ 0, where
JT is Fh-convex interval-valued subset of the real T. Then for f ∈ SX(Fh, [a, b]T,RI),
we have the following inclusions for lower and upper bounds lf (λ) and Lf (λ) of real
numbers respectively.

2s
(
h(

1

2
)

)s

f

(
a+ b

2

)

⊇ sup
λ∈[0,1]

lf (λ) ⊇

(
λ

h(λ)

)s(
λ

h(λ)

)s
b+

((
1−λ

h(1−λ)

)s
− 1
)
a

∫ (
λ

h(λ)

)s
b+

(
1−λ

h(1−λ)

)s
a

a
f(t)⋄ 1

2
t
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+

(
1−λ

h(1−λ)

)s(
1−

(
λ

h(λ)

)s)
b−

(
1−λ

h(1−λ)

)s
a

∫ b(
λ

h(λ)

)s
b+

(
1−λ

h(1−λ)

)s
a
f(t)⋄ 1

2
t

⊇ inf
λ∈[0,1]

Lf (λ) ⊇

(
1
2

h
(
1
2

))s [∫ b

a
f (t)∆t+

∫ b

a
f (t)∇t

]
, (3.11)

where lf (λ) and Lf (λ) are as stated in Theorem 1.2.

If the set inclusions (3.11) are reversed, then f ∈ SV (Fh, [a, b]T,RI).

4. Applications in Economics

The concept of the theory of time scales is applicable, not only to the variational
calculus as seen in [4] but equally finds flexible and capable modeling application
techniques in the field of Economics, whose dynamic processes can be typically de-
scribed with discrete or continuous time systems, variables or models(see [1, 14]).

The Household Utility Problem
The household utility problem in Economics is a dynamic optimization problem

which is set up in the following form: a representative consumer seeks to maximize
his/her lifetime utility U subject to certain budgetary constraints A (see [7]). There
is the (constant) discount factor δ, which satisfies 0 ≤ δ ≤ 1, Cs is consumption
during period s, u(Cs) is the utility the consumer derives from consuming Cs units
of consumption in periods s= 0, 1, 2, ...,T . Utility is assumed to be concave: u(Cs)
has u(Cs)

′>0 and u(Cs)
′′<0. The consumer receives some income Y in a time pe-

riod s and decides how much to consume and save during that same period. If the
consumer consumes more today, the utility or satisfaction he derives from consump-
tion, is forgone tomorrow as the detterrence. Normally, the consumer is insatiable.
However, each additional unit consumed during the same period generates less util-
ity than the previous unit consumed within the same period (Law of diminishing
marginal utility, LDMU) (see [1]).

The individual is constrained by the fact that the value function of his consump-
tion, u(C) must be equal to the value function of his income Ys, plus the assets/debts,
As that he might accrue in a period s. Hence, As+1 is the amount of assets held at
the beginning of period s+ 1. Also, A could be positive or negative; the consumer
might save for the future or borrow against the future at interest rate r in any given
period s but the value of AT , which is the debt accrued with limit or the last period
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asset holding, has to be nonnegative (the optimal level is naturally zero).

In order to state the necessary and sufficient condition for optimization in the for-
mulation of a dynamic optimization problem, it is important to present the simplest
form of optimal control problem in terms of the diamond-Fh integral as;

max J⋄(Fh(λ))
s [x, u] =

∫ b

a
L(t, x, u)⋄(Fh(λ))

st

=

(
λ

h (λ)

)s ∫ b

a
L (t, xσ, uσ)∆t+

(
1− λ

h (1− λ)

)s ∫ b

a
L (t, xρ, uσ)∇t, (4.1)

for all λ ∈ [0, 1] and s ∈ [0, 1], among all pairs (x, u) such that x∆=f(t, xσ, uσ) and

x∆=f(t, xρ, uσ), together with appropriate endpoint conditions u
⋄(Fh(λ))

s ′
(t) =L(t, u, p),

x(0) =u0, u(T ) free for all t ∈ [0,T ].

A simple utility maximization model of household consumption in Economics
for a function of single variable can be refined and solved in time scales settings
in order to obtain better estimates of the maximized utility function, using the
same intuition as that of the dynamic optimization problem presented earlier, by
employing our developed concepts as follows. The model assumes a perfect foresight.

Theorem 8. Let u : [a, b]T → RI be an interval-valued function on a time scale T
with u ∈ R(⋄(Fh(λ))

s ,[a,b]T); h:JT ⊂ T → R be a nonzero non negative function with the

property that h(12) ̸= 0, where JT is a Fh-convex subset of the real T. Then

Maximize U⋄(Fh(λ))
s= sup

λ∈[0,1]
lF (λ) ⊇

∫ T

0
u (C (t)) e−δ (t, 0) ⋄(Fh(λ))

st ⊇ inf
λ∈[0,1]

LF (λ) ,

(4.2)
subject to the budget constraints

a∇ (t)= (rA+ Y − C) (ρ (t)) ,
r

1 + rµ (t)
aσ (t)+

1

1 + rµ (t)
yσ (t)− 1

1 + rµ (t)
cσ (t) ,

(4.3)
a∆(t) = a(0) =a0, a(T ) =aT ,

where u is Fh-concave (u
′
(C) > 0 and u

′′
(C) < 0), s ∈ [0, 1], λ ∈ [0, 1], lF (λ), LF (λ),

A∆, A∇, r, δ, A, Y and e are as defined above.

Proof. Let f(t) be a function satisfied by the consumption function path that would
maximize lifetime utility U(C(t))e−δ(t, 0) in (4.2), then the condition for a func-
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tional of the form∫ b

a
L(t, x, u)⋄(Fh(λ))

st =

(
λ

h (λ)

)s ∫ b

a
L (t, xσ, uσ)∆t+

(
1− λ

h (1− λ)

)s ∫ b

a
L (t, xρ, uσ)∇t,

for all s ∈ [0, 1] and 0 ≤ λ ≤ 1, to have a local extremum for a function u(t) and the
sufficient condition for an absolute maximum(minimum) of the functional hold.
Since both local and absolute extrema hold, then the functional satisfies the suffi-
cient conditions for optimization, which in turn satisfies Theorem 3.3.

The model (4.2)-(4.3) can then be analyzed by writing (4.2) in terms of (3.2), the
maximum principle and the Hamiltonian function for the model. The result follows
easily.

Remark 6. The ⋄(Fh(λ))
s interval-valued household utility model (4.2)-(4.3) unifies

and extends both the discrete and continuous classical models, as well as ∆, ∇, ⋄α
and ⋄Fh

time scale models as special cases:

(i) The ⋄(Fh(λ))
s time scales model reduces to ⋄α model if Fh = α, s = 1, h(λ) = 1

and f is real-valued.

(ii) If Fh = 1, s = 1, h(λ) = 1 and u(t) = [u(t), u(t)], then (4.2)-(4.3) is reduced
to the ∆ household utility model of [1].

(iii) The standard ∇ time scales model is obtained for Fh = 0, s = 1, h(λ) = 1
and u(t) = [u(t), u(t)] (see [14]).

(iv) When T = Z and f is real-valued, (4.2) yields the result of Chiang on classical
intervals, see [7].

(v) Choosing T = R gives the result of [7] for real-valued function f .

(vi) If f is real-valued, then Theorem 4.1 gives Theorem 3.1 of [[13], Theorem 3.1].
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