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Abstract. In this article, we presented the aspects related to applications of q-
calculus in geometric function theory. The study concerns the investigation of certain
q-analouge differential operators in order to obatin their geometrical properties,
which could be developed in further studies. Several interesting properties of the
q-analouge of the fractional q - differintegral operator are obatined here by using the
differential subordination.
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1. Introduction

The theory of q-calculus operators are used in describing and solving various prob-
lems in applied science such as ordinary fractional calculus, optimal control, q-
difference and q-integral equations, as well as geometric function theory of complex
analysis. The fractional q-calculus is the q-extension of the ordinary fractional cal-
culus and dates back to early 20-th century [8] and [3].

The geometrical interpretation of q-analysis involves studies of different q-analouge
differential operators. The q-analouge of the well-know Ruscheweyh differential oper-
ator was defined in [9] and following this idea, the q-analouge of Salagean differential
operator was defined in [6]. Those operators provided interesting results when they
were used to introduce new sets of univalent functions as seen in [10]-[14].

The differential subordination theory initiated by Miller and Mocanu [11] and
[12] is introduced to obtain the main results of this article.

Let An be the set of all analytic and univalent fuctions in the open unit disk U
in the form of

f(z) = z +

∞∑
k=2

akz
k, ak ∈ C (1)
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and note that A1 = A. The class of starlike functions is defined as

S∗ =

{
f ∈ A : Re

zf ′(z)

f(z)
> 0

}
.

For any two functions f and g such that

f(z) = z +
∞∑
k=2

akz
k and g(z) = z +

∞∑
k=2

bkz
k

the Hadamard product or convolution of f and g, denoted by f ∗ g, is defined by

(f ∗ g)z = z +
∞∑
k=2

akbkz
k, z ∈ U . (2)

A linear multiplier fractional q - differintegral operator [4] is defined as

Dδ,0
q,λf(z) = f(z)

Dδ,1
q,λf(z) = (1− λ)Ωδ

qf(z) + λzDq

(
Ωδ
qf(z)

)
Dδ,2

q,λf(z) = Dδ,1
q,λ

(
Dδ,1

q,λf(z)
)

...

Dδ,n
q,λf(z) = Dδ,1

q,λ

(
Dδ,n−1

q,λ f(z)
)

(3)

We note that if f ∈ A(n) is given by (1) then by (3), we have

Dδ,n
q,λf(z) = z +

∞∑
k=2

B(k, δ, λ, n, q)akz
k (4)

where

B(k, δ, λ, n, q) =

(
Γq(2− δ)Γq(k + 1)

Γq(k + 1− δ)
[([k]q − 1)λ+ 1]

)n

. (5)

Inspired by the results obtained in [1] using q- analouge of Salagean differential
operator, in the next section, we obtain results involing q-analouge of fractional q-
differintegral operator using the differential subordination theory.

2. Preliminaries

To prove our main results we are using the following lemmas.
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Lemma 2.1: [12] Let h be an analytic and convex univalent function in U
with h(0) = 1 and g(z) = 1 + b1z + b2z

2 + · · · , analytic in U .

If, g(z) +
zDq(g(z))

c
≺ h(z), z ∈ U , c ̸= 0, then

g(z) ≺ c

zc

∫ z

0
tc−1h(t)dt,

for ℜ(c) ≥ 0.

Lemma 2.2: [13] Let u be any univalent function in U and θ, ϕ be analytic
functions in a domain D ⊃ q(U) with ϕ(w) ̸= 0 for w ∈ q(U). Consider
Q(z) = zDq(u(z))ϕ(u(z)) and h(z) = θ(Q(z) + u(z)) supposing that Q(z) is a
starlike univalent function in U and

ℜ
(
zDqh(z)

Q(z)

)
= ℜ

(
Dqθ(u(z))

ϕ(Q(z))

)
+

(
zDqQ(z)

Q(z)

)
> 0, z ∈ U .

If p(z) is an analytic function in U such that p(U) ⊂ D, p(0) = q(0) and

zDq(p(z))ϕ(p(z)) + θ(p(z)) ≺ zDq(u(z))ϕ(u(z)) + θ(u(z)) = h(z),

then p ≺ u, and the best dominant is u.

Lemma 2.3: [15] The function , (1− z)γ = eγlog(1−z), γ ̸= 0, is univalent in U
if and only if |γ − 1| ≤ 1 or |γ + 1| ≤ 1.

Lemma 2.4: [16] Consider the analytic functions fi ∈ U of the form 1+ b1z+
b2z

2 + · · · , that satisfies the inequality ℜ(fi) > βi, 0 ≤ βi < 1, i = 1, 2. Then
f1 ∗ f2 is an analytic function in U of the form 1 + b1z + b2z

2 + · · · that satisfies
the inequality ℜ(f1 ∗ f2) > 1− 2(1− β1)(1− β2).

Lemma 2.5: [17] Consider the analytic functions f(z) = 1 + b1z + b2z
2 + · · · ,

with property ℜ(f(z)) > β, 0 ≤ β < 1. Then

ℜ(f(z)) > 2β − 1 +
2(1− β)

1 + |z|
, z ∈ U .

3. Prime Results

Theorem 3.1 If f ∈ A and

(1− α)
Dδ,n

q,λf(z)

z
+ α

Dδ,n+1
q,λ f(z)

z
≺ 1 +Az

1 +Bz
, (6)
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for α > 0, −1 ≤ B < A ≤ 1, z ̸= 0, then

ℜ


(
Dδ,n

q,λf(z)

z

) 1
n

 >

(
1

αq

∫ 1

0
u

1
αq

−1 1−Au

1−Bu
du

) 1
n

, n ≥ 1, (7)

and the result is sharp.

Proof: Let p(z) =
Dδ,n

q,λf(z)

z
= 1 + b1z + b2z

2 + · · · for f ∈ A. Applying the

logarithmic q-differentiation, we obatin

Dq(p(z)) = Dq

{
Dδ,n

q,λf(z)

z

}
=

Dδ,n+1
q,λ f(z)−Dδ,n

q,λf(z)

qz2
.

Consider

zDq(p(z))

p(z)
=

z2

Dδ,n
q,λf(z)

{
Dδ,n+1

q,λ f(z)−Dδ,n
q,λf(z)

qz2

}
=

1

q

[
Dδ,n+1

q,λ f(z)

Dδ,n
q,λf(z)

− 1

]
.

qzDq(p(z))

p(z)
=

Dδ,n+1
q,λ f(z)

Dδ,n
q,λf(z)

− 1

qzDq(p(z)) + p(z) =
Dδ,n+1

q,λ f(z)

z
,

and

(1− α)
Dδ,n

q,λf(z)

z
+ α

Dδ,n+1
q,λ f(z)

z
= (1− α)p(z) + α [qzDq(p(z)) + p(z)]

= p(z) + αqzDq(p(z)).

The differential subordination ( 6), can be written as,

p(z) + αqzDq(p(z)) ≺
1 +Az

1 +Bz
.

Applying Lemma 2.1, we find

p(z) ≺ 1

αq
z

−1
αq

∫ z

0
t

1
αq

−1 1 +At

1 +Bt
dt,

or by using subordination concept,

Dδ,n
q,λf(z)

z
=

1

αq

∫ 1

0
u

1
αq

−1 1 +Auw(z)

1 +Buw(z)
du.
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Taking into account that −1 ≤ B < A ≤ 1, we obatin

ℜ

{
Dδ,n

q,λf(z)

z

}
>

1

αq

∫ 1

0
u

1
αq

−1 1−Au

1−Bu
du,

using the inequality ℜ(w)
1
n ≥ (ℜ(w))

1
n , for ℜ(w) > 0 and n ≥ 1. To prove the

sharpness of ( 7), we define f ∈ A by

Dδ,n
q,λf(z)

z
=

1

αq

∫ 1

0
u

1
αq

−1 1 +Auz

1 +Buz
du.

For this function, we obatin

(1− α)
Dδ,n

q,λf(z)

z
+ α

Dδ,n+1
q,λ f(z)

z
=

1 +Az

1 +Bz

and
Dδ,n

q,λf(z)

z
→ 1

αq

∫ 1

0
u

1
αq

−1 1−Au

1−Bu
du as z → 1.

Which completes the proof.

Corollary 3.2 If f ∈ A and

(1− α)
Dδ,n

q,λf(z)

z
+ α

Dδ,n+1
q,λ f(z)

z
≺ 1 + (2β − 1)z

1 + z
, (8)

for 0 ≤ β < 1, α > 0, then

ℜ


(
Dδ,n

q,λf(z)

z

) 1
n

 >

(
(2β − 1) +

2(1− β)

αq

∫ 1

0

u
1
αq

−1

1 + u
du

) 1
n

, n ≥ 1.

Proof: Similler to the proof of Theorem 3.1, for p(z) =
Dδ,n

q,λf(z)

z
, the differential

subordination ( 8) passes into

p(z) + αqzDq(p(z)) ≺
1 + (2β − 1)z

1 + z
.

Therefore,

ℜ


(
Dδ,n

q,λf(z)

z

) 1
n

 >

(
1

αq

∫ 1

0
u

1
αq

−1 1 + (2β − 1)u

1 + u
du

) 1
n
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=

(
1

αq

∫ 1

0
u

1
αq

−1
(
(2β − 1) +

2(1− β)

1 + u

)
du

) 1
n

=

(
(2β − 1) +

2(1− β)

αq

∫ 1

0

u
1
αq

−1

1 + u
du

) 1
n

.

Theorem 3.3 Let 0 ≤ ρ < 1, and γ ∈ C\{0} such that∣∣∣∣2(1− ρ)γ

q
− 1

∣∣∣∣ ≤ 1 or

∣∣∣∣2(1− ρ)γ

q
+ 1

∣∣∣∣ ≤ 1.

If f ∈ A satisfies the condition

ℜ

(
Dδ,n+1

q,λ f(z)

Dδ,n
q,λf(z)

)
> ρ, z ∈ U ,

then (
Dδ,n

q,λf(z)

z

)γ

≺ 1

(1− z)
2γ(1−ρ)

q

, z ∈ U ,

and the best dominant is
1

(1− z)
2γ(1−ρ)

q

.

Proof: Taking p(z) =

(
Dδ,n

q,λf(z)

z

)γ

and applying logarithmic q-differentiation, we

obtain

Dq(p(z)) = γ

(
Dδ,n

q,λf(z)

z

)γ−1
Dδ,n+1

q,λ f(z)−Dδ,n
q,λf(z)

qz2

and

zDq(p(z))

p(z)
=

γ

q

[
Dδ,n+1

q,λ f(z)

Dδ,n
q,λf(z)

− 1

]
,

we obtain
Dδ,n+1

q,λ f(z)

Dδ,n
q,λf(z)

= 1 +
q

γ

zDq(p(z))

p(z)
.

Relation ℜ

(
Dδ,n+1

q,λ f(z)

Dδ,n
q,λf(z)

)
> ρ can be written as

Dδ,n+1
q,λ f(z)

Dδ,n
q,λf(z)

≺ 1 + (1− 2ρ)z

1− z
, z ∈ U
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which is equivalent with

1 +
qzDq(p(z))

γp(z)
≺ 1 + (1− 2ρ)z

1− z
.

Assuming

u(z) =
1

(1− z)
2γ(1−ρ)

q

, ϕ(w) =
q

γw
, θ(w) = 1,

we find that u(z) is univalent from Lemma 2.3. It is easy to show that u θ and ϕ
meet the conditions from Lemma 2.2. The functions

Q(z) = zDq(u(z))ϕ(u(z)) =
2(1− ρ)z

1− z
is starlike univalent in U and h(z) =

θ(Q(z) + u(z)) =
1 + (1− 2ρ)z

1− z
. Applying Lemma 2.2, we can complete the proof.

Theorem 3.4 Let α < 1, −1 ≤ Bi < Ai ≤ 1 and i = 1, 2. If fi ∈ A serve the
differential subordination

(1− α)
Dδ,n

q,λfi(z)

z
+ α

Dδ,n+1
q,λ fi(z)

z
≺ 1 +Aiz

1 +Biz
, i = 1, 2. (9)

then

(1− α)
Dδ,n

q,λ(f1(z) ∗ f2(z))
z

+ α
Dδ,n+1

q,λ (f1(z) ∗ f2(z))
z

≺ 1 + (1− 2γ)z

1 + z
,

where ∗ means the convolution product of f1 and f2 and

γ = 1− 4(A1 −B1)(A2 −B2)

(1−B1)(1−B2)

(
1− 1

αq

∫ 1

0

u
1
αq

−1

1 + u
du

)
.

Proof: Let hi(z) = (1− α)
Dδ,n

q,λfi(z)

z
+ α

Dδ,n+1
q,λ fi(z)

z
.

The differential subordination ( 9) can be written as ℜ(hi(z)) >
1−Ai

1−Bi
, i = 1, 2.

By Theorem 3.1, we obatin

Dδ,n
q,λfi(z) =

1

αq

∫ 1

0
t

1
αq

−1
hi(t)dt, i = 1, 2,

and

Dδ,n
q,λ(f1 ∗ f2)z =

1

αq
z
1− 1

αq

∫ 1

0
t

1
αq

−1
h0(t)dt,
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with

h0(z) = (1−α)
Dδ,n

q,λf1(z) ∗ f2(z)
z

+α
Dδ,n+1

q,λ f1(z) ∗ f2(z)
z

=
1

αq
z
1− 1

αq

∫ 1

0
t

1
αq

−1
(h1∗h2)(t)dt.

Applying Lemma 2.4, we obatin h1 ∗ h2 is a function analytic in U written as
1+b1z+b2z

2+· · · that satisfies the inequality ℜ(h1∗h2) > 1−2(1−β1)(1−β2) = β.
By Lemma 2.5, we obatin

ℜ(h0(z)) =
1

αq

∫ 1

0
u

1
αq

−1ℜ(h1 ∗ h2)(uz)du

≥ 1

αq

∫ 1

0
u

1
αq

−1
(
2β − 1 +

2(1− β)

1 + u|z|

)
du

>
1

αq

∫ 1

0
u

1
αq

−1
(
2β − 1 +

2(1− β)

1 + u

)
du

=

(
2β − 1

αq
(αq)(u)

1
αq

)1

0

+
2(1− β)

αq

∫ 1

0

u
1
αq

−1

1 + u
du

= 2β − 1 +
2(1− β)

αq

∫ 1

0

u
1
αq

−1

1 + u
du

we have

1− 4(A1 −B1)(A2 −B2)

(1−B1)(1−B2)
+

4(A1 −B1)(A2 −B2)

(1−B1)(1−B2)

1

αq

∫ 1

0

u
1
αq

−1

1 + u
du

= 1− 4(A1 −B1)(A2 −B2)

(1−B1)(1−B2)

(
1− 1

αq

∫ 1

0

u
1
αq

−1

1 + u
du

)
= γ,

as the assertion of Theorem 3.4, holds.

Conclusion

Here, in our present investigation, we have successfully introduced a differential
subordination results by using fractional q-differintegral operator. Many properties
and characteristics of this newly-defined function have been studied. The results
obtained during this research could be further used for writting sandwich type results
in the dual theory of differenatial subordination.
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