G - N-QUASIGROUPS

Adrian Petrescu

Abstract. In this paper we present criteria for an n-quasigroup to be isotopic to an n-group. We call a such n-quasigroup $G-n$-quasigroup. Applications to functional equations on quasigroups are presented in a subsequent paper.

2000 Mathematics Subject Classification: 20N15.
Some important n-quasigroup classes are the following. An n-quasigroup (A, α) of the form $\alpha\left(x_{1}^{n}\right)=\sum_{i=1}^{n} f_{i}\left(x_{i}\right)+a$, where $(A,+)$ is a group, f_{1}, \ldots, f_{n} are some automorphisms of $(A,+), a$ is some fixed element of A is called linear n quasigroup (over group $(A,+)$). A linear quasigroup over an abelian group is called $T-n$-quasigroup. An n-quasigroup with identity

$$
\alpha\left(\alpha\left(x_{11}^{1 n}\right), \ldots, \alpha\left(x_{n 1}^{n n}\right)\right)=\alpha\left(\alpha\left(x_{11}^{n 1}\right), \ldots, \alpha\left(x_{1 n}^{n n}\right)\right.
$$

is called medial n-quasigroup.
All these quasigroups are isotopic to n-groups. This motivates the purpose of our work to find criteria for an n-quasigroup to be isotopic to an n-group.

1. Preliminaries

Recall several notions and results which will be used in what follows.
A non-empty set A together with one n-ary operation $\alpha: A^{n} \rightarrow A, n>2$ is called n-groupoid and is denoted by (A, α).

We shall use the following abbreviated notation:

- the sequence x_{i}, \ldots, x_{j} will be denoted by x_{i}^{j}. For $j<i, x_{i}^{j}$ is the empty symbol;
- if $x_{i+1}=\ldots=x_{i+k}=x$ then insteed x_{i+1}^{i+k} we will write $(x)^{k}$. For $k \leq 0$, $(x)^{k}$ is the empty symbol.
(A, α) is an n-semigroup if α is associative, i.e.

$$
\alpha\left(\alpha\left(x_{1}^{n}\right), x_{n+1}^{2 n-1}\right)=\alpha\left(x_{1}, \alpha\left(x_{2}^{n+1}\right), x_{n+2}^{2 n-1}\right)=\ldots=\alpha\left(x_{1}^{n-1}, \alpha\left(x_{n}^{2 n-1}\right)\right)
$$

holds for all $x_{1}, \ldots, x_{2 n-1} \in A$.
An element $e \in A$ is called an i-unit if $\alpha\left((e)^{i-1}, x,(e)^{n-1}\right)=x$ for all $x \in A$. If e is an i-unit for all $i=1,2, \ldots, n$ it is called an unit.

If each equation $\alpha\left(a_{1}^{i-1}, x, a_{i+1}^{n}\right)=b$ is uniquely solvable with respect to $x, i=1,2, \ldots, n$ for all $a_{1}, \ldots, a_{n}, b \in A,(A, \alpha)$ is called n-quasigroup. An n-quasigroup which has at least one unit is called n-loop.

We introduced in [4] the notion of homotopy of universal algebras. In particular, for n-groupoids we have the following. Let $\mathcal{A}=(A, \alpha)$ and $\mathcal{B}=(B, \beta)$ be n-groupoids. An ordered system of mappings $\left[f_{1}^{n} ; f\right]$ from A to B such that $f\left(\alpha\left(a_{1}^{n}\right)\right)=\beta\left(f_{1}\left(a_{1}\right), \ldots, f_{n}\left(a_{n}\right)\right)$ for all $a_{1}^{n} \in A^{n}$ is called a homotopy from \mathcal{A} to \mathcal{B}. Equality and composition of homotopies are defined componentwise. Composition of homotopies produces a homotopy and is associative. An isotopy is a homotopy with all components bijections.

In many applications of quasigroups isotopies and homotopies are more important than isomorphisms and homomorphisms.

Any n-quasigroup is isotopic to an n-loop (see [1]).
Let (A, α) be an n-quasigroup and $a=a_{1}^{n} \in A^{n}$. The mapping $T_{i}: A \rightarrow A, T_{i}(x)=\alpha\left(a_{1}^{i-1}, x, a_{i+1}^{n}\right)$ is called the i-th translation by a, $i=1,2, \ldots, n$. Let $\bar{\alpha}: A^{n} \rightarrow A$ defined by $\bar{\alpha}\left(x_{1}^{n}\right)=\alpha\left(T_{1}^{-1}\left(x_{1}\right), \ldots, T_{n}^{-1}\left(x_{n}\right)\right)$. Then $(A, \bar{\alpha})$ is an n-loop ($e=\alpha\left(a_{1}^{n}\right)$ is a unit) and $\left[T_{1}^{n} ; 1_{A}\right]$ is an isotopy from (A, α) to $(A, \bar{\alpha})$.
$(A, \bar{\alpha})$ is called a $L P$-isotope of (A, α) and $\left[T_{1}^{n} ; 1_{A}\right]$ a $L P$-isotopy.
In [4] we proved the following. Let (A, α) and (B, β) be n-quasigroups and $\left[f_{1}^{n} ; f\right]:(A, \alpha) \rightarrow(B, \beta)$ a homotopy (isotopy), $a=a_{1}^{n} \in A^{n}, b=b_{1}^{n} \in B, b_{i}=$ $f_{i}\left(a_{i}\right), T_{i}$ translations by a and U_{i} translations by $b, i=1,2, \ldots, n$. Then the following diagram is commutative and f is a homomorphism (isomorphism).

If (B, β) is an n-loop and $\left[f_{1}^{n} ; f\right]$ an isotopy, choosing a_{i} such that $f_{i}\left(a_{i}\right)=u$, u a unit in (B, β) we obtain that $f:(A, \bar{\alpha}) \rightarrow(B, \beta)$ is an isomorphism.

An n-semigroup which is also an n-quasigroup is called n-group (see [2]).
Let (A, α) be an n-group. By Hosszu theorem (see [5]), $\alpha\left(x_{1}^{n}\right)=x_{1} \cdot f\left(x_{2}\right)$. $f^{2}\left(x_{3}\right) \cdot \ldots \cdot f^{n-1}\left(x_{n}\right) \cdot u$, where (A, \cdot) is a binary group (called a creating group $), x \cdot y=\alpha\left(x,(a)^{n-2}, y\right), a \in A$ a fixed element, $f(x)=\alpha\left(\bar{a}, x,(a)^{n-2}\right)$ an automorphism of (A, \cdot) and $u=\alpha\left((\bar{a})^{n}\right), \bar{a}$ the skew element to a. Based on this result Belousov [1] proved that every $L P$-isotope (A, β) of (A, α) is an n-group derived from a binary group (A, \circ), i.e. $\beta\left(x_{1}^{n}\right)=x_{1} \circ x_{2} \circ \ldots \circ x_{n}$ where $x \circ y=x e^{-1} y, e=\alpha\left(a_{1}^{n}\right)$.

We introduce the following.
Definition 1. An n-quasigroup is called $G-n$-quasigroup (or shortly G-quasigroup) if it is isotopic to an n-group.

From the above results if follows.
Theorem 1. Every n-loop isotopic to a G-quasigroup is an n-group derived from a binary group.

An n-group can also be defined as an algebra $(A, \alpha,-), \alpha: A^{n} \rightarrow A$, $-: A \rightarrow A$ such that α is associative and the following identities are satisfied: $\alpha\left(\bar{x},(x)^{n-2}, y\right)=y, \alpha\left(y,(x)^{n-2}, \bar{x}\right)=y$ (see [2]). In [2] was proved that ($A, \alpha,-$) is an abelian algebra (in the sense of general algebras - see [3]) iff α is semicommutative, i.e. $\alpha\left(x_{1}, x_{2}^{n-1}, x_{n}\right)=\alpha\left(x_{n}, x_{2}^{n-1}, x_{1}\right)$.

Definition 2. An n-quasigroup is called $G_{a}-n$-quasigroup (shortly G_{a}-quasigroup) if it is isotopic to an abelian n-group.

Theorem 2. Every n-loop isotopic to a G_{a}-quasigroup is an n-group derived from a binary commutative group.

Proof. We proved in [5] that an n-group (A, α) is abelian iff any of its creating groups (A, \cdot) (see above) is commutative. Therefore every $L P$ isotope (A, β) of (A, α) is derived from a commutative binary group. Indeed, (A, \circ) is isomorphic to $(A, \cdot), h(x \circ y)=h(x) h(y), h(x)=x e^{-1}$.

2. $G-n$-QUASIGROUPS

In this section we present criteria for an n-quasigroup to be isotopic to an n-group. We finish this section showing that G - 3 -quasigroups are connected with the functional equation of generalized associativity.

Let (A, α) be an n-quasigroup.
Definition 3. (see [1]). We say that in (A, α) condition $D_{i, j}, 1 \leq i<$ $j \leq n$, holds if $\alpha\left(a_{1}^{i-1}, u_{i}^{j}, a_{j+1}^{n}\right)=\alpha\left(a_{1}^{i-1}, v_{i}^{j}, a_{j+1}^{n}\right)$ implies $\alpha\left(x_{1}^{i-1}, u_{i}^{j}, x_{j+1}^{n}\right)=$ $\alpha\left(x_{1}^{i-1}, v_{i}^{j}, x_{j+1}^{n}\right)$ for all $x_{1}^{n} \in A^{n}$.

It is obvious that condition $D_{i, j}$ is isotopic invariant.
Theorem 3. (see [1]). In (A, α) condition $D_{i, j}$ holds iff there exists quasigroups (A, β) of arity $j-i+1$ and (A, γ) of arity $n-j+i$ such that $\alpha\left(x_{1}^{n}\right)=\gamma\left(x_{1}^{i-1}, \beta\left(x_{i}^{j}\right), x_{j+1}^{n}\right)$.

Proof. Choose $a_{i}, \ldots, a_{j-1} \in A$. For any $x_{1}^{n} \in A^{n}$ there exists only one $b \in A$ such that $\alpha\left(x_{1}^{n}\right)=\alpha\left(x_{1}^{i-1}, a_{i}^{j-1}, b, x_{j+1}^{n}\right)$. By condition $D_{i, j}$ we obtain $\alpha\left(y_{1}^{i-1}, x_{i}^{j}, y_{j+1}^{n}\right)=\alpha\left(y_{1}^{i-1}, a_{i}^{j-1}, b, y_{j+1}^{n}\right)$, i.e. b depends only of $x_{i}^{j}: b=\beta\left(x_{i}^{j}\right)$, $\beta: A^{j-i+1} \rightarrow A$. Therefore we have $\alpha\left(x_{1}^{n}\right)=\alpha\left(x_{1}^{i-1}, a_{i}^{j-1}, \beta\left(x_{i}^{j}\right), x_{j+1}^{n}\right)=$ $\gamma\left(x_{1}^{i-1}, \beta\left(x_{i}^{j}\right), x_{j+1}^{n}\right)$, where $\gamma\left(x_{1}^{n-j+i}\right)=\alpha\left(x_{1}^{i-1}, a_{i}^{j-1}, x_{i}^{n-j+i}\right)$ is a retract of α. It is easy to prove that (A, β) and (A, γ) are quasigroups.

The converse is trivial.
We focus on conditions $D_{i, i+1}$.
Theorem 4. Condition $D_{i, i+1}$ holds in (A, α) iff for each unite of any n loop (B, β) isotopic to $(A, \alpha) \beta\left(x_{1}^{i-1}, e, x_{i}^{n-1}\right)=\beta\left(x_{1}^{i}, e, x_{i+1}^{n-1}\right)$ for all $x_{1}^{n} \in B^{n}$.

Proof. Suppose that in (A, α) condition $D_{i, i+1}$ holds and let (B, β) be isotopic to (A, α). Condition $D_{i, i+1}$ holds in (B, β) too. Let be e a unit in (B, β). From $\beta\left((e)^{i-1}, e, x_{i},(e)^{n-i-1}\right)=\beta\left((e)^{i-1}, x_{i}, e,(e)^{n-i-1}\right)$ we get $\beta\left(x_{1}^{i-1}, e, x_{i}, x_{i+1}^{n-1}\right)=\beta\left(x_{1}^{i-1}, x_{i}, e, x_{i+1}^{n-1}\right)$.

Now suppose that in every n-loop (B, β) isotopic to (A, α) $\beta\left(x_{1}^{i-1}, e, x_{i}^{n-1}\right)=\beta\left(x_{1}^{i}, e, x_{i+1}^{n-1}\right)$ holds for each unit e. We prove that in
(A, α) condition $D_{i, i+1}$ holds. Let be

$$
\begin{equation*}
\alpha\left(a_{1}^{i-1}, u_{i}, u_{i+1}, a_{i+2}^{n}\right)=\alpha\left(a_{1}^{i-1}, v_{i}, v_{i+1}, a_{i+2}^{n}\right) \tag{1}
\end{equation*}
$$

Define $a^{*}=\left(a_{1}^{*}, \ldots, a_{n}^{*}\right)$ as follows: $a_{j}^{*}=a_{j}$ for $j \in\{1, \ldots, n\}-\{i, i+1\}$, $a_{i}^{*}=u_{i}, a_{i+1}^{*}=v_{i+1}$. Using translations T_{i} by a^{*} we define the $L P$-isotope (A, β) of (A, α). Equality (1) can be written

$$
\begin{equation*}
T_{i+1}\left(u_{i+1}\right)=T_{i}\left(v_{i}\right) \tag{2}
\end{equation*}
$$

Note that $e=\alpha\left(a_{1}^{*}, \ldots, a_{n}^{*}\right)=T_{i}\left(u_{i}\right)=T_{i+1}\left(v_{i+1}\right)$ is a unit in (A, β). Now

$$
\begin{aligned}
& \alpha\left(x_{1}^{i-1}, u_{i}, u_{i+1}, x_{i+1}^{n}\right)= \\
& \quad=\beta\left(T_{1}\left(x_{1}\right), \ldots, T_{i-1}\left(x_{i-1}\right), e, T_{i+1}\left(u_{i+1}\right), T_{i+2}\left(x_{i+2}\right), \ldots, T_{n}\left(x_{n}\right)\right)= \\
& \quad=\beta\left(T_{1}\left(x_{1}\right), \ldots, T_{i-1}\left(x_{i-1}\right), T_{i+1}\left(u_{i+1}\right), e, T_{i+2}\left(x_{i+2}\right), \ldots, T_{n}\left(x_{n}\right)\right)= \\
& \quad=\beta\left(T_{1}\left(x_{1}\right), \ldots, T_{i-1}\left(x_{i-1}\right), T_{i}\left(v_{i}\right), T_{i+1}\left(v_{i+1}\right), T_{i+2}\left(x_{i+2}\right), \ldots, T_{n}\left(x_{n}\right)\right)= \\
& \quad=\alpha\left(x_{1}^{i-1}, v_{i}, v_{i+1}, x_{i+2}^{n}\right) .
\end{aligned}
$$

Based on Theorem 4 we prove the following criterion for an n-quasigroup to be a G-quasigroup.

Theorem 5. (A, α) is a G-quasigroup if and only if condition $D_{1,2} \& D_{2,3} \& \ldots \& D_{n-1, n}$ holds.

Proof. Let (A, β) be an n-loop isotopic to (A, α) and e a unit in (A, β). In (A, β) condition $D_{1,2} \& \ldots \& D_{n-1, n}$ holds too. By Theorem $4 e$ is in the center of (A, β). Define $x \cdot y=\beta\left(x, y,(e)^{n-2}\right)$. It is obvious that (A, \cdot) is a binary quasigroup. From $\beta\left(x_{1}, x_{2},(e)^{n-2}\right)=\beta\left(\beta\left(x_{1}, x_{2},(e)^{n-2}\right), e,(e)^{n-2}\right)$ by $D_{1,2}$ we get

$$
\begin{equation*}
\beta\left(x_{1}^{n}\right)=\beta\left(x_{1} x_{2}, e, x_{3}^{n}\right) . \tag{3}
\end{equation*}
$$

Analogously, from $\beta\left((e)^{n-2}, x_{n-1}, x_{n}\right)=\beta\left((e)^{n-2}, e, \beta\left((e)^{n-2}, x_{n-1}, x_{n}\right)\right)$ by $D_{n-1, n}$ we have

$$
\begin{equation*}
\beta\left(x_{1}^{n}\right)=\beta\left(x_{1}^{n-2}, e, x_{n-1} x_{n}\right) . \tag{4}
\end{equation*}
$$

Taking into account (3),

$$
\begin{aligned}
\beta\left(x_{1}, x_{2}, x_{3},(e)^{n-3}\right) & =\beta\left(x_{1} x_{2}, e, x_{3},(e)^{n-3}\right)=\beta\left(x_{1} x_{2}, x_{3},(e)^{n-2}\right)= \\
& =\beta\left(\left(x_{1} x_{2}\right) x_{3},(e)^{n-1}\right)=\left(x_{1} x_{2}\right) x_{3} .
\end{aligned}
$$

Analogously, using (4) we get $\beta\left((e)^{n-3}, x_{1}, x_{2}, x_{3}\right)=x_{1}\left(x_{2} x_{3}\right)$. Therefore $\left(x_{1} x_{2}\right) x_{3}=x_{1}\left(x_{2} x_{3}\right)$ (e is in the center), i.e. (A, \cdot) is a binary group.

Continuing the above procedure we obtain $\beta\left(x_{1}^{n}\right)=x_{1} x_{2} \ldots x_{n}$.
The converse statement is obvious. In any n-group derived from a binary group any condition $D_{i, j}$ holds.

From the above results we obtain the following characterization of G-3-quasigroups.

Theorem 6. A 3-quasigroup (A, α) is a G-quasigroup iff there exist four binary quasigroups $\left(A, \alpha_{i}\right)$, such that

$$
\alpha_{1}\left(\alpha_{2}(x, y), z\right)=\alpha_{3}\left(x, \alpha_{4}(y, z)\right)=\alpha(x, y, z)
$$

for all $x, y, z \in A$.
Proof. Suppose (A, α) be a G-quasigroup. By Theorem 5 in (A, α) condition $D_{1,2} \& D_{2,3}$ holds. By Theorem 3 condition $D_{1,2}$ implies $\alpha(x, y, z)=$ $\alpha_{1}\left(\alpha_{2}(x, y), z\right)$ and condition $D_{2,3}$ implies $\alpha(x, y, z)=\alpha_{3}\left(x, \alpha_{4}(y, z)\right)$.

The converse statement is clear.
Remark 1. The functional equation of generalized associativity on quasigroups: find the set of all solutions of the functional equation $\alpha_{1}\left(\alpha_{2}(x, y), z\right)=$ $\alpha_{3}\left(x, \alpha_{4}(y, z)\right)$, over the set of quasigroup operations on an arbitrary set A. Theorem 6 suggests a possibility to solve this equation using G-3-quasigroups.

2. $G_{a}-n$-QUASIGROUPS

In this section we present criteria for an n-quasigroup to be a G_{a}-quasigroup. We finish this section showing that G_{a}-4-quasigroups are connected with the functional equation of generalized bisymmetry.

Let (A, α) be an n-quasigroup.
Definition 4. We say that in (A, α) condition $D_{i-j}, 1 \leq i, j \leq n$, $i+1<j$, holds if $\alpha\left(a_{1}^{i-1}, u_{i}, a_{i+1}^{j-1}, u_{j}, a_{j+1}^{n}\right)=\alpha\left(a_{1}^{i-1}, v_{i}, a_{i+1}^{j-1}, v_{j}, \overline{a_{j+1}^{n}}\right)$ implies $\alpha\left(x_{1}^{i-1}, u_{i}, x_{i+1}^{j-1}, u_{j}, x_{j+1}^{n}\right)=\alpha\left(x_{1}^{i-1}, v_{i}, x_{i+1}^{j-1}, v_{j}, x_{j+1}^{n}\right)$ for all $x_{1}^{n} \in A^{n}$.

It is easy to prove that condition D_{i-j} is isotopic invariant.
Theorem 7. In (A, α) condition D_{i-j} holds iff there exist two quasigroups, (A, γ) of arity $n-1$ and a binary quasigroup (A, β) such that

$$
\alpha\left(x_{1}^{n}\right)=\gamma\left(x_{1}^{i-1}, \beta\left(x_{i}, x_{j}\right), x_{i+1}^{j-1}, x_{j+1}^{n}\right) .
$$

Proof. We arbitrary choose $a_{j} \in A$. For any $x_{1}^{n} \in A^{n}$ there exists exactly one $b \in A$ such that $\alpha\left(x_{1}^{n}\right)=\alpha\left(x_{1}^{i-1}, b, x_{i+1}^{j-1}, a_{j}, x_{j+1}^{n}\right)$. By condition D_{i-j} we get $\alpha\left(y_{1}^{i-1}, x_{i}, y_{i+1}^{j-1}, x_{j}, y_{j+1}^{n}\right)=\alpha\left(y_{1}^{i-1}, b, y_{i+1}^{j-1}, a_{j}, y_{j+1}^{n}\right)$. Hence b depends only of x_{i} and x_{j}. Putting $b=\beta\left(x_{i}, x_{j}\right)$ we obtain

$$
\alpha\left(x_{1}^{n}\right)=\alpha\left(x_{1}^{i-1}, \beta\left(x_{i}, x_{j}\right), x_{i+1}^{j-1}, a_{j}, x_{j+1}^{n}\right)=\gamma\left(x_{1}^{i-1}, \beta\left(x_{i}, x_{j}\right), x_{i+1}^{j-1}, x_{j+1}^{n}\right)
$$

where $\gamma\left(x_{1}^{n-1}\right)=\alpha\left(x_{1}^{j-1}, a_{j}, x_{j+1}^{n}\right)$ is a retract of α.
Theorem 8. In (A, α) condition D_{i-j} holds iff for every n-loop (B, β) isotopic to $(A, \alpha), \beta\left(x_{1}^{i-1}, e, x_{i}^{n-1}\right)=\beta\left(x_{1}^{i-1}, x_{j}, x_{i+1}^{j-1}, e, x_{j+1}^{n}\right)$ for each unit e and all $x_{1}^{n} \in B$.

Proof. Similar to the proof of Theorem 4.
Theorem 9. (A, α) is a G_{a}-quasigroup iff it is a G-quasigroup and a condition D_{i-j} holds.

Proof. We prove that (A, \cdot) (see the proof of Theorem 5) is commutative: $x y=\beta\left((e)^{i-1}, x, y,(e)^{n-i-1}\right)=\beta\left((e)^{i-1}, e, y,(e)^{j-i-2}, x,(e)^{n-j}\right)=y x$.

If $n>3$ we can replace a condition $D_{i, i+1}, 1<i<n-1$ by conditions $D_{(i-1)-(i+1)}$ and $D_{i-(i+2)}$.

Theorem 10. An n-quasigroup $(A, \alpha), n>3$ is a G_{a}-quasigroup iff condition $D_{1,2} \& \ldots \& D_{(i-1), i} \& D_{(i-1)-(i+1)} \& D_{i-(i+2)} \& D_{i+1, i+2} \& \ldots \& D_{n-1, n}$ holds.

Proof. The proof is analogous to the proof of Theorem 5.
We finish by a characterization of G_{a}-4-quasigroups.
Theorem 11. A 4-quasigroup (A, α) is a G_{a}-quasigroup iff there exist six binary quasigroups $\left(A, \alpha_{i}\right)$ such that

$$
\alpha_{1}\left(\alpha_{2}(x, y), \alpha_{3}(u, v)\right)=\alpha_{4}\left(\alpha_{5}(x, u), \alpha_{6}(y, v)\right)=\alpha(x, y, u, v) .
$$

Proof. By Theorem $10(A, \alpha)$ is a G_{a}-quasigroup iff $D_{12} \& D_{1-3} \& D_{2-4} \& D_{34}$ holds.

By Theorem 3 condition $D_{1,2}$ implies $\alpha(x, y, u, v)=\beta\left(\alpha_{2}(x, y), u, v\right)$ where $\beta(x, y, z)=\alpha(a, x, y, z), a \in A$. It is easy to prove that if in (A, α) condition $D_{3,4}$ holds then in (A, β) condition $D_{2,3}$ holds too. Again by Theorem 3 we obtain $\beta(x, y, z)=\alpha_{1}\left(x, \alpha_{3}(y, z)\right)$ and then $\alpha(x, y, u, v)=\alpha_{1}\left(\alpha_{2}(x, y), \alpha_{3}(u, v)\right)$.

Now by Theorem 7 condition D_{1-3} implies $\alpha(x, y, u, v)=\gamma\left(\alpha_{5}(x, u), y, v\right)$ where $\gamma(x, y, z)=\alpha(x, y, a, z), a \in A$. It is not difficult to prove if in
(A, α) condition D_{2-4} holds then condition $D_{2,3}$ holds in (A, γ). Applying Theorem 3 we have $\gamma(x, y, z)=\alpha_{4}\left(x, \alpha_{6}(y, z)\right)$. Hence $\alpha(x, y, u, v)=$ $\alpha_{4}\left(\alpha_{5}(x, u), \alpha_{6}(y, v)\right)$.

The converse is obvious.
Remark 2. The functional equation of generalized bisymmetry on quasigroups: find the set of all solutions of the functional equation $\alpha_{1}\left(\alpha_{2}(x, y), \alpha_{3}(u, v)\right)=$ $\alpha_{4}\left(\alpha_{5}(x, u), \alpha_{6}(y, v)\right)$ over the set of quasigroup operations on an arbitrary set A.

Theorem 11 suggests a possibility to solve this equation using G_{a}-4-quasigroups.

References

[1] V.D. Belousov, n-ary quasigroups, Stiinta, Kishinev, 1972 (in Russian).
[2] K. Glazek and B. Gleichgewicht, Abelian n-groups, Colloquia Math. Soc. J. Bolyai 29 "Universal Algebra", Esztergom (Hungary) 1977, 321-329.
[3] A.G. Kurosh, General algebra, Lectures notes, 1969-1970, Nauka, Moscow, 1974 (in Russian).
[4] A. Petrescu, Certain questions of the theory of homotopy of universal algebras, Colloquia Math. Soc. J. Bolyai 17 "Contributions to universal algebra", Szeged (Hungary) 1975, 341-355.
[5] A. Petrescu, H-derived polyadic semigroups, Proc. of the Algebra Symposium "Babes-Bolyai" University Cluj, 2005, 95-106.

Author:

Adrian Petrescu
Department of Mathematics and Informatics
Faculty of Sciences and Letters
"Petru-Maior" University of Târgu-Mureş
Romania
e-mail: apetrescu@upm.ro

