G-N-QUASIGROUPS

Adrian Petrescu

ABSTRACT. In this paper we present criteria for an *n*-quasigroup to be isotopic to an *n*-group. We call a such *n*-quasigroup G-n-quasigroup. Applications to functional equations on quasigroups are presented in a subsequent paper.

2000 Mathematics Subject Classification: 20N15.

Some important *n*-quasigroup classes are the following. An *n*-quasigroup (A, α) of the form $\alpha(x_1^n) = \sum_{i=1}^n f_i(x_i) + a$, where (A, +) is a group, f_1, \ldots, f_n are some automorphisms of (A, +), *a* is some fixed element of *A* is called **linear** *n*-**quasigroup** (over group (A, +)). A linear quasigroup over an abelian group is called T - n-**quasigroup**. An *n*-quasigroup with identity

$$\alpha(\alpha(x_{11}^{1n}),\ldots,\alpha(x_{n1}^{nn})) = \alpha(\alpha(x_{11}^{n1}),\ldots,\alpha(x_{1n}^{nn}))$$

is called **medial** *n*-quasigroup.

All these quasigroups are isotopic to n-groups. This motivates the purpose of our work to find criteria for an n-quasigroup to be isotopic to an n-group.

1. Preliminaries

Recall several notions and results which will be used in what follows.

A non-empty set A together with one n-ary operation $\alpha : A^n \to A, n > 2$ is called *n*-groupoid and is denoted by (A, α) .

We shall use the following abbreviated notation:

• the sequence x_i, \ldots, x_j will be denoted by x_i^j . For $j < i, x_i^j$ is the empty symbol;

• if $x_{i+1} = \ldots = x_{i+k} = x$ then instead x_{i+1}^{i+k} we will write $(x)^k$. For $k \le 0$, $(x)^k$ is the empty symbol.

 (A, α) is an *n*-semigroup if α is associative, i.e.

$$\alpha(\alpha(x_1^n), x_{n+1}^{2n-1}) = \alpha(x_1, \alpha(x_2^{n+1}), x_{n+2}^{2n-1}) = \dots = \alpha(x_1^{n-1}, \alpha(x_n^{2n-1}))$$

holds for all $x_1, \ldots, x_{2n-1} \in A$.

An element $e \in A$ is called an *i*-unit if $\alpha((e)^{i-1}, x, (e)^{n-1}) = x$ for all $x \in A$. If e is an *i*-unit for all i = 1, 2, ..., n it is called an **unit**.

If each equation $\alpha(a_1^{i-1}, x, a_{i+1}^n) = b$ is uniquely solvable with respect to x, i = 1, 2, ..., n for all $a_1, ..., a_n, b \in A$, (A, α) is called *n*-quasigroup. An *n*-quasigroup which has at least one unit is called *n*-loop.

We introduced in [4] the notion of homotopy of universal algebras. In particular, for *n*-groupoids we have the following. Let $\mathcal{A} = (A, \alpha)$ and $\mathcal{B} = (B, \beta)$ be *n*-groupoids. An ordered system of mappings $[f_1^n; f]$ from *A* to *B* such that $f(\alpha(a_1^n)) = \beta(f_1(a_1), \ldots, f_n(a_n))$ for all $a_1^n \in A^n$ is called a **homotopy** from \mathcal{A} to \mathcal{B} . Equality and composition of homotopies are defined componentwise. Composition of homotopies produces a homotopy and is associative. An **isotopy** is a homotopy with all components bijections.

In many applications of quasigroups isotopies and homotopies are more important than isomorphisms and homomorphisms.

Any *n*-quasigroup is isotopic to an *n*-loop (see [1]).

Let (A, α) be an *n*-quasigroup and $a = a_1^n \in A^n$. The mapping $T_i : A \to A, T_i(x) = \alpha(a_1^{i-1}, x, a_{i+1}^n)$ is called the *i*-th translation by $a, i = 1, 2, \ldots, n$. Let $\overline{\alpha} : A^n \to A$ defined by $\overline{\alpha}(x_1^n) = \alpha(T_1^{-1}(x_1), \ldots, T_n^{-1}(x_n))$. Then $(A, \overline{\alpha})$ is an *n*-loop $(e = \alpha(a_1^n)$ is a unit) and $[T_1^n; 1_A]$ is an isotopy from (A, α) to $(A, \overline{\alpha})$.

 $(A, \overline{\alpha})$ is called a *LP*-isotope of (A, α) and $[T_1^n; 1_A]$ a *LP*-isotopy.

In [4] we proved the following. Let (A, α) and (B, β) be *n*-quasigroups and $[f_1^n; f]: (A, \alpha) \to (B, \beta)$ a homotopy (isotopy), $a = a_1^n \in A^n, b = b_1^n \in B, b_i = f_i(a_i), T_i$ translations by a and U_i translations by b, i = 1, 2, ..., n. Then the following diagram is commutative and f is a homomorphism (isomorphism).

$$(A, \alpha) \xrightarrow{[f_1^n; f]} (B, \beta)$$

$$[T_1^n; 1_A] \downarrow \qquad \qquad \downarrow [U_1^n; 1_B]$$

$$(A, \overline{\alpha}) \xrightarrow{f} (B, \overline{\beta})$$

If (B,β) is an *n*-loop and $[f_1^n; f]$ an isotopy, choosing a_i such that $f_i(a_i) = u$, u a unit in (B,β) we obtain that $f: (A,\overline{\alpha}) \to (B,\beta)$ is an isomorphism.

An *n*-semigroup which is also an *n*-quasigroup is called *n*-group (see [2]). Let (A, α) be an *n*-group. By Hosszu theorem (see [5]), $\alpha(x_1^n) = x_1 \cdot f(x_2) \cdot f^2(x_3) \cdot \ldots \cdot f^{n-1}(x_n) \cdot u$, where (A, \cdot) is a binary group (called a creating group), $x \cdot y = \alpha(x, (a)^{n-2}, y)$, $a \in A$ a fixed element, $f(x) = \alpha(\overline{a}, x, (a)^{n-2})$ an automorphism of (A, \cdot) and $u = \alpha((\overline{a})^n)$, \overline{a} the skew element to a. Based on this result Belousov [1] proved that every *LP*-isotope (A, β) of (A, α) is an *n*-group derived from a binary group (A, \circ) , i.e. $\beta(x_1^n) = x_1 \circ x_2 \circ \ldots \circ x_n$ where $x \circ y = xe^{-1}y$, $e = \alpha(a_1^n)$.

We introduce the following.

Definition 1. An n-quasigroup is called G - n-quasigroup (or shortly G-quasigroup) if it is isotopic to an n-group. From the above results if follows.

Theorem 1. Every n-loop isotopic to a G-quasigroup is an n-group derived from a binary group.

An *n*-group can also be defined as an algebra $(A, \alpha, -), \alpha : A^n \to A, -: A \to A$ such that α is associative and the following identities are satisfied: $\alpha(\overline{x}, (x)^{n-2}, y) = y, \alpha(y, (x)^{n-2}, \overline{x}) = y$ (see [2]). In [2] was proved that $(A, \alpha, -)$ is an abelian algebra (in the sense of general algebras - see [3]) iff α is semicommutative, i.e. $\alpha(x_1, x_2^{n-1}, x_n) = \alpha(x_n, x_2^{n-1}, x_1)$.

Definition 2. An *n*-quasigroup is called $G_a - n$ -quasigroup (shortly G_a -quasigroup) if it is isotopic to an abelian *n*-group.

Theorem 2. Every n-loop isotopic to a G_a -quasigroup is an n-group derived from a binary commutative group.

Proof. We proved in [5] that an *n*-group (A, α) is abelian iff any of its creating groups (A, \cdot) (see above) is commutative. Therefore every *LP*-isotope (A, β) of (A, α) is derived from a commutative binary group. Indeed, (A, \circ) is isomorphic to (A, \cdot) , $h(x \circ y) = h(x)h(y)$, $h(x) = xe^{-1}$.

2. G - n-QUASIGROUPS

In this section we present criteria for an n-quasigroup to be isotopic to an n-group. We finish this section showing that G-3-quasigroups are connected with the functional equation of generalized associativity.

Let (A, α) be an *n*-quasigroup.

Definition 3. (see [1]). We say that in (A, α) condition $D_{i,j}$, $1 \le i < j \le n$, holds if $\alpha(a_1^{i-1}, u_i^j, a_{j+1}^n) = \alpha(a_1^{i-1}, v_i^j, a_{j+1}^n)$ implies $\alpha(x_1^{i-1}, u_i^j, x_{j+1}^n) = \alpha(x_1^{i-1}, v_i^j, x_{j+1}^n)$ for all $x_1^n \in A^n$.

It is obvious that condition $D_{i,j}$ is isotopic invariant.

Theorem 3. (see [1]). In (A, α) condition $D_{i,j}$ holds iff there exists quasigroups (A, β) of arity j - i + 1 and (A, γ) of arity n - j + i such that $\alpha(x_1^n) = \gamma(x_1^{i-1}, \beta(x_i^j), x_{i+1}^n)$.

Proof. Choose $a_i, \ldots, a_{j-1} \in A$. For any $x_1^n \in A^n$ there exists only one $b \in A$ such that $\alpha(x_1^n) = \alpha(x_1^{i-1}, a_i^{j-1}, b, x_{j+1}^n)$. By condition $D_{i,j}$ we obtain $\alpha(y_1^{i-1}, x_i^j, y_{j+1}^n) = \alpha(y_1^{i-1}, a_i^{j-1}, b, y_{j+1}^n)$, i.e. b depends only of $x_i^j : b = \beta(x_i^j)$, $\beta : A^{j-i+1} \to A$. Therefore we have $\alpha(x_1^n) = \alpha(x_1^{i-1}, a_i^{j-1}, \beta(x_i^j), x_{j+1}^n) = \gamma(x_1^{i-1}, \beta(x_i^j), x_{j+1}^n)$, where $\gamma(x_1^{n-j+i}) = \alpha(x_1^{i-1}, a_i^{j-1}, x_i^{n-j+i})$ is a retract of α . It is easy to prove that (A, β) and (A, γ) are quasigroups.

The converse is trivial.

We focus on conditions $D_{i,i+1}$.

Theorem 4. Condition $D_{i,i+1}$ holds in (A, α) iff for each unit e of any n-loop (B, β) isotopic to (A, α) $\beta(x_1^{i-1}, e, x_i^{n-1}) = \beta(x_1^i, e, x_{i+1}^{n-1})$ for all $x_1^n \in B^n$.

Proof. Suppose that in (A, α) condition $D_{i,i+1}$ holds and let (B, β) be isotopic to (A, α) . Condition $D_{i,i+1}$ holds in (B, β) too. Let be e a unit in (B, β) . From $\beta((e)^{i-1}, e, x_i, (e)^{n-i-1}) = \beta((e)^{i-1}, x_i, e, (e)^{n-i-1})$ we get $\beta(x_1^{i-1}, e, x_i, x_{i+1}^{n-1}) = \beta(x_1^{i-1}, x_i, e, x_{i+1}^{n-1})$.

Now suppose that in every *n*-loop (B,β) isotopic to (A,α) $\beta(x_1^{i-1}, e, x_i^{n-1}) = \beta(x_1^i, e, x_{i+1}^{n-1})$ holds for each unit *e*. We prove that in (A, α) condition $D_{i,i+1}$ holds. Let be

$$\alpha(a_1^{i-1}, u_i, u_{i+1}, a_{i+2}^n) = \alpha(a_1^{i-1}, v_i, v_{i+1}, a_{i+2}^n)$$
(1)

Define $a^* = (a_1^*, \ldots, a_n^*)$ as follows: $a_j^* = a_j$ for $j \in \{1, \ldots, n\} - \{i, i+1\}, a_i^* = u_i, a_{i+1}^* = v_{i+1}$. Using translations T_i by a^* we define the *LP*-isotope (A, β) of (A, α) . Equality (1) can be written

$$T_{i+1}(u_{i+1}) = T_i(v_i) \tag{2}$$

Note that $e = \alpha(a_1^*, \ldots, a_n^*) = T_i(u_i) = T_{i+1}(v_{i+1})$ is a unit in (A, β) . Now

$$\begin{aligned} \alpha(x_1^{i-1}, u_i, u_{i+1}, x_{i+1}^n) &= \\ &= \beta(T_1(x_1), \dots, T_{i-1}(x_{i-1}), e, T_{i+1}(u_{i+1}), T_{i+2}(x_{i+2}), \dots, T_n(x_n)) = \\ &= \beta(T_1(x_1), \dots, T_{i-1}(x_{i-1}), T_{i+1}(u_{i+1}), e, T_{i+2}(x_{i+2}), \dots, T_n(x_n)) = \\ &= \beta(T_1(x_1), \dots, T_{i-1}(x_{i-1}), T_i(v_i), T_{i+1}(v_{i+1}), T_{i+2}(x_{i+2}), \dots, T_n(x_n)) = \\ &= \alpha(x_1^{i-1}, v_i, v_{i+1}, x_{i+2}^n). \end{aligned}$$

Based on Theorem 4 we prove the following criterion for an n-quasigroup to be a G-quasigroup.

Theorem 5. (A, α) is a *G*-quasigroup if and only if condition $D_{1,2}\&D_{2,3}\&\ldots\&D_{n-1,n}$ holds.

Proof. Let (A, β) be an *n*-loop isotopic to (A, α) and *e* a unit in (A, β) . In (A, β) condition $D_{1,2} \& \ldots \& D_{n-1,n}$ holds too. By Theorem 4 *e* is in the center of (A, β) . Define $x \cdot y = \beta(x, y, (e)^{n-2})$. It is obvious that (A, \cdot) is a binary quasigroup. From $\beta(x_1, x_2, (e)^{n-2}) = \beta(\beta(x_1, x_2, (e)^{n-2}), e, (e)^{n-2})$ by $D_{1,2}$ we get

$$\beta(x_1^n) = \beta(x_1 x_2, e, x_3^n). \tag{3}$$

Analogously, from $\beta((e)^{n-2}, x_{n-1}, x_n) = \beta((e)^{n-2}, e, \beta((e)^{n-2}, x_{n-1}, x_n))$ by $D_{n-1,n}$ we have

$$\beta(x_1^n) = \beta(x_1^{n-2}, e, x_{n-1}x_n).$$
(4)

Taking into account (3),

$$\beta(x_1, x_2, x_3, (e)^{n-3}) = \beta(x_1 x_2, e, x_3, (e)^{n-3}) = \beta(x_1 x_2, x_3, (e)^{n-2}) = \\ = \beta((x_1 x_2) x_3, (e)^{n-1}) = (x_1 x_2) x_3.$$

Analogously, using (4) we get $\beta((e)^{n-3}, x_1, x_2, x_3) = x_1(x_2x_3)$. Therefore $(x_1x_2)x_3 = x_1(x_2x_3)$ (e is in the center), i.e. (A, \cdot) is a binary group.

Continuing the above procedure we obtain $\beta(x_1^n) = x_1 x_2 \dots x_n$.

The converse statement is obvious. In any *n*-group derived from a binary group any condition $D_{i,j}$ holds.

From the above results we obtain the following characterization of G-3-quasigroups.

Theorem 6. A 3-quasigroup (A, α) is a G-quasigroup iff there exist four binary quasigroups (A, α_i) , such that

$$\alpha_1(\alpha_2(x,y),z) = \alpha_3(x,\alpha_4(y,z)) = \alpha(x,y,z)$$

for all $x, y, z \in A$.

Proof. Suppose (A, α) be a *G*-quasigroup. By Theorem 5 in (A, α) condition $D_{1,2}\&D_{2,3}$ holds. By Theorem 3 condition $D_{1,2}$ implies $\alpha(x, y, z) = \alpha_1(\alpha_2(x, y), z)$ and condition $D_{2,3}$ implies $\alpha(x, y, z) = \alpha_3(x, \alpha_4(y, z))$.

The converse statement is clear.

Remark 1. The functional equation of generalized associativity on quasigroups: find the set of all solutions of the functional equation $\alpha_1(\alpha_2(x, y), z) = \alpha_3(x, \alpha_4(y, z))$, over the set of quasigroup operations on an arbitrary set A. Theorem 6 suggests a possibility to solve this equation using G-3-quasigroups.

2.
$$G_a - n$$
-QUASIGROUPS

In this section we present criteria for an *n*-quasigroup to be a G_a -quasigroup. We finish this section showing that G_a -4-quasigroups are connected with the functional equation of generalized bisymmetry.

Let (A, α) be an *n*-quasigroup.

Definition 4. We say that in (A, α) condition D_{i-j} , $1 \le i, j \le n$, i+1 < j, holds if $\alpha(a_1^{i-1}, u_i, a_{i+1}^{j-1}, u_j, a_{j+1}^n) = \alpha(a_1^{i-1}, v_i, a_{i+1}^{j-1}, v_j, a_{j+1}^n)$ implies $\alpha(x_1^{i-1}, u_i, x_{i+1}^{j-1}, u_j, x_{j+1}^n) = \alpha(x_1^{i-1}, v_i, x_{i+1}^{j-1}, v_j, x_{j+1}^n)$ for all $x_1^n \in A^n$. It is easy to prove that condition D_{i-j} is isotopic invariant.

Theorem 7. In (A, α) condition D_{i-j} holds iff there exist two quasi-

groups, (A, γ) of arity n - 1 and a binary quasigroup (A, β) such that

$$\alpha(x_1^n) = \gamma(x_1^{i-1}, \beta(x_i, x_j), x_{i+1}^{j-1}, x_{j+1}^n).$$

Proof. We arbitrary choose $a_j \in A$. For any $x_1^n \in A^n$ there exists exactly one $b \in A$ such that $\alpha(x_1^n) = \alpha(x_1^{i-1}, b, x_{i+1}^{j-1}, a_j, x_{j+1}^n)$. By condition D_{i-j} we get $\alpha(y_1^{i-1}, x_i, y_{i+1}^{j-1}, x_j, y_{j+1}^n) = \alpha(y_1^{i-1}, b, y_{i+1}^{j-1}, a_j, y_{j+1}^n)$. Hence b depends only of x_i and x_j . Putting $b = \beta(x_i, x_j)$ we obtain

$$\alpha(x_1^n) = \alpha(x_1^{i-1}, \beta(x_i, x_j), x_{i+1}^{j-1}, a_j, x_{j+1}^n) = \gamma(x_1^{i-1}, \beta(x_i, x_j), x_{i+1}^{j-1}, x_{j+1}^n)$$

where $\gamma(x_1^{n-1}) = \alpha(x_1^{j-1}, a_j, x_{j+1}^n)$ is a retract of α .

Theorem 8. In (A, α) condition D_{i-j} holds iff for every n-loop (B, β) isotopic to (A, α) , $\beta(x_1^{i-1}, e, x_i^{n-1}) = \beta(x_1^{i-1}, x_j, x_{i+1}^{j-1}, e, x_{j+1}^n)$ for each unit e and all $x_1^n \in B$.

Proof. Similar to the proof of Theorem 4.

Theorem 9. (A, α) is a G_a -quasigroup iff it is a G-quasigroup and a condition D_{i-j} holds.

Proof. We prove that (A, \cdot) (see the proof of Theorem 5) is commutative: $xy = \beta((e)^{i-1}, x, y, (e)^{n-i-1}) = \beta((e)^{i-1}, e, y, (e)^{j-i-2}, x, (e)^{n-j}) = yx.$

If n > 3 we can replace a condition $D_{i,i+1}$, 1 < i < n-1 by conditions $D_{(i-1)-(i+1)}$ and $D_{i-(i+2)}$.

Theorem 10. An *n*-quasigroup (A, α) , n > 3 is a G_a -quasigroup iff condition $D_{1,2}\&\ldots\&D_{(i-1),i}\&D_{(i-1)-(i+1)}\&D_{i-(i+2)}\&D_{i+1,i+2}\&\ldots\&D_{n-1,n}$ holds.

Proof. The proof is analogous to the proof of Theorem 5.

We finish by a characterization of G_a -4-quasigroups.

Theorem 11. A 4-quasigroup (A, α) is a G_a -quasigroup iff there exist six binary quasigroups (A, α_i) such that

$$\alpha_1(\alpha_2(x, y), \alpha_3(u, v)) = \alpha_4(\alpha_5(x, u), \alpha_6(y, v)) = \alpha(x, y, u, v).$$

Proof. By Theorem 10 (A, α) is a G_a -quasigroup iff $D_{12}\&D_{1-3}\&D_{2-4}\&D_{34}$ holds.

By Theorem 3 condition $D_{1,2}$ implies $\alpha(x, y, u, v) = \beta(\alpha_2(x, y), u, v)$ where $\beta(x, y, z) = \alpha(a, x, y, z), a \in A$. It is easy to prove that if in (A, α) condition $D_{3,4}$ holds then in (A, β) condition $D_{2,3}$ holds too. Again by Theorem 3 we obtain $\beta(x, y, z) = \alpha_1(x, \alpha_3(y, z))$ and then $\alpha(x, y, u, v) = \alpha_1(\alpha_2(x, y), \alpha_3(u, v))$.

Now by Theorem 7 condition D_{1-3} implies $\alpha(x, y, u, v) = \gamma(\alpha_5(x, u), y, v)$ where $\gamma(x, y, z) = \alpha(x, y, a, z), a \in A$. It is not difficult to prove if in (A, α) condition D_{2-4} holds then condition $D_{2,3}$ holds in (A, γ) . Applying Theorem 3 we have $\gamma(x, y, z) = \alpha_4(x, \alpha_6(y, z))$. Hence $\alpha(x, y, u, v) = \alpha_4(\alpha_5(x, u), \alpha_6(y, v))$.

The converse is obvious.

Remark 2. The functional equation of generalized bisymmetry on quasigroups: find the set of all solutions of the functional equation $\alpha_1(\alpha_2(x, y), \alpha_3(u, v)) = \alpha_4(\alpha_5(x, u), \alpha_6(y, v))$ over the set of quasigroup operations on an arbitrary set A.

Theorem 11 suggests a possibility to solve this equation using G_a -4-quasigroups.

References

[1] V.D. Belousov, *n*-ary quasigroups, Stiinta, Kishinev, 1972 (in Russian).

[2] K. Glazek and B. Gleichgewicht, *Abelian n-groups*, Colloquia Math.

Soc. J. Bolyai 29 "Universal Algebra", Esztergom (Hungary) 1977, 321-329.

[3] A.G. Kurosh, General algebra, Lectures notes, 1969-1970, Nauka, Moscow, 1974 (in Russian).

[4] A. Petrescu, Certain questions of the theory of homotopy of universal algebras, Colloquia Math. Soc. J. Bolyai 17 "Contributions to universal algebra", Szeged (Hungary) 1975, 341-355.

[5] A. Petrescu, *H*-derived polyadic semigroups, Proc. of the Algebra Symposium "Babes-Bolyai" University Cluj, 2005, 95-106.

Author:

Adrian Petrescu Department of Mathematics and Informatics Faculty of Sciences and Letters "Petru-Maior" University of Târgu-Mureş Romania e-mail: apetrescu@upm.ro