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ON NONSTATIONARY PERIODICALLY CORRELETED
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Abstract. The aim of the paper is to construct the general framework
for the study of periodically correlated processes in the general context of a
complete correlated action and to find relations with some attached stationary
processes which can help in the prediction of a given periodically correlated
process. Some used tools are extended to the T-variate case of some appro-
priate correlated actions and some specific results are obtained in the view of
the best estimation.
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1. Introduction

Starting with the results of Gladyshev [3] , the study of periodically corre-
lated processes is a very atractive one, either for mathematicians, who analysed
various concrete or abstract casses (univariate, multivariate), or for engineers
due to the applications in signal processing, especially in communications sys-
tems.

In this paper, the general framework of the study for periodically correlated
processes in the general context of a complete correlated action is constructed
and some relations with the attached stationary processes which can help in
the prediction of a given periodically correlated process are obtained. To do
this, a briefly recalling of the fundamental tools introduced in [11]-[14] for the
study of stationary processes in complete correlated actions is needed. Also,
some used tools must be extended to the T-variate case of some appropriate
correlated actions. Then an extension of some known results to the context of
a complete correlated action is given and some specific results are analysed.
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2. Preliminaries

Let E be a separable Hilbert space and, as usually by L(E) will be denoted
the C∗-algebra of all linear bounded operators on E . Let H be a right L(E)-
module. An action of L(E) on H is a map from L(E) × H into H given by
(A, h) −→ Ah , where Ah := hA.

A correlation of the action of L(E) on H is a map Γ from H×H into L(E)
given by

(f, g) −→ Γ[f, g] (2.1)

with the properties:
(i) Γ[h, h] ≥ 0, Γ[h, h] = 0 implies h = 0
(ii) Γ[g, h] = Γ[h, g]∗

(iii) Γ[ΣiAihi, ΣjBjgj] = Σi,jA
∗
i Γ[hi, gj]Bj

for finite summs of actions of L(E) on H.
The triplet {E ,H, Γ} with the previous properties was called [12] the cor-

related action of L(E) onto H. The Hilbert space E is the parameter space ,
and the right L(E)-module H is the state space .

To each correlated action {E ,H, Γ} , another Hilbert space K ( the mea-
suring space ) is attached (see [12]) by the positively definite Aronsjain repro-
ducing kernel

〈γλ1 , γλ2〉 =
(
Γ[h2, h1]a1, a2

)
E

(2.2)

where λi = (ai, hi) ∈ E ×H.

By Theorem 9 from [13], up to a unitary equivalence, there exists a unique
algebraic imbedding of H into L(E ,K), h −→ Vh given by

Vha = γ(a,h) (2.3)

and

Γ[h1, h2] = V ∗
h1

Vh2 . (2.4)

The correlated action {E ,H, Γ} is a complete correlated action , if the map
h −→ Vh of H into L(E ,K) is surjective.

It is easy to see that L(E ,K) is an L(E) -module. Considering the action
of L(E) on L(E ,K) given by AV = V A, where V A is the usual operator
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composing, it follows that {E ,L(E ,K), Γ}, where Γ is given by (2.4), is a
correlated action. This is called the operator model. Due to the imbedding
h −→ Vh given by (2.3), each abstract correlated action {E ,H, Γ} can be
imbedded into the operator model, and in the complete correlated case, onto
the operator model.

A stationary process is a sequence {ft}t∈G in H, where G is a locally com-
pact group or hypergroup, such that Γ[ft, fs] depends only on the difference
s− t and not on s and t separately. The function Γ : G −→ L(E) given by

Γ(t) = Γ[f0, ft] (2.5)

is the correlation function of the process {ft}t∈G

For operator valued stationary processes in complete correlated actions,
where G is Z or R, a study was done (e.g. [12]-[14] and [16]-[18] ) and the pre-
diction problems which arisen in these cases was solved, including the Wiener
filter for prediction and an estimation of the prediction error operator.

3.Periodically correlated processes.

In the context of a complete correlated action {E ,H, Γ}, a periodically
Γ-correlated process is a sequence {ft}t∈G in H with the property that there
exists a positive T such that for any t, s in the locally compact group G

Γ[ft+T , fs+T ] = Γ[ft, fs]. (3.1)

The smallest T which verifies (3.1) is called the period of the periodically
Γ-correlated process {ft}.

Let us remark that the correlation function of a periodically Γ-correlated
process Γ : G×G → L(E) has the form

Γ(t, s) = Γ[ft, fs] (3.2)

and is a periodic function, with the same period T .
Also we can see that the matrix of the correlations associated to a discrete

Γ-stationary process {fn}n∈Z given by (Γ[fn, fm])n,m∈Z has the form
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A11 A12 . . . A1T A1,T+1 . . . A1,2T

A21 A22 . . . A2T
...

...
. . .

...
...

...
...

AT1 AT2 . . . ATT AT,T+1 . . . AT,2T

A∗
1,T+1 . . . A∗

T,T+1 A11 . . . A1T
...

...
...

...
. . .

...
...

...
...

A∗
1,2T . . . A∗

T,2T AT1 . . . ATT
...

...
...

...
. . .


Therefore the correlation matrix of a periodic stationary process {fn} of

the period T can be seen as

A B C D . . .

B∗ A B C
. . .

C∗ B∗ A B
. . .

D∗ C∗ B∗ A
. . .

...
. . . . . . . . .


(3.3)

where A, B, C, . . . are positive T by T bloc matrices with the elements from
L(E) . In the case of a stationary process, A, B, C, . . . are simply operators
from L(E).

As in the stationary case, to a periodically Γ-correlated process the pre-
diction spaces can be attached. So, the past and present of {ft} will be the
submodule of H given by

Hf
t =

{∑
k

Akfk; Ak ∈ L(E); k ≤ t
}

(3.4)

the remote past
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Hf
−∞ =

⋂
n

Hf
n (3.5)

and the space generated by the process

Hf
∞ =

{∑
k

Akfk; Ak ∈ L(E)
}

. (3.6)

Also, due to the imbedding h → Vh of H into L(E ,K), the past and present
can be seen as

Kf
t =

∨
k<t

Vfk
E or Kf

t =
∨

h∈Hf
t

VhE , (3.4′)

the remote past

Kf
−∞ =

⋂
n

Kf
n (3.5′)

and the space generated by the process

Kf
∞ =

∞∨
−∞

VftE . (3.6′)

In the Γ-stationary case, for each process {ft} there exists an attached shift
(group of unitary operators in the continuous case, and a unitary operator in
the discrete case, the relation between the two casses is given by the cogener-
ator). The attached shift play an important role in in prediction problems. In
the periodically Γ-correlated case, to each process a unitary group of operators
of T-shift type can be obtained [19] putting UVft = Vft+T

.
Due to the fact that the T-shift act on {ft} with a lag T, it is not possible

to use it directely for prediction purposes, like in the stationary case, but, as
we’ll see, there are strong connections with the shifts attached to the associated
stationary processes.

To make prediction on a process it means to obtain the best information
on some step, knowing the past and the present of the process. Usually, the
best estimator, or the best linear prediction is done by the linear least squares
method, using the orthogonal projection on the past and present space. In
the context of a complete correlated action, the state space is only a right
L(E)-module and we have not a clossness of submodules. Similarly like in

357



I. Valusescu - On nonstationary periodically correleted processes in...

the stationary case [14], in the periodically correlated case we will construct
an appropriate ‘Γ-orthogonal’ projection and some specific properties will be
studied, using operator theory methods. First of all, due the periodicity, even
in the scalar case, the best estimation can not be obtained directly, but with
the analysis of some associated stationary processes. Similar things will arise
in the complete correlated case and specific properties will be analysed.

In the following we will consider the case when {ft}t∈G ⊂ H where G is
Z (the discrete case), or G is R (the continuous case), but the study can be
abstractly done on a locally compact group or hypergroup G. In this paper
the discrete case will be esspecially analysed, and in a subsequent paper the
continuous case will be studied.

Let {E ,H, Γ} be a complete correlated action, and HT = H×H× · · ·×H
be the cartesian product of T copies of the right L(E)-module H. An element
X of HT will be seen as a column vector, taking the transpose (h1, . . . , hT )t of
the vector (h1, . . . , hT ). On HT it is possible to have the action of L(E) on the
components, with the same operator A ∈ L(E), or on each component with a
different Ai ∈ L(E). Also we can consider various correlations on HT . From
the prediction of periodically correlated processes poin of view, two equivalent
correlations on HT will be considered as follows:

Γ1[X, Y ] =
T−1∑
k=0

Γ[xk, yk], (3.7)

where X = {xk} , Y = {yk} , k ∈ {0, 1, . . . , T − 1} and

ΓT [X,Y ] =
(
Γ[xi, yj]

)
i,j∈{0,1,...,T−1}

. (3.8)

Let us remark that Γ1 : HT ×HT → L(E) and ΓT : HT ×HT → L(E)T ×T ,
or in the set of T × T matrix with elements from L(E).

So, starting with the correlated action {E ,H, Γ} of L(E) on H , we ob-
tain two associated correlated actions of L(E) on HT , namely {E ,HT , Γ1} and
{E ,HT , ΓT}. In the following, to avoid the confusion, various correlations will
be prefixed with Γ, Γ1 and ΓT .

To a periodically Γ-correlated process {fn}n∈Z from H we can attach at
least two types of stationary processes in HT as follows:

1) taking sequences of consecutive T terms starting with fn, namely the
column vector
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Xn =
(
fn, fn+1, . . . , fn+T−1

)t

, (3.9)

or
2) taking consecutive blocks of length T

XT
n =

(
fnT , fnT+1, . . . , fnT+T−1

)t

. (3.10)

It is easy to see that {Xn} and
{
XT

n

}
are respectively Γ1 and ΓT sta-

tionary processes in HT . From prediction point of view and the study of the
periodically Γ-correlated process {fn}n∈Z from H, the Γ1-correlation of {Xn}
and ΓT -correlation of

{
XT

n

}
are equivalent, as can be seen from the following

Proposition.
Proposition 3.1 Let {fn}n∈Z from H, an integer T ≥ 2 and {Xn},

{
XT

n

}
defined by (3.9) and (3.10). The following are equivalent:

(i) {fn} is periodically Γ-correlated in H, with the period T.
(ii) {Xn} is stationary Γ1-correlated in HT .
(iii)

{
XT

n

}
is stationary ΓT -correlated in HT .

Proof. (i) ⇒ (ii). Having {fn} periodically Γ-correlated , i.e., Γ[fn, fm] =
Γ[fn+T , fm+T ], it follows that

Γ1[Xn, Xm] =
∑T−1

k=0 Γ[fn+k, fm+k] = Γ[fn, fm] +
∑T−1

k=1 Γ[fn+k, fm+k] =

= Γ[fn+T , fm+T ] +
∑T−1

k=1 Γ[fn+k, fm+k] =
∑T

k=1 Γ[fn+k, fm+k] =

=
∑T−1

j=0 Γ[f(n+1)+j, f(m+1)+j] = Γ1[Xn+1, Xm+1] .

Therefore {Xn}n∈Z is stationary Γ1 -correlated in HT .
Conversely (ii) ⇒ (i). The process {Xn} being stationary Γ1 -correlated

in HT we have succesively:

Γ1[Xn+1, Xm+1] = Γ1[fn, fm]∑T−1
k=0 Γ[fn+1+k, fm+1+k] =

∑T−1
k=0 Γ[fn+k, fm+k]∑T

j=1 Γ[fn+j, fm+j] =
∑T−1

k=0 Γ[fn+k, fm+k]
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∑T−1
j=1 Γ[fn+j, fm+j] + Γ[fn+T , fm+T ] = Γ[fn, fm] +

∑T−1
k=1 Γ[fn+k, fm+k].

It follows that Γ[fn+T , fm+T ] = Γ[fn, fm], i.e., {fn}n∈Z is periodically Γ-correlated
in H.

(i) ⇒ (iii). Taking account that {fn} from H is periodically Γ-correlated
with the period T, we have

ΓT [XT
n , XT

m] =
(
Γ[fnT+i, fmT+j]

)
i,j∈{0,1,...,T−1}

=
(
Γ[fnT+i+T , fmT+j+T ]

)
i,j

=

=
(
Γ[f(n+1)T+i, f(m+1)T+j]

)
i,j

= ΓT [XT
n+1, X

T
m+1]

and
{
XT

n

}
is stationary ΓT -correlated in HT .

(iii) ⇒ (i). If
{
XT

n

}
is stationary ΓT -correlated in HT , then for each

n,m ∈ Z

ΓT [XT
n , XT

m] = ΓT [XT
n+1, X

T
m+1],

i.e., the matrix equality

(
Γ[fnT+i, fmT+j]

)
0≤i,j≤T−1

=
(
Γ[f(n+1)T+i, f(m+1)T+j]

)
0≤i,j≤T−1

.

It follows that for each n, m ∈ Z and 0 ≤ i, j ≤ T − 1 we have

Γ[fnT+i, fmT+j] = Γ[fnT+i+T , fmT+j+T ]. (3.11)

Taking first n = m = 0 in (3.11) obtain that for 0 ≤ i, j ≤ T − 1

Γ[fi, fj] = Γ[fi+T , fj+T ].

Then for various other combinations of n and m, denotting nT + i = p ∈ Z
and mT + j = q ∈ Z, it follows that for each p, q ∈ Z we have

Γ[fi, fj] = Γ[fi+T , fj+T ]

i.e., the process {fn} ⊂ H is periodically Γ-correlated.
It is known [12] that the right L(E)-module H can be uniquelly (up to a

unitary equivalence) imbedded into the right L(E)-module L(E ,K), where K
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is the measuring space attached to the correlated action {E ,H, Γ}. Therefore
the study of a process in H can be done in the operator model {E ,L(E ,K), Γ}.

For the study of the attached column vectors stationary processes fromHT ,
the corresponding operator model is needed.

Proposition 3.2. There exists a unique (up to a unitary equivalence)
imbedding X → WX of HT into L(E ,KT ) such that

Γ1[X, Y ] = W ∗
XWY =

T∑
i=1

V ∗
xi

Vyi
(3.12)

where X = (x1, . . . , xT )t , Y = (y1, . . . , yT )t.
The subset

{
WXa; X ∈ HT , a ∈ E

}
is dense in KT .

Proof. Taking account of the imbedding h → Vh of H into L(E ,K) given
by (2.3) and (2.4), if we take

WX = (Vx1 , Vx2 , . . . , VxT
)t, (3.13)

then for a, b ∈ E we have WXa = (γ(a,x1), . . . , γ(a,xT )) and

(
Γ1[X, Y ]a, b

)
E

=
( T∑

i=1

Γ[xi, yi]a, b
)
E

=
( T∑

i=1

V ∗
xi

Vyi
a, b

)
E
.

By the fact that the usual scalar product on KT is the sum of scalar prod-
ucts on components, it follows that

(W ∗
XWY a, b)E = (WY a, WXb)KT =

T∑
i=1

(γ(a,yi), γ(b,xi))K =
T∑

i=1

(Vyi
a, Vxi

b)K =

=
T∑

i=1

(V ∗
xi

Vyi
a, b)E

and (3.12) is proved. Also,

‖WXa‖2
KT = (WXa, WXa)KT =

T∑
i=1

(V ∗
xi

Vxi
a, a)E ≤

T∑
i=1

‖Vxi
‖2 · ‖a‖,

and WX is a linear bounded operator from E into KT .

361



I. Valusescu - On nonstationary periodically correleted processes in...

If we consider another imbedding W ′ of HT into L(E ,KT ) having the prop-
erty (3.12), then, if we take Φ : KT → KT given by ΦW ′

Xa = WXa, we have

‖ΦW ′
X‖2

KT = ‖WXa‖2
KT =

( T∑
i=1

V ∗
xi

Vxi
a, a

)
E

= ‖W ′
Xa‖2

. Then for a, b ∈ E , WXa = (γ(a,x1), . . . , γ(a,xT ))
t and

(
Γ1[X, Y ]a, b

)
E

=
( T∑

i=1

Γ[xi, yi]a, b
)
E

=
( T∑

i=1

V ∗
xi

Vyi
a, b

)
E
.

Also, ‖WXa‖2
KT = (WXa, WXa)KT , i.e., Φ is a unitary operator on KT . So,

the imbedding X → WX of HT into L(E ,KT ) is unique (up to a unitary
equivalence.

For prediction purposes, we are interested to find the best estimation of an
element from HT with elements from a subset M = H1×H2×· · ·×HT ⊂ HT .
To do this, we need the following Proposition.

Proposition 3.3. Let M be a subset of HT . If we take

KT
1 =

∨
Z∈M

VZE , (3.14)

then for each X ∈ HT there exists a unique element X ′ in HT such that for
each a ∈ E we have

WX′a ∈ KT
1 and WX−X′a ∈ (KT

1 )⊥. (3.15)

Moreover,
Γ1[X −X ′, X −X ′] = inf

Z∈M
Γ1[X − Z,X − Z] (3.16)

where the infimum is taken in the set of all positive operators from L(E).
Proof. Let WX′ = PKT

1
WX where PKT

1
is the orthogonal projection of KT

on its closed subset KT
1 . For each a ∈ E we have WX′a ∈ KT

1 and

WX−X′a = (γ(a,x1−x′1
, . . . , γ(a,xT−x′T

)t = (γ(a,x1 − γ(a,x′1
, . . . , γ(a,xT

− γ(a,x′T
)t

= WXa−WX′a = WXa− PKT
1
WXa = (I − PKT

1
)WXa ∈ (KT

1 )⊥.
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If there exists X” with the property (3.15), then for each a ∈ E we have
WXa = WX”a + WX−X”a. It follows that WX”a = PKT

1
WXa = Wh′a, i.e.,

X” = X ′.
Moreover,

(Γ1[X−X ′, X−X ′]a, a) = (W ∗
X−X′WX−X′a, a) = ‖WX−X′a‖2 = ‖(I−PKT

1
)WXa‖2 =

= inf
K∈KT

1

‖WXa−K‖2 = inf∑n
1 WXj

aj

‖WXa−
n∑

i=1

WXj
aj‖2 =

= inf∑n
1 WXj

aj

‖WXa−W∑n
j=1 Xj

aj‖2 =

= inf(Γ1[X −
n∑

j=1

AjXj, X −
n∑

j=1

AjXj]a, a) = inf
Z∈M

(Γ1[X − Z,X − Z]a, a),

where for each finite systems {a1, . . . , an} of elements from E we choose A1, . . . , An ∈
L(E) such that Aja = aj, j = 1, 2, . . . , n.

If we denote by PM the endomorphism of HT defined by PMX = X ′,then
we have

WP2
MX = WPMX′ = PKT

1
WX′ = P 2

KT
1
WX = PKT

1
WX = WPMX

and also,

Γ1[PMX, Y ] = W ∗
PMXWY = (PKT

1
WX)∗WY = W ∗

XPKT
1
WY = W ∗

XWPMY =

= Γ1[X,PMY ]

Hence P2
MX = PMX and Γ1[PMX,Y ] = Γ1[X,PMY ]. Therefore we can

interpret PM as a ”orthogonal” projection on M, and this will be called the
Γ1-orthogonal projection of HT on M⊂ HT .

As we have seen, to each periodically correlated process {fn} from H we
can attach its T-shift, a unitary operator Uf on Kf

∞ such that UfVfn = Vfn+T
,

where h → Vh is the usual imbedding of H into L(E ,K). Then it is easy to see
that the unitary operator on (Kf

∞)T defined by

UT (Vf1 , Vf2 , . . . , VfT
)t = (UfVf1 , UfVf2 , . . . , UfVfT

)t (3.17)

is the shift operator attached to the statoinary ΓT -correlated process {XT
n }

defined by (3.10). Indeed,
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UT WXT
n

= UT (VfnT
, VfnT+1

, . . . , VfnT+T−1
)t =

= (UfVfnT
, UfVfnT+1

, . . . , UfVfnT+T−1
)t = (VfnT+T

, VfnT+1+T
, . . . , VfnT+T−1+T

)t =

= (Vf(n+1)T
, Vf(n+1)T+1

, . . . , Vf(n+1)T+T−1
)t = WXT

n+1
.

It follows that WXT
n

= UnWXT
0
.

On the other part, let us remark that we can identify H as the subset N =
H×{0}×· · ·×{0} inHT . From (3.13) it follows that W(h,0,...,0) = (Vh, 0, . . . , 0)t

and the corresponding subspace from KT for N will be

KT
N =

∨
Z∈M

WZE = K × {0} × · · · × {0} ⊂ KT

Considering the stationary Γ1-correlated process {Xn} ⊂ HT given by

(3.9), Xn =
(
fn, fn+1, . . . , fn+T−1

)t

, we have

PKT
N
WXn = PKT

N
(Vfn , . . . , Vfn+T−1

)t = Vfn

and follows that fn can be identified with fn = PNXn, i.e. the periodically
Γ-correlated process from H admits a stationary Γ1-correlated dilation {Xn}
in HT .

Also, using this type of identification of H in HT it is possible to find
informations and prediction facts about the periodically Γ-correlated process
{fn} from the study of stationary Γ1-correlated process {Xn}. As we will see,
there are strong connections among the corresponding spectral distributions
of {fn} , {Xn} and ΓT -correlated stationary process

{
XT

n

}
. So, prediction

error operator and the linear Wiener filter for prediction can be found. This
will be done in a separate paper, the aim of this paper being to construct the
general frame for the study of periodically correlated processes in the context
of a complete correlated action.

In the following, some results obtained by Gladyshev [3] for the scalar case
will be extended to the case of a complete correlated action {E ,H, Γ} and
some specific results will be obtained.

Let {fn} be a periodically Γ-correlated process in the right L(E) -module
H and its imbedding in the operator model {Vfn} ⊂ L(E ,K) given by (2.3).
The Γ-correlation function of the process {fn} given by (3.2) is an L(E)-valued
periodic function with the same period T ≥ 2.

Γ(m, n) = Γ[fm, fn] = V ∗
fm

Vfn ; m, n ∈ Z
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Following the notations from [3], let us define the L(E)-valued function B(n, t)
on Z× Z by

B(n, t) = Γ(n + t, n). (3.18)

Then B(n, t) is a periodic function in n with the same period T and has a
Fourier series representation

B(n, t) =
T−1∑
k=0

Bk(t) exp(2πikn/T ), (3.19)

where Bk(t) are the L(E)-valued coefficients for k = 0, 1, . . . , T − 1. For con-
venience Bk(t) can be completed to Z by the equality Bk(t) = Bk+T (t).

In the following the attached function B(n, t) will be called the covariance
function of the periodically Γ-correlated process {fn}.

A simple computation on (3.19) shows that

Bl(t) =
1

T

T−1∑
n=0

B(n, t) exp(−2πinl/T ). (3.20)

As a remark, the correlation function and the covariance function of an
arbitrary Γ-correlated process {fn} are positive definite functions. Indeed, for
any A1, . . . , An ∈ L(E) ; t1, t2, . . . , tn ∈ Z and a1, . . . , an ∈ E we have, taking
account that for a finite system of elements ak ∈ E there exist a system of
operators Sk ∈ L(E) such that ak = Ska

n∑
p,q=1

(A∗
pΓ(tp, tq)Aqaq, ap)E =

n∑
p,q=1

(A∗
pΓ[ftp , ftq ]Aqaq, ap) =

=
n∑

p,q=1

(Γ[Apftp , Aqftq ]aq, ap) =
n∑

p,q=1

(Γ[Apftp , Aqftq ]Sqa, Spa) =

=
(
Γ[

n∑
p=1

SpApftp ,
n∑

q=1

SqAqftq ]a, a
)
E
= (Γ[h, h]a, a) =

= (V ∗
h Vha, a)E = ‖Vha‖2

K ≥ 0.

Or equivalent for the covariance function

n∑
p,q=1

(
A∗

pB(tq, tp − tq)Aqaq, ap

)
E
≥ 0. (3.21)
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The following theorem is a generalization to the complete correlated action
case of the Theorem 1 from [3].

Theorem 3.4 (Gladyshev). A function B(n, t) defined by (3.19) will be
the covariance function of some periodically Γ-correlated process in H with
the period T, where the correlation function Γ(s, n) = B(n, s−n), if and only
if the T × T matrix valued function

B(t) =
(
Bjk(t)

)
j,k=0,1,...,T−1

(3.22)

is the operator correlation function of some stationary ΓT -correlated process
from HT , where

Bjk(t) = Bk−j(t) exp(2πijt/T ) (3.23)

and the ΓT -correlation on HT is given by (3.8).
Proof. As in [3] we have to show that satisfaction of the inequality

n∑
p,q=1

A∗
pB(tq, tp − tq)Aq ≥ 0 (3.24)

in the sense of (3.21), is equivalent to satisfaction of the inequality

n∑
p,q=1

A∗
pBkpkq(tp − tq)Aq ≥ 0 (3.25)

for arbitrary A1, . . . , An ∈ L(E) ; t1, t2, . . . , tn ∈ Z and k1, . . . , kn ∈ {0, 1, . . . , T − 1}.
For the first implication we have

n∑
p,q=1

A∗
pBkpkq(tp − tq)Aq =

n∑
p,q=1

A∗
pBkq−kp(tp − tq) exp(2πikp(tp − tq)/T )Aq =

=
n∑

p,q=1

A∗
p

1

T

T−1∑
m=0

B(m, tp−tq) exp(−2πim(kq−kp)/T )·exp(2πikp(tp−tq)/T )Aq =

=
1

T

n∑
p,q=1

T−1∑
m=0

A∗
pB(m, tp − tq) exp[−2πi(mkq −mkp − tpkp + tqkq)/T ]Aq =

=
1

T

n∑
p,q=1

T−1∑
m=0

A∗
pB(m, tp−tq) exp(−2πimkq)/T )·exp[2πi(m−tq +tp)kp/T ]Aq =
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=
1

T

n∑
p,q=1

T−1∑
s=0

A∗
pB(s+tq, tp−tq) exp[−2πi(s+tq)kq/T ]·exp[2πi(s+tp)kp/T )Aq =

=
1

T

n∑
p,q=1

T−1∑
s=0

[Ap exp(−2πi(s+tp)kp/T )]∗B(s+tq, tp−tq)Aq exp(−2πi(s+tq)kq/T ) =

=
1

T

T−1∑
s=0

n∑
p,q=1

[Ap exp(−2πi(s+tp)kp/T )]∗Γ(s+tp, s+tq)Aq exp(−2πi(s+tq)kq/T ) =

=
1

T

T−1∑
s=0

Γ
[ n∑

p=1

exp(−2πi(s+tp)kp/T )Apfs+tp ,

n∑
q=1

exp(−2πi(s+tq)kq/T )Aqfs+tq

]
≥ 0.

Conversely, if (3.25) is true for any A1, . . . , An ∈ L(E) ; t1, t2, . . . , tn ∈ Z
and k1, . . . , kn ∈ {0, 1, . . . , T − 1} , then

n∑
p,q=1

A∗
pB(tq, tp − tq)Aq =

n∑
p,q=1

A∗
p

T−1∑
l=0

Bl(tp − tq) exp(2πiltq/T )Aq =

=
n∑

p,q=1

A∗
p

T−1∑
j,k=0

Bk−j(tp − tq) exp(2πi(k − j)tq/T )Aq =

=
n∑

p,q=1

T−1∑
j,k=0

A∗
pBjk(tp − tq) exp(2πij(tp − tq)/T ) exp(2πi(k − j)tq/T )Aq =

=
n∑

p,q=1

T−1∑
j,k=0

A∗
pBjk(tp − tq) exp(2πi(ktq − jtp)/T )Aq =

=
n∑

p,q=1

T−1∑
j,k=0

[exp(2πijtp)Ap]
∗Bjk(tp − tq)[exp(2πiktq)Aq] ≥ 0,

and the theorem is proved.
As a remark, Gladyshev’s theorem affirm the existence of some stationary

ΓT -correlated process, not necessary our stationary process
{
XT

n

}
introduced

by (3.10). But, as we will see, this ΓT -correlated process contains a lot of
informations about the periodically Γ-correlated process {fn}, or the attached
stationary Γ1-correlated process {Xn} given by (3.9).
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Recall that [16], if {fn} is not a Γ-stationary process in H, but there exists
an L(E)-valued semispectral measure on bitorus such that

Γ[fn, fm] =

∫
T2

χn(t)χm(t)dK(t, s),

where χn(t) = e−int and T is the unit torus from the complex plane C, then the
process {fn} is Γ-harmonizable. Also, (see [16]) any Γ-harmonizable process
has a spectrum and this is obtained by the restriction of the L(E)-valued
semispectral measure K to the diagonal of the bitorus.

In the following we will see that each discrete periodically Γ-correlated
process is Γ-harmonizable.

If Γ(m,n) is the correlation function of the periodically Γ-correlated process
{fn} inH given by (3.2) and the covariance function B(n, t) = Γ(n+t, n) given

by (3.18) with the attached matrix B(t) =
(
Bjk(t)

)
given by (3.22) and (3.23),

then by Theorem 3.4, the attached ΓT -correlated process is stationary and it
follows that there exists a unique L(E)T×T -valued semispectral measure FT on
T

FT (·) =
(
Fjk(·)

)
j,k∈{0,1,...,T−1}

(3.26)

such that

B(n) =

∫ 2π

0

eintFT (dt), n ∈ Z. (3.27)

From (3.23) Bjk(n) = Bk−j(n) exp(2πijn/T ) and taking account by (3.27) it
follows that for k ∈ {0, 1, . . . , T − 1} we have

Bk(n) = B0k(n) =

∫ 2π

0

eintF0k(dt), n ∈ Z. (3.28)

Extending by periodicity F0k = F0(k+T ), it follows that for any k ∈ Z we have
F0k as an L(E)-valued semispectral measure on the unit torus. Using (3.18)
and (3.19) it follows that

Γ(n, m) = B(m, n−m) =
T−1∑
j=0

Bj(n−m) exp(2πijm/T ) =

=
T−1∑
j=0

∫ 2π

0

ei(n−m)tF0j(dt) · exp(2πijm/T ) =
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=

∫ 2π

0

T−1∑
j=0

exp
{

i[nt−m(t− 2πj/T )]
}

F0j(dt).

If we define the L(E)-valued bimeasure K on bitorus putting for σ and ω in
B(T)

K(σ, ω) =
T−1∑

j=−T+1

F0j(σ ∩ ω − 2πj/T ) (3.29)

then

Γ(n, m) =

∫
T2

ei(nt−ms)K(dt, ds) (3.30)

and it follows that {fn} is Γ-harmonizable.
As a remark, the support of the L(E)-valued bimeasure K attached to a

periodically Γ-correlated process with the period T is concentrated on 2T − 1
equidistant straight line segments v = u − 2πk/T, k ∈ {0,±1, . . . ,±(T −
1)} parallel to the diagonal of the square [0, 2π] × [0, 2π]. Actually, as in
the scalar case, the Γ-harmonizable processes generalize the Γ-stationary and
periodically one. If the support of the bimeasure K is concentrated only on the
diagonal of the square, the harmonizable process is stationary and when the
support is concentrated on 2T − 1 equidistant straight line segments parallel
to the diagonal of the square, the harmonizable process becomes a periodically
process with the period T . So we can sumarize the following

Corolary 3.5 If {fn} is a periodically Γ-correlated process in H with
the period T , then it is Γ-harmonizable, having the support concentrated on
2T −1 equidistant straight line segments parallel to the diagonal of the square
[0, 2π]× [0, 2π].

As we have seen, the Γ1-correlated process {Xn} in HT attached by (3.9)
to the periodically Γ-correlated process {fn} from H is a stationary dilation
for {fn}. Also we have seen that the correlation function of the periodically
Γ-correlated process {fn} has the form

Γ(n,m) =

∫ 2π

0

T−1∑
j=0

exp
{

i[nt−m(t− 2πj/T )]
}

F0j(dt).

In the following we can see that the semispectral measure attached to the
stationary Γ1-correlated process {Xn} is expressed with F00 the 00-component
of the correlation matrix FT of some stationary ΓT -correlated process.
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Proposition 3.6. Let {Xn} ⊂ HT be the stationary Γ1-correlated dilation
of the periodically Γ-correlated process {fn} ⊂ H of period T . Then the L(E)-
valued semispectral measure FX attached to {Xn} is given by

FX = T · F00 (3.31)

where F00 is the 00-component of the matrix L(E)T×T -valued semispectral
measure FT given by (3.26).

Proof. For each n ∈ Z we have Xn =
(
fn, fn+1, . . . , fn+T−1

)t

and taking

account by (3.19) and (3.28) we have

Γ1(n) = Γ1[X0, Xn] =
T−1∑
j=0

Γ[fj, fn+j] =
T−1∑
j=0

Γ(j, n + j) =

=
T−1∑
j=0

B(n + j,−n) =
T−1∑
j=0

T−1∑
k=0

Bk(−n) exp(2πik(n + j)/T ) =

=
T−1∑
k=0

T−1∑
j=0

exp(2πik(n + j)/T )

∫ 2π

0

e−intF0k(dt) = T

∫ 2π

0

e−intF00(dt).

It follows that the L(E)-valued semispectral measure FX attached to the sta-
tionary dilation {Xn} from HT of the periodically Γ-correlated process {fn} is
FX = T · F00, and the proof is finished.

It is known [13] that for each L(E)-valued semispectral measure F on T
there exists a unique operator valued L2-bounded outer function {E ,F1, Θ1(λ)}
which has the property that its attached semispectral measure FΘ1 is domi-
nated by F and is maximal between all semispectral measures attached to
L2-bounded analytic functions Θ(λ) with the property FΘ ≤ F . So, to each
L(E)-valued semispectral measure F on T, a maximal L2-bounded outer func-
tion is attached.

For stationary processes in complete correlated actions a complete study
was done (see [11]-[14]), the Wiener filter for prediction and the prediction
error operator was obtained in terms of its attached maximal functions. Now,
the general framework for the prediction of a periodically correlated process
in the context of a complete correlated action {E ,H, Γ} is done. As was seen,
a Γ1-projection PM of HT on a submodule M ⊂ HT was constructed and
some spectral connections between the periodically Γ-correlated process and
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its stationary Γ1-correlated dilation was found. Also a stationary ΓT -correlated
process was attached by Gladyshev’s theorem, which contains the best pos-
sible information about the initial periodically Γ-correlated process in its 00-
component. Now, theoreticaly we are ready to obtain the best linear predictor
for {fn} as the Γ1-orthogonal projection on the past and present space of the
process, using all the possible knowledge about attached stationary processes
{Xn} and

{
XT

n

}
. To do this, preliminary prediction filters for stationary at-

tached processes are necessary. In a following paper a detailled study will be
done and an explicit formula, in terms of its maximal function, for the linear
predictor of a periodically Γ-correlated process will be found.
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