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SOME QUALITATIVE FEATURES OF 2D PERIODIC
MIXING MODEL

Adela Ionescu, Mihai Costescu

Abstract. The problems of flow kinematics are far from complete solv-
ing. Recently, the mixing theory issued in this field, with the mathematical
methods and techniques, developed the significant relation between turbu-
lence and chaos. The turbulence is an important feature of dynamic systems
with few freedom degrees, the so-called “far from equilibrium systems”, which
are widespread between the models of excitable media.

In the previous works, the study of the 3D non-periodic models exhibited
a quite complicated behavior. In agreement with experiments, they involved
some significant events - the so-called “rare events”. The variation of param-
eters had a great influence on the length and surface deformations.

The 2D (periodic) case is simpler, but significant events can issue for
irrational values of the length and surface versors, as is the situation in 3D
case. Also, the graphic analysis previously realized involved that in 2D case,
the mixing has also a nonlinear behavior and the rare events can appear.

In this paper is started a computational analysis for 2D basic mixing
model, in a modified version. In the first stage, there is analyzed the length
deformation for different values of the basic parameters. For the simulations
there are used specific procedures and functions of MapleVI. The conclusions
will be further used for analyzing the mixing efficiency.

2000 Mathematics Subject Classification: 76F25, 37E35

1.Introduction

In the turbulence theory, two important fields are distinguished:
a) The transition theory from smooth laminar flows to chaotic flows,

characteristic to turbulence.
b) Statistic studies of the complete turbulent systems.
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From statistical standpoint, a flow is represented by the map:

x = Φt (X) , X = Φt (t = 0) (X) (1)

which must be of class Ck. From the dynamic standpoint the map:

Φt (X) −→ x (2)

is a diffeomorphism of class Ck and (1) must satisfy the relation

0 < J < ∞, J = det

(
∂xi

∂Xj

)
, J = det(DΦt(X)) (3)

where D denotes the derivation with respect to the reference configuration,
in this case X. The relation (3) implies two particles, X1 and X2, which
occupy the same position x at a moment. Non-topological behavior (like
break up, for example) is not allowed.

With respect to X it is defined the basic measure for the deformation,
namely the deformation gradient, F:

F = (∇XΦt (X))T , Fij =

(
∂xi

∂Xj

)
, or F = DΦt (X) (4)

where ∇X denotes differentiation with respect to X. According to (3), F is
non singular. The basic measure for the deformation with respect to x is the
velocity gradient ( ∇x denote differentiation with respect to x).

By differentiation of x with respect to X there are obtained the basic de-
formation for a material filament, and for the area of an infinitesimal material
surface [4].

Let us focus on the basic deformation measures:the length deformation λ
and surface deformation η , with the relations [4,5]:

λ = (C : MM)
1
2 , η = (det F ) ·

(
C−1 : NN

) 1
2 , (5)

with C = FTF the Cauchy-Green deformation tensor, and the length and
surface vectors M, N defined by

M = dX/ |dX| , N = dA/ |dA| (6)

The relation (6) has the following scalar form:
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λ = Cij ·Mi ·Nj, η = (det F ) ·
(
C−1

ij ·Ni ·Nj

)
, (7)

with
∑

M2
i = 1,

∑
N2

j = 1.
The deformation tensor F and the associated tensors C, C−1 represent

the basic quantities in the deformation analysis for the infinitesimal elements.
In this framework, the mixing concept implies the stretching and folding

of the material elements. If in an initial location P there is a material filament
dX and an area element dA, the specific length and surface deformations are
given by the relations:

D (ln λ)

Dt
= D : mm,

D (ln η)

Dt
= ∇v −D : nn (8)

where D is the deformation tensor, obtained by decomposing the velocity
gradient in its symmetric and non-symmetric part [5]:

∇v = D + Ω

D =

(
∇v+ (∇v)T

)
2

the symmetric tensor (9)

Ω =

(
∇v− (∇v)T

)
2

the antisimetric tensor

2. The perturbed 2D mixing model. Results

Studying a mixing for a flow implies the analysis of successive stretching
and folding phenomena for its particles, the influence of parameters and
initial conditions [6]. In the previous works, the study of the 3D non-periodic
models exhibited a quite complicated behavior [1]. For the moment the aim
is to study the behavior of the length deformation of the modified 2D mixing
model, for some irrational values of the length versor, in order to search some
significant events, and compare to 3D case.

Let us start from the basic (widespread) 2D mixing model [5]:{
ẋ1 = G · x2

ẋ2 = K ·G · x1
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and consider a little perturbation of it, namely:{
ẋ1 = G · x2 + x1

ẋ2 = K ·G · x1 + x2
(10)

with −1 < K < 1, 0 < G < 1.
Here is the time derivative. If we attach the initial condition:

x1 (0) = X1, x2 (0) = X2 (11)

the Cauchy problem (10)-(11) has the following calculated solution [3]:

x1 =

[
X2

2
· P −

√
P

KG
− X1

2
·
(

P√
P

+ 1

)]
· exp

(
1−

√
P
)

t+

[
X1

2
·
(

P√
P

+ 1

)
− X2

2
· (P − 1) ·

√
P

KG

]
· exp

(
1 +

√
P
)

t (12)

and

x2 =

(
X2

2
− X1

2
· KG√

P

)
· exp

(
1−

√
P
)

t+[
X1

2
· KG√

P
+

X2

2
·
(
1−

√
P
)]
· exp

(
1 +

√
P
)

. (13)

Therefore, the deformation gradient (4) is found as:

F =


−1

2

(
P√
P
− 1
)
· exp

(
1−

√
P
)

t+

1
2

(
P√
P

+ 1
)
· exp

(
1 +

√
P
)

t

1
2

P−
√

P
KG

· exp
(
1−

√
P
)

t−
1
2

(P−1)
√

P
KG

· exp
(
1 +

√
P
)

t

−1
2

KG√
P
· exp

(
1−

√
P
)

t+

1
2

KG√
P
· exp

(
1 +

√
P
)

t

1
2
exp

(
1−

√
P
)

t+

1
2

(
1−

√
P
)
· exp

(
1 +

√
P
)

t


(14)

where 2 + KG2 not
= P .

The transposed matrix FT follows immediately and the Cauchy-Green
tensor
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C = FT · F

has the classical form,

C =

(
c11 c12

c21 c22

)
(15)

with the notation

KG2 = γ (16)

and the components:

c11 = γ2·(1+K)+γ·(5−2K)+6
4γK

· exp
(
1−

√
2 + γ

)
2t+

γ3+(K+2)·γ2+(1+7K)·γ+2
4γK

· exp
(
1 +

√
2 + γ

)
2t−

(K+1)·γ2+(K−3)·γ+6K+4
2γK

· exp (2t),

c12 = 1
4
·
[
(−γ2−γ−2)·

√
2+γ−4γ−4

γ(2+γ)

]
· exp

(
1−

√
2 + γ

)
2t+

1
4
·
[

(3γ+6)·
√

2+γ−2γ3−2γ2+3γ+2
γ(2+γ)

]
· exp (−1− γ) t+

1
4
·
[
(−2γ2−3γ−2)·

√
2+γ+2γ3+6γ2+3γ−2

γ(2+γ)

]
· exp

(
1 +

√
2 + γ

)
2t,

c21 = 1
4
· γ·(2+γ−

√
2+γ)

2+γ
· exp

(
1−

√
2 + γ

)
2t+

1
4
· γ·(2+γ+

√
2+γ)

2+γ
· exp

(
1 +

√
2 + γ

)
2t− 1

4
· 2γ · exp (−1− γ) t,

c22 = 1
4
·
(

γ2

2+γ
+ 1
)
· exp

(
1−

√
2 + γ

)
2t+

1
4
·
[

γ2

2+γ
+
(
1 +

√
2 + γ

)2] · exp
(
1 +

√
2 + γ

)
2t+

1
4
·
[
− 2γ2

2+γ
+ 2

(
1−

√
2 + γ

)]
· exp (−1− γ) t.

In [3], it was evaluated the Cauchy-Green tensor from the trajectories
analysis standpoint. The MapleVI soft was used, for plotting the trajectories
in discrete time. In what follows, the deformations for this flow are studied,
in order to evaluating the efficiency of mixing. For the moment, due to the
complexity of calculus, only the length deformation λ2 is studied. Thus,
applying the relation (7), with the above components, it is found:
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λ2 =


γ2+5γ+6

4γ
· exp

(
1−

√
2 + γ

)
2t+

γ3+2γ2+γ+2
4γ

· exp
(
1 +

√
2 + γ

)
2t−

γ2−3γ+4
2γ

· exp (2t)

 ·M2
1+

2


(−2γ2−γ−2)·

√
2+γ+γ3+2γ2−4γ−4

γ(2+γ)
· exp

(
1−

√
2 + γ

)
2t+

(−γ2−3γ−2)·
√

2+γ+3γ3+8γ2+3γ−2

γ(2+γ)
· exp

(
1 +

√
2 + γ

)
2t+

(3γ+6)·
√

2+γ−6γ2+3γ+2
γ(2+γ)

· exp (−1− γ) t

 ·M1M2+


γ2+γ+2

γ+2
· exp

(
1−

√
2 + γ

)
2t+

γ2+(2+γ)(3+γ−2
√

2+γ)
2+γ

· exp
(
1 +

√
2 + γ

)
2t+

−2γ2+(4+2γ)(1−
√

2+γ)
2+γ

· exp (−1− γ) t

 ·M2
2, (17)

where
∑

M2
i = 1.

As it can be seen, the calculus is quite complex, some polynomials are
involved for each exponential.

Let us consider two irrational, random, values for the length versor,
namely:

(M1, M2) =

(
− 1√

3
,

√
2√
3

)
,

(M1, M2) =

(
1√
7
,−
√

6√
7

)
.

For each of these cases, it is studied the behavior of the length deforma-
tion, as function of time, for some values of γ. If we look at the relation
(17), some symmetries of its form are observed. Therefore, taking into ac-
count some remarks of [3], the following values of γ are taken into account,
for the beginning:

A. γ = −0.75;
B. γ = −0.05;
C. γ = 0.75.

Using specific procedures of MapleVI soft, there were found 2x3 = 6
plots, three for each versor case. These are continuous time plots, the time is
varying between 0 and 20 units. The figures are numbered by the parameter
case.
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Figure 1: A1

Figure 2: B1

Figure 3: C1

393



A. Ionescu, M. Costescu - Some qualitative features of 2D periodic...

Figure 4: A2

Figure 5: B2

Figure 6: C2
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3. Remarks

Looking at the above analysis, some remarks issue:
1. For any case of versor and/ or parameter case, the length deformation

λ2 is unbounded. Moreover, for the first versor case, as γ increases, it must
be shortened the axes, for avoiding the so-called “floating point overflow”,
that means a breakup of the simulation. This happened also for the second
versor case.

2. The length deformation has a negative behavior, although only a small
time scale was considered. Only in the last case a positive behavior was
noted. Thus, comparing to the cases studied in [1], it can be assessed that for
a small perturbation of the 2D general model, and on a larger time interval,
it becomes also far from equilibrium.

3. It can be assessed, as for 2D periodic case [2], that the irrational versor
values produce nonlinear phenomena. It is expected that the efficiency of
mixing has a more complicated expression.

4. As an immediate aim, more irrational versor values will be taken into
account. That will be useful also for studying the efficiency of deformations,
in length and also in surface. As perturbing the initial model, the calculus
becomes very complex, therefore a parametric approach would be very useful.

5. The analysis of the length deformation for a small perturbation con-
firms that the flows of the studied type, in 2D and 3D case, have a chaotic
behavior. This matches the experiments in [6].
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