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A GENERAL CLASS OF NONLINEAR UNIVARIATE SUBDIVISION
ALGORITHMS AND THEIR C2 SMOOTHNESS

Esfandiar Nava-Yazdani

Abstract. Considering subdivision schemes in nonlinear geometries, it is nat-
ural to define an analogues subdivision of a linear one in terms of some functions
and new variables reflecting the geometry. In the present work we introduce the
notion of analogues of a given linear subdivision in a general setting such that some
important examples like log-exponential subdivision in Lie groups (also infinite di-
mensional applications) are covered. Moreover, we prove that C2 smoothness of the
linear subdivision implies the same property for the analogues one. Moreover, we
present some applications to Lie groups and symmetric spaces.
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1.Introduction

In view of the wide range of applications of subdivision processes in nonlinear
geometries there has been a growing attention to this topic in the recent years.
Many important such applications arrise in continum mechanics by consideration of
data corresponding to strain or stress tensor, or in elasticity (deformation tensors)
as well as medical imaging (diffusion tensors). Further examples are provided by
situations when data naturally live in some Lie groups, for instance vehicle headings
or motion of rigid body. For a comprehensive study of many important examples we
refer to [5].

Considering subdivision schemes in nonlinear geoemetries, it is natural to define
an analogues subsdivision of a linear one in terms of new variables reflecting the
geometry. For instance the notion of subdivision in manifolds by means of geodesic
averaging as well as log-exponential subdivision in Lie groups and their smoothness
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properties using the general methods introduced in [7] and [6] has been established
in [7], [9] and [8]. For further readings on smoothness of subdivision of manifold- or
Lie group-valued data we also refer to [10] and [2].

Definition of the mentioned analogue subdivision schemes uses tangent vectors
and the Riemannian exponential map or resp. the exponential map of the Lie group.
An important task is then, to understand the relation between convergence and
smoothness of the linear subdivision and the analogues nonlinear one.

In the present work we introduce the notion of analogues of a given linear sub-
division in a general setting such that some important examples like log-exponential
subdivision in Lie groups (also infinite dimensional applications) are covered. More-
over, we prove that C2 smoothness of the linear subdivision implies the same prop-
erty for the analogues one, provided the linear subdivision scheme and its difference
schemes up to order 3 satisfy certain boundedness conditions.

2.Analogues of a subdivision

Let (E, ‖ ‖) ba a Banach space, N > 1 an integer and a := {ai}i∈Z a finite
sequence in E with ∑

j∈Z

al−jN = 1, l = 0, . . . , N − 1. (1)

We denote the linear subdivision associated to the sequence a by S, i.e.

Spl+iN =
∑
j∈Z

al−jNpi+j (2)

for a sequence of points p := {pi}i∈Z (control points). The number of rules N is called
dialtion factor, the sequence a mask and the Laurent polynomial a(z) :=

∑
i∈Z aiz

i

associated to a the symbol of S. Condition (1) ensures convergence of Sp for all p
and is called affine invariance.

Suppose that f : M × E → M is C2 with the following (local) properties: each
x ∈ M has a neighbourhood U such that

f(x, 0) = x, (3)

D1f(x, 0) = IdE, D2f(x, 0)−1 exist, (4)

D11f(x, 0) = 0, D12f(x, 0)(D2f(x, 0)v, w) = D22f(x, 0)(v, w) for all v, w ∈ E. (5)

Particularly, property (4) implies that f(x, .) is a local diffeomorphism around (x, 0).
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Now, suppose that the points pi are close enough in the following sence. p ⊂ U ⊂
M such that f|U enjoys the above properties. For simplicity we denote the restriction
of f to U by f . Then the equations

pi+1 = f(pi, vi) (6)

define a sequence of vectors v := {vi}i∈Z in E. Now we define the f -analogue of S as

Tpl+iN = f(pi,
∑
j∈Z

al−jN(vi+j−1 + · · ·+ vi)), l = 0, . . . , N − 1. (7)

Note that (7) can be written as

Tpl+iN = f(pi,
∑
k∈Z

(
∑

j−1≥k

al−jN)vi+k, l = 0, . . . , N − 1. (8)

We also denote that by (3)

f(f(. . . (f(x, 0), 0), . . . , 0) = x. (9)

As all considerations in the present work are local, we may and do assume U ⊂ E.

3.Smoothness

In the next two subsections we summarize some notions and facts which will used
to prove smoothness. For the corresponding background material we refer to [6]. We
denote the forward difference operator ∆ operating on the vector space of sequences
in E by ∆, i.e.,

∆i+1p := ∆(∆ip), ∆0p := p.

3.1.Derived schemes and proximity

Derived (also called difference) schemes of the subdivision scheme S are defined
by

Si+1∆p := N∆Sip, S0 := S.
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By affine invariance the first derived scheme S1 always exist. Derived schemes up
to order k exist if and only if a(z) is divisible by (1 + z + · · · + zN−1)k. We denote
µk := 1

N
‖Sk‖.

To prove smoothness properties of the analogue subdivision scheme we use the
method of the so-called proximity conditions. We first need the following technical
lemmas.

Lemma 1. Suppose that derived schems of S up to order n exist. Denote

ck
l := (

∑
j∈Z

jal−jN)k −
∑
j∈Z

jkal−jN , l = 0, . . . , N − 1. (10)

Then the following holds

∆jcj+1
l = 0 for all l = 0, . . . , N − 1 and j = 1, . . . , n− 1. (11)

Proof. Denoting ξ := e2πi/N , existence of derived schemes up to order n is equivalent
to

N−1∑
l=0

∑
j∈Z

(l + jN)(l − 1 + jN) . . . (l − n + 1 + jN)al+jNξk(l−n) = 0

for k = 1, . . . , N − 1. These equations can be written as

N−1∑
l=0

∑
j∈Z

(l + jN)(l − 1 + jN) . . . (l − n + 1 + jN)al+jNξkl = 0.

with k = 1, . . . , N − 1. Defining

αn,l :=
∑
j∈Z

(l + jN)(l − 1 + jN) . . . (l − n + 1 + jN)al+jN ,

we see that αn,l is independent of l and in view of

N−1∑
l=0

αn,l = a(n)(1)

we have αn,l = a(n)(1)
N

. Denoting bn,l :=
∑

j∈Z jnal+jN and
∑n

i=0 σi,lz
i := (l + z)(l −

1 + z) . . . (l − n + 1 + z) it follows that bn,l is given by the recursion formula

bn,l =
1

Nn+1
(a(n)(1)−

n−1∑
i=0

σi,lN
i+1bi,l).
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Hence bn,l and bn
1,l are polynomials in l of degree n with equal coefficients of (n− 1)-

th resp. n-th monomial (given by (−1
N

)n−1na′(1) resp. (−1
N

)n). Therefore ∆ncn+1
l =

(−1)n+1∆n(bn
1,l − bn,l) = 0.

Lemma 2. There are positive constants C and C ′ such that

‖v‖ ≤ C‖∆p‖ (12)

‖∆v‖ ≤ C ′(‖∆2p‖+ ‖∆p‖2) (13)

Proof. Since f(pi, .) is a local deiffeomorphism, there is C > 0 such that

C‖vi‖ ≤ ‖f(pi, vi)− f(pi, 0)‖ = ‖pi+1 − pi‖ = ‖∆pi‖

holds. This proves the first inequality.
Moreover, linearization of ∆2pi at v = 0 gives

∆2pi = f(f(pi, vi), vi+1)− 2f(pi, vi) + pi

= D2f(pi, 0)∆vi + o(‖vi‖2).

Using (12) we get the inequality

‖∆vi‖ ≤ ‖D2f(pi, 0)−1‖(‖∆2pi‖+ o(‖v‖2))‖D2f(pi, 0)−1‖(‖∆2pi‖+ C‖∆p‖2)

from which (13) immediately follows.

Lemma 3. (i) There is a positive constant C such that

‖Sp− Tp‖ ≤ C‖∆p‖2 (14)

(ii) Suppose that S2 and S3 exist. Then there exist a positive constant C ′ such that

‖Sp− Tp‖ ≤ C ′(‖∆p‖‖∆2p‖+ ‖∆p‖3) (15)

Proof. A straighforward calculation shows that

∂vk
pj =

{
D1f(pj−1, vj−1) . . . D1f(pk+1, vk+1)D2f(pk, vk) for k = 0, . . . , j − 1.

0 else

(16)
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Ad i) For l = 0, . . . , N − 2 the linearization of ∆Spl+iN at v = 0 reads as

∆(Tp− Sp)l+iN

(1)
=

∑
j∈Z

∑
k≤j−1

al+1−jND2f(pi, 0)vi+k

−
∑
j∈Z

∑
k≤j−1

al−jND2f(pi, 0)vi+k

−
∑
j∈Z

∑
k≤j−1

al+1−jN(D1f(pi, 0))j−k−1D2f(pi, 0)vi+k

+
∑
j∈Z

∑
k≤j−1

al−jN(D1f(pi, 0))j−k−1D2f(pi, 0)vi+k

For l = N − 1 we have

∆(Tp− Sp)l+iN

(1)
= D1f(pi, 0)D2f(pi, 0)vi +

∑
j∈Z

∑
k≤j−1

a−jND2f(pi, 0)vi+1+k

−
∑
j∈Z

∑
k≤j−1

a−1+(1−j)ND2f(pi, 0)vi+k

−
∑
j∈Z

∑
k≤j

a−jN(D1f(pi, 0))j−kD2f(pi, 0)vi+k

+
∑
j∈Z

∑
k≤j−1

a−1+(1−j)N(D1f(pi, 0))j−k−1D2f(pi, 0)vi+k

Using D1f(pi, 0) = Id and affine invariance we arrive at

∆(Tp− Sp)
(1)
= 0

from which the desired inequality follows.
Ad ii) In view of (16) we have ∂vi+k′∂vi+k′pi+j = 0 for k /∈ {0, . . . , j − 1} or k′ /∈
{0, . . . , j − 1}. Furthermore for k, k′ = 0, . . . , j − 1

∂vi+k′∂vi+k
pi+j

= ∂vi+k′D1f(pi+j−1, vi+j−1)D1f(pi+j−2, vi+j−2) . . . D1f(pi+k+1, vi+k+1)D2f(pi+k, vi+k)

+ D1f(pi+j−1, vi+j−1)∂vi+k′D1f(pi+j−2, vi+j−2) . . . D1f(pi+k+1, vi+k+1)D2f(pi+k, vi+k)

...

+ D1f(pi+j−1, vi+j−1) . . . ∂vi+k′D1f(pi+k+1, vi+k+1)D2f(pi+k, vi+k)

+ D1f(pi+j−1, vi+j−1) . . . D1f(pi+k+1, vi+k+1)∂vi+k′D2f(pi+k, vi+k)
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Therefore we have

2Spl+iN

(2)
=

∑
j∈Z

al−jN [
∑

k≤j−1

(
∑
k′=k

((j − k − 1)D11f(pi, 0)(D2f(pi, 0)vi+k, D2f(pi, 0)vi+k′)

+ D22f(pi, 0)(vi+k, vi+k′))

+
∑
k′<k

((j − k − 1)D11f(pi, 0)(D2f(pi, 0)vi+k, D2f(pi, 0)vi+k′)

+ D12f(pi, 0)(D2f(pi, 0)vi+k′ , vi+k))

+
∑
k′>k

((j − k′ − 1)D11f(pi, 0)(D2f(pi, 0)vi+k′ , D2f(pi, 0)vi+k)

+ D12f(pi, 0)(D2f(pi, 0)vi+k, vi+k′))]

Using D11f(pi, 0) = 0 and D12f(pi, 0) ◦D2f(pi, 0) = D22f(pi, 0) we arrive at

2Spl+iN

(2)
=

∑
j∈Z

al−jN

∑
k′,k≤j−1

D22f(pi, 0)(vi+k, vi+k′), l = 0, . . . , N − 1.

For l = N − 1 we may write

2Spl+1+iN = 2
∑
j∈Z

a−jNpi+j+1

(2)
=

∑
j∈Z

a−jN

∑
k′,k≤j

D22f(pi, 0)(vi+k, vi+k′)

=
∑
j∈Z

a−jN(
∑

k′,k≤j−1

D22f(pi, 0)(vi+1+k, vi+1+k′) +
∑

k≤j−1

D22f(pi, 0)(vi+k+1, vi)

+
∑

k′≤j−1

D22f(pi, 0)(vi, vi+k′+1) + D22f(pi, 0)(vi, vi))

=
∑
j∈Z

aN−jN

∑
k′,k≤j−1

D22f(pi, 0)(vi+k, vi+k′) +
∑
j∈Z

a−jN(
∑

k≤j−1

D22f(pi, 0)(vi+k+1, vi)

+
∑

k′≤j−1

D22f(pi, 0)(vi, vi+k′+1)) + D22f(pi, 0)(vi, vi).

Moreover for l = 0, . . . , N − 1

2Tpl+iN

(2)
=

∑
k,k′∈Z

al−kNal−k′ND22f(pi, 0)(vi + · · ·+ vi+k−1, vi + · · ·+ vi+k′−1),
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and for l = N − 1

2Tpl+1+iN

(2)
=

∑
k,k′∈Z

a−kNa−k′ND22f(pi, 0)(vi+1 + · · ·+ vi+k, vi+1 + · · ·+ vi+k′)

+
∑
k′∈Z

a−k′ND21f(pi, 0)(D2f(pi, 0)vi, vi+1 + · · ·+ vi+k′)

+
∑
k∈Z

a−kND21f(pi, 0)(vi+1 + · · ·+ vi+k, D2f(pi, 0)vi)

+ D22f(pi, 0)(vi, vi)

=
∑

k,k′∈Z

aN−kNaN−k′ND22f(pi, 0)(vi + · · ·+ vi+k−1, vi + · · ·+ vi+k′−1)

+
∑
k′∈Z

a−k′ND22f(pi, 0)(vi, vi+1 + · · ·+ vi+k′)

+
∑
k∈Z

a−kND22f(pi, 0)(vi+1 + · · ·+ vi+k, vi)

+ D22f(pi, 0)(vi, vi).

Now denoting ck,k′

l = (
∑

k≤j−1 al+1−jN

∑
k′≤j−1 al+1−jN−

∑
k≤j−1 al−jN

∑
k′≤j−1 al−jN)−∑

k,k′≤j−1(al+1−jN −al−jN) and writing the second order Taylor expansion of ∆(Tp−
Sp)l+iN as

∆(Sp− Tp)l+iN = P (v) + o(‖v‖3)

we arrive at

P (v) =
∑

k,k′∈Z

Ak,k′(vi+k, vi+k′)

where

Ak,k′ = ck,k′

l D22f(pi, 0).

Note that

P (v) =
∑

k,k′∈Z

Ak,k′(v0, v0) +
∑

k,k′∈Z

(
k−1∑
l=0

Ak,k′(∆vl, vj) +
k′−1∑
l=0

Ak,k′(v0, ∆vl)).
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In view of Lemma 1 we further have
∑

k,k′∈Z Ak,k′ =
∑

k,k′∈Z ck,k′

l D22f(pi, 0) = 0.
Hence we can write

∆(Sp− Tp)l+iN =
∑

k,k′∈Z

(
k−1∑
l=0

Ak,k′(∆vl, vj) +
k′−1∑
l=0

Ak,k′(v0, ∆vl)) + o(‖v‖3).

Applying the triangle inequality to the above equation and using lemma 2 we imme-
diately arrive at the desired estimate.

3.2.Main results

In this section we present our main results as follows. 1If the derived schemes of
the linear subdivision scheme S up to order 3 exist and their norm satisfy certain
inequalities, then the analogues nonlinear scheme is C2.

Theorem 4. (i) If S2 exists and

µ2
0 <

µ1

N
, (17)

then T is C1 equivalent to S.
(ii) Suppose that S2 and S3 exist and beside (17) the inequality

µ0µ1 <
µ2

N
(18)

holds. Then T is C2 equivalent to S.

Proof. Note that (17) and (18) imply

µ3
0 <

µ2

N2
.

In view of the proximity conditions (14) and (15) we can apply theorem 6 of [6] to
deduce the results.

1Recall that by affine invariance, first derived scheme of the linear subdivision scheme S always
exist.
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We denote that the inequlaities (17) and (18) are particularly fulfilled for µi =
1/N which is true for B-Splines.

4. Examples

Data from meaurments of poses of rigid body live in the Euclidean motion group.
An example of log-exponential subdivision in this case has been represented in [9].
For applications of geodesic subdivision in surfaces, e.g. hyperbolic plane, we refer
to [7]. Here we present some further examples.

Example 5. It is well-known (see for instance [1] and [3]) that the space of posi-
tive definite symmetric matrices is a Riemannian symmetric space. Moreover, it
is also a Hadamard manifold with exponential map (globally) given by Expp(v) =
p1/2exp(p−1/2vp−1/2)p1/2. Choosing f = Exp and applying 2 rounds of qubic B-spline
geodesic subdivision we get the following figure. Note that each ellipsoid represents
a positive definite symmetric matrix.

Figure 1: Subdivision in the space of positive matrices

Example 6. In the following we consider as a prominent example of a Hilbert manifold
the loop space of R2 and apply qubic B-spline geodesic subdivision to the polygon
p consisting of loops p1, p2 and p3 through a fixed pint. Figure 2 shows the result
after 1 and 2 round of subdivision.
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Figure 2: Subdivision in the loop space

5.Conclusions and remarks

We have established the notion of analogues of a linear subdivision operating on
manifold-valued data. Furthermore we have investigated smoothness properties of
such subdivision schemes. Particulrly, we have shown that if the linear scheme enjoys
C2 smoothness and its derived schemes up to order 3 satisfy certain boundedness
inequalities, then the nonlinear analogues one is also C2.
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