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Abstract. The mounting structure stiffness’s effects on mecanohy-
draulic servomechanisms actuating aicraft’s primary flight controls are mod-
eled as a system of ordinary differential equations. Stability analysis of equi-
libria reveals the presence of a critical case that is handled through the use of
the Lyapunov-Malkin theorem. Stability charts are drawn using the Routh-
Hurwitz criterion for stability polynomial and it is shown that the stability
of the system can be ensured exploiting positive influence of structural feed-
back.
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1. Introduction

Due to complex aeroservoelastic interaction between rigid body dynamics,
structural dynamics, unsteady aerodynamics and hydraulic servos, a real
problem of control design improvement permanently exists in the field [1], of
airframe control. To address it, a control synthesis for an mechanohydraulic
servoactuator (MHS) in a particular servoelastic framework defined by its
finite mounting structure stiffness is developed in the present paper. The
premise of the approach starts from a simple conjecture: as an aeroservoelas-
tic system’s component, asymptotically stable in the presence of exogeneous
inputs, the hydraulic servoactuator will thus contribute to general stability
and performance of flight control system. From this perspective, and extend-
ing recent results of the authors ([2] - [4]), the present work offers a model of
treatment of the aeroservoelastic problems even in an early stage of system
design.

179



I. Ursu, F. Ursu, A. Halanay, C. A. Safta - Equilibrium Stability ...

2.The mathematical model

In Figure 1, a typical physical model of an MHS in the servoelastic frame-
work is shown, defined by considering the mounting structure stiffness E.
MHS is in fact a combination spool valve (SV)-hydrocylinder (HC) with pis-
ton. The first equation of the SV-controlled piston is obtained based on the
fact that the flow into and out of the cylinder is described by two compo-
nents, one being due to the movement of the piston and one to compressibility
effects: for the case σ > 0

Figure 1: Physical model of a typical MHS: a) spool valve, cylinder with
piston, feedback linkage, load, mounting structure; b) ideal ”two-land-four-
way” spool valve
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and similarly, if σ < 0
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The parameters are: cd - volumetric flow coefficient of the valve port; w
- valve-port width; ps - supply pressure; ρ - volumetric density of oil; V -
cylinder semivolume; B - bulk modulus of the oil. The variables are: p1 and
p2 - hydraulic pressures in the chambers of the HC; σ - relative displacement
spool-sleeve; z - load displacement; ze - mounting structure displacement.

The equation of motion of the piston assembly is a force balance equation

mz̈ + fż + kz = S(p1 − p2) (2.2)

The dynamics of the feedback deflection ze is given by an equation in-
volving the stiffness E, an equivalent mass me and a damping coefficient
ae

mez̈e + aeże + Eze = −S(p1 − p2). (2.3)

An algebraic equation, the feedback linkage equation, completes the differ-
ential algebraic mathematical model. It is the equation of the valve opening
σ viewed as a linear superposition of three small succesive displacements
of input displacement x, output feedback response variable z and feedback
deflection ze induced by structural feedback

σ = λ1x− λ2z + λ3ze (2.4)

λ1 =
b(c + d)

c(a + b)
, λ2 =

a(c + d)

c(a + b)
, λ3 =

c + d

c
.

The following limitation is to be considered

|x| < xM . (2.5)

3. Stability of equilibria
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To equations (2.1)-(2.4) corresponds a six-dimensional system of ordinary
differential equations that describes the evolution of the servomechanism for
σ > 0. Let

C = cdw

√
2

ρ
(3.1)

and introduce the following state variables

x1 = z, x2 = ż, x3 = ze, x4 = że, x5 = p1, x6 = p2 (3.2)

(2.1)-(2.4) give
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C
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(3.3)

Equilibria (x̂1, x̂2, x̂3, x̂4, x̂5, x̂6) satisfy x̂2 = 0, x̂4 = 0 and

kx̂1 − S(x̂5 − x̂6) = 0
Ex̂3 + S(x̂5 − x̂6) = 0
λ1x− λ2x̂1 + λ3x̂3 = 0

(3.4)

So

x̂1 =
Eλ1x

Eλ2 + kλ3

, x̂3 = − k

E
x̂1, x̂2 = x̂4 = 0, x̂5 = x̂6 +

k

S

Eλ1x

Eλ2 + kλ3

(3.5)

where x̂5, x̂6 ∈ (0, ps).
Translate such an equilibrium point (x̂1, 0, x̂3, 0, x̂5, x̂6) given by (3.5) to

origin through

y1 = x1−x̂1, y2 = x2, y3 = x3−x̂3, y4 = x4, y5 = x5−x̂5, y6 = x6−x̂6 (3.6)

and introduce also
x̂0 = x̂1 − x̂3 (3.7)
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The new system will be

ẏ1 = y2 := f1(y1, . . . , y6)
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ẏ3 = y4 := f3(y1, . . . , y6)
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To investigate Lyapunov stability of the zero solution in (3.8) the starting
point is the computation of the Jacobian matrix in 0, A = [aij]. Observe
that
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∂f5

∂y1

(0) = −BCλ2

√
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V + Sx0

; a52 = − BS
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(3.10)
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It follows that

A =



0 1 0 0 0 0
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(3.11)

The characteristic polynomial of A is

P (λ) = λP1(λ) (3.12)

The approach in [5] leads to the following result on stability. Its proof is
presented in [6].

Theorem 3.1. If P1 in (3.12) is a stable polynomial, equilibria given in
(3.5) are Lyapunov stable. When initial conditions are close enough to the
equilibrium point the asymptotic behaviour of the solutions is given by

lim
t→∞

x1(t) = x̂1, lim
t→∞

x2(t) = 0, lim
t→∞

x3(t) = x̂3, lim
t→∞

x4(t) = 0,

lim
t→∞

x5(t) = x̂5 +
α

1 + d5

, lim
t→∞

x6(t) = x̂6 +
α

1 + d5

.

(see [6] for the definitions of d5 and α).

4. Numerical results

Consider the following values of the system’s parameters: m = 30 kg -
equivalent inertia load of primary control surface reduced at the hydraulic
servo’s piston rod; me = 2 kg - equivalent inertia of hydraulic servo body
and attached neighbour structure; k = 105N/m - equivalent aeromounting
structure elastic force coefficient; f = 3 × 103Ns/m - equivalent viscous
friction force coefficient; ps = 2×107N/m2 - supply pressure to valve; pR ≈ 0
- return pressure; S = 10−3m2 - piston area; xM = 0.03m - half of piston
stroke [m]; V = 3 × 10−5m3 - semivolume of oil under compression in both
cylinder chambers [m3], V := S × xM ; B = 6× 108N/m2 - bulk modulus of
oil; w = 8.5 × 10−4m - area gradient of valve [m2/m], or valve port width;
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cd = 0.6 - valve discharge coefficient; λ1 =
2

3
, λ2 =

2

3
, λ3 =

4

3
- kinetic

feedback coefficients; ρ = 850kg/m3 - oil density; kQp = flow-pressure gain
[m5/Ns]; kQ = valve flow gain [m2/s].

Usual values of structural damping ae are given in the literature ([3], [7],
[8]) as corresponding to 2% of critical damping ratio so ae = 0, 04

√
Eme.

Introduce p ∈ (0, 1) by
x̂6 = pps (4.1)

By the Routh-Hurwitz criterion ([9]) a necessary and sufficient condition that
the polynomial

P1(λ) = λ5 +
5∑

j=1

aj(p, x)λ5−j

in (3.12) be stable is that the principal minors of the Hurwitz matrix be
positive. Thus we must verify:

∆1 = a1 > 0 and this is indeed the case since a1 =
f

m

∆2(p, x) = a1a2(p, x)− a3(p, x) > 0 (4.2)

∆3(p, x) = a1a2(p, x)a3(p, x) + a1a5(p, x)− a3(p, x)2 − a2
1a4(p, x) > 0 (4.3)

∆4(p, x) = a4(p, x)∆3(p, x)− a5(p, x)[a1a2(p, x)2 + a5(p, x)−
−a1a4(p, x)− a3(p, x)a2(p, x)] > 0

(4.4)

a5(p, x) > 0 (4.5)

(note that ∆5 = a4/∆4).
The relations (4.2)-(4.5) give the stability charts. Some of them are pre-

sented in Figures 2, 3, 4, 5.

5. Concluding remarks

The conclusion of this paper, based on a thorough analysis of the Lya-
punov stability of equilibria in a six-dimensional nonlinear model of a hy-
draulic servomechanism, is that the elasticity of mounting structure induces
a stabilizing structural feedback in the closed-loop system.

The absence of such quantitative evaluations lead to excessive charge of
hydraulic servos with controllers to artificially improve system’s stability in
various approaches based on automatic control theory.
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Figure 2: Full parameter space (p, x) stability of the system with nominal
mass m = 30kg (E = 55× 108N/m, λ3 = 0.1)

Figure 3: Instability domain for increased mass, m = 60kg (E = 55 ×
108N/m, λ3 = 0.1)
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Figure 4: Benefit of increased structural feedback, λ3 = 4/3 (the same pa-
rameters as in Fig. 3, stability domain is easily increased)

Figure 5: Effect of increasing mounting structure elasticity - E decreased,
E = 55×106N/m versus Fig. 3 (the same parameters, m = 60Kg, λ3 = 0.1)
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The analysis performed in the paper took into account two quantities E
(the larger is E the lower is the elasticity of the mounting structure) and λ3,
essential for describing servoelastic properties and it was possible to evidence
their contribution to stability of equilibria in Figures 2-5.

The model in the present paper is closer to reality than the one in [10]
and has also the advantage to take into study internal, natural resources for
stabilizing equilibria through adequate design of E and λ3.
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