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AN EFFECTIVE METHOD FOR SOLVING FRACTIONAL
INTEGRO-DIFFERENTIAL EQUATIONS
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Abstract. In this paper, a modification of variational iteration method is
applied to solve fractional integro-differential equations. The fractional derivative is
considered in the Caputo sense. Through examples, we will see the modified method
performs extremely effective in terms of efficiency and simplicity to solve fractional
integro-differential equations.
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1. Introduction

In recent years, it has turned out that many phenomena in physics, engineering,
chemistry, and other sciences can be described very successfully by models using
mathematical tool from fractional calculus, such as, frequency dependent damping
behavior of materials, diffusion processes, motion of a large thin plate in a Newtonian
fluid creeping and relaxation functions for viscoelastic materials. etc. However, most
fractional differential equations do not have exact analytic solutions. There are only
a few techniques for the solution of fractional integro-differential equations. Three
of them are the Adomian decomposition method [1], the collocation method [2],and
the fractional differential transform method [3].

The variational iteration method was first proposed by he [4-11] and has found
a wide application for the solution of linear and nonlinear differential equations,
for example, nonlinear wave equations [5], Fokker–Planck equation [6], Helmholtz
equation [7], klein-Gordon equations [8], integro-differential equations [9], and space-
and time-fractional KdV equation [10]. Meanwhile, the variational iteration method
has been modified by many authors [11].

In this letter, we will set a new modified variational iteration method to solve
fractional-integro-differential equations. It will show the modification of the method
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is a useful and simplify tool to solve fractional integro-differential equations as used
in other fields.

2. Basic definitions

In this section, we give some basic definitions and properties of the fractional
calculus theories which are used further in this paper.

Definition 1. A real functionf(x)(x > 0), is said to be in the space Cµ(µ∈ R), if
there exists a real number p(> µ)such that f(x) = xpf1(x), where f1(x) ∈ C[0,∞],
and it is said to be in the space Cn

µ iff f (n) ∈ Cµ,n ∈ N .

Definition 2. The Riemamann-Liouville’s fractional integral operator of order α ≥
0, of a functionf ∈ Cµ, µ ≥ −1, is defined as [1,3]

Iαf(x) = 1
Γ(α)

∫ x
0 (x− t)α−1f(t)dt, α > 0, x > 0,

I0f(x) = f(x).

Properties of the operatorsIαcan be found in [1,3], we mention only the following:
For f ∈ Cµ, µ ≥ −1, α, β ≥ 0 and λ > −1:

1. IαIβf(x) = Iα+βf(x).

2. IαIβf(x) = IβIαf(x).

3. Iαxλ = Γ(λ+1)
Γ(α+λ+1)x

α+λ.

The Riemann-Liouville derivative has certain disadvantages when trying to model
real word phenomena with fractional equations. Therefore, we shall introduce a
modified fractional differential operator Dα proposed by Caputo.

Definition 3. The fractional derivative of f(x) in the Caputo sense is defined as[1,3]

Dαf(x) = In−α dnf(x)
dxn

=
1

Γ(n− α)

∫ x

0
(x− t)n−α−1f (n)(t)dt, (2.1)

for n− 1 < α ≤ n, n ∈ N,x > 0, f ∈ Cn
−1.

Lemma 1. If n− 1 < α ≤ n, n ∈ N and f ∈ Cn
µ , µ ≥ −1,then

DαIαf(x) = f(x),

and,

IαDαf(x) = f(x)−
n−1∑
k=0

f (k)(0+)
xk

k!
, x > 0.
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3. Concept of the variational iteration method

To illustrate the basic idea of the variational iteration method, we consider the
following general nonlinear equation

Lu(t) + Nu(t) = f(t) (3.1)

where L is a linear operator, N is a nonlinear operator, and f(t) is a known analytical
function.

According to the variational iteration method, the terms of a sequence un(t)(n ≥ 0)are
constructed such that this sequence converges to the exact solution u(t), un(t)(n ≥ 0)
are calculated by a correction function as follows

un+1(t) = un(t) +
∫ t

0
λ

{
Lun(s) + Ñun(s)− f(s)

}
ds (3.2)

whereλ is the general Lagrange multiplier, which can be identified optimally via
the variational theory, the subscript n denotes the nth approximation and ũu(t) is
considered as a restricted variation, i.e. δũn = 0 [4].

To solve (3.2) by the variational iteration method, we first determine the La-
grange multiplier λ that will be identified optionally via integration by parts. Then
the successive approximation un(t)(n ≥ 0) of the solution u(t) will be readily ob-
tained upon using the obtained Lagrange multiplier and by using any selective func-
tion u0(t). The zeroth approximation u0 may be selected by any function that
just satisfies at least the initial and boundary conditions. With λ determined, then
several approximations un(t)(n ≥ 0) follow immediately.

Consequently, the exact solution may be obtained by using

u(t) = lim
n→∞

un(t). (3.3)

4. Modification of the variational iteration method

Concerning the general fractional integro-differential equation of the type

Dαy(t) = f

(
t, y(t),

∫ t

0
k(s, y)ds

)
, (4.1)

where Dα is the derivative of y(t) in the sense of Caputo,and n− 1 < α < n
(n ∈ N), subject to the initial condition

y(0) = c. (4.2)
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According to the variational iteration method, we can construct the following
correction functional

yn+1(t) = yn(t) + IαF (t), (4.3)

where F (t) = λ
[
Dαyn(t)− f

(
t, yn,

∫ t
0 k(s, yn)ds

)
dt

]
, yn(t) is the nth approxima-

tion, and Iα is Riemann-Liouville’s fractional integrate.
The Lagrange multiplier can not easy identified through (4.3), so an approxima-

tion of the correction functional can be expressed as follows

yn+1(t) = yn(t) +
∫ t

0
λ

{
dnyn(t)

dtn
− f

(
t, yn(t),

∫ t

0
k(s, yn)ds

)}
dt. (4.4)

Then the Lagrange multiplier can be easily determined by the variational theory
in (4.4). Substituting the identified Lagrange multiplier into (4.3) results in the
following iteration procedures

yn+1(t) = yn(t) + Iαλ

{
Dαyn(t)− f

(
t, yn(t),

∫ t

0
k(s, yn)ds

)}
, (n = 0, 1, 2, ...).

(4.5)

5. Applications

In order to illustrate its general process, in this section, we solve two examples.
All the results are calculated by using the symbolic calculus software Maple 9.

Example 5.1 Let us consider the following linear fractional integro-differential
equation that was studied by many authors [2,3]

y(0.75)(t) = (
−t2et

5
)y(t) +

6t2.25

Γ(3.25)
+ et

∫ t

0
sy(s)ds (5.1)

with the initial condition
y(0) = 0. (5.2)

Its correctional functional reads

yn+1(t) = yn(t) + I0.75
{
λ[y0.75

n (t)− g[(yn(t)]]
}

, (5.3)

where

g[yn(t)] =
−t2et

5
yn(t) +

6t2.25

Γ(3.25)
+ et

∫ t

0
syn(s)ds,

yn(t) is the nth approximation.
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For ceil(0.75) = 1, it’s approximating correctional functional can be expressed
as follows

yn+1(t) = yn(t) +
∫ t

0
λ

{
y

′
n(τ)− g̃ [yn(τ)]

}
dτ, (5.4)

where g̃ is considered as restricted variations, i.e.δg̃ = 0.
Its stationary conditions are given by

λ′(τ) = 0, 1 + λ(τ)|τ=t = 0. (5.5)

The Lagrange multiplier, therefore, there can be easily identified as
λ = −1. Substituting the identified multiplier into(5.3), we have the following
iteration formula

yn+1(t) = yn(t)− I0.75
{
y0.75

n (t)− g[yn(t)]
}

. (5.6)

We start with y0(t) = 0, by the variational iteration formula (5.6),
we have

y1(t) = y0(t)− I0.75
{

y0.75
0 (t)− −ttet

5 y0(t)− et
∫ t
0 sy0(s)ds

}
= t3, (5.7)

y2(t) = y1(t)− I0.75
{

y0.75
1 (t)− −ttet

5 y1(t)− et
∫ t
0 sy1(s)ds

}
= t3, (5.8)

...

y(t) = lim
n→∞

yn(t) = t3, (5.9)

which is the exact solution.

Example 5.2 Consider the following linear system of fractional integro-differential
equations [1,3]


Dαy1(t) = 1 + t + t2 − y2(t)−

∫ t
0 (y1(x) + y2(x)) dx,

Dαy2(t) = −1− t + y1(t)−
∫ t
0 (y1(x)− y2(x)) dx, 0 < α < 1,

(5.10)

subject to the initial conditions {
y1(0) = 1,
y2(0) = −1.

(5.11)
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The correct functional formulas for the above system,obviously, can be expressed
as 

y1,n+1(t) = y1,n(t)− Iα

{
Dαy1,n(t)−

[
1 + t + t2 − y2,n(t)

−
∫ t
0 (y1,n(x) + y2,n(x)) dx

]}
,

y2,n+1(t) = y2,n(t)− Iα

{
Dαy2,n(t)−

[
− 1− t + y1,n(t)

−
∫ t
0

(
y1,n(x)− y2,n(x)

)
dx

]}
.

(5.12)

We start y1,0(t) = 1, and y2,0(t) = −1, by the variational iteration formulas
(5.12), we have

y1,1(t) = 1 + 2
Γ(1+α) t

α + 1
Γ(2+α) t

1+α + 2
Γ(3+α) t

2+α,

y2,1(t) = −1− 2
Γ(1+α) t

α − 3
Γ(2+α) t

1+α.

(5.13)



y1,2(t) = 1 + 2
Γ(1+α) t

α + 1
Γ(2+α) t

1+α + 2
(α2+3α+2)Γ(1+α)

t2+α

+ 1
Γ(1+2α) t

2α + 1
Γ(2+2α) t

1+2α − 1
Γ(3+2α) t

2+2α,

y2,2(t) = −1− 3
Γ(2+α) t

1+α + 1
Γ(1+2α) t

2α − 1
Γ(2+2α) t

1+2α

− 1
Γ(3+2α) t

2+2α.

(5.14)

...

and so on. Then choosing fixed α and n, the numerical solutions (fixed x)of the
system of the fractional integro-differential equations can be obtained.

6. Conclusions

In this paper, we applied the modified variational iteration method for solv-
ing the fractional integro-differential equations. Comparison with other traditional
methods, the simplicity of the method and the obtained exact results show that the
modified variational iteration method is a powerful mathematical tool for solving
fractional integro-differential equations. Although the examples are given in this
paper is linear, it also can be applicable to nonlinear fractional integro-differential
equations.
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