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MULTIPLICATION OPERATORS ON NON-LOCALLY
CONVEX WEIGHTED FUNCTION SPACES

Saud M. Alsulami, Hamed M. Alsulami and Liaqat Ali Khan

Abstract. Let X be a completely regular Hausdorff space, E a Haus-
dorff topological vector space, CL(E) the algebra of continuous operators on
E, V a Nachbin family on X and F ⊆ CVb(X,E) a topological vector space
(for a given topology). If π : X → CL(E) is a mapping and f ∈ F , let
Mπ(f)(x) := π(x)f(x). In this paper we give necessary and sufficient condi-
tions for the induced linear mapping Mπ to be a multiplication operator on F
(i.e. a continuous self-mapping on F) in the non-locally convex setting. These
results unify and improve several known results.
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1. Introduction

The fundamental work on weighted spaces of continuous scalar-valued func-
tions has been done mainly by Nachbin [12, 13], in the 1960’s. Since then it
has been studied extensively for a variety of problems by Bierstedt [1,2], Sum-
mers [23, 24], Prolla [16, 17], Ruess and Summers [18], Khan [5,6], and many
others. The multiplication operators on the Weighted spaces CVb(X, E) and
CV0(X,E) were first considered by R.K. Singh and J.S. Manhas in [20] in
the cases of π : X → C and π : X → E and later in [21] in the case of
π : X → CL(E). In [15], Oubbi gave necessary and sufficient conditions (un-
der some addition assumption) for Mπ to be a multiplication operator on a
subspace F of CVb(X, E). In the above study of multiplication operators, E
has been assumed to be a locally convex space ([20, 21, 15]). In this paper we
extend some results of the above authors in the general case of E a topological
vector space (i.e. not necesserily locally convex). Further, our results include
and correct some results of [11] already established for E a TVS.
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2. Preliminaries

Henceforth, we shall assume, unless stated otherwise, that X is a com-
pletely regular Hausdorff space and E is a non-trivial Hausdorff topological
vector space (TVS) with a base W of closed balanced shrinkable neighbour-
hoods of 0. (A neighbourhood G of 0 in E is called shrinkable [10] if rG ⊆ int G
for 0 ≤ r < 1.) By ([10], Theorems 4 and 5), every Hausdorff TVS has a base
of shrinkable neighbourhoods of 0 and also the Minkowski functional ρG of any
such neighbourhood G is continuous, positively homogeneous and satisfies

G = {a ∈ E : ρG(a) ≤ 1}, int G = {a ∈ E : ρG(a) < 1}.

A Nachbin family V on X is a set of non-negative upper semicontinuous
function on X, called weights, such that given u, v ∈ V and t ≥ 0, there
exists w ∈ V with tu, tv ≤ w (pointwise) and, for each x ∈ X, ther exists
v ∈ V with v(x) > 0; due to this later condition, we sometimes write V > 0.
Let C(X, E) be the vector space of all continuous E-valued functions on X,
and let Cb(X, E) (resp. C0(X, E), C00(X, E)) denote the subspace of C(X, E)
consisting of those functions which are bounded (resp. vanish at infinity, have
compact support). Further, let

CVb(X, E) = {f ∈ C(X, E) : vf(X) is bounded in E for all v ∈ V },
CV0(X, E) = {f ∈ C(X, E) : vf vanishes at infinity on X for all v ∈ V }.

Clearly, CV0(X, E) ⊆ CVb(X, E). When E = K(= R or C), the above spaces
are denoted by C(X), Cb(X), C0(X), C00(X), CVb(X), and CV0(X). We
shall denote by C(X)⊗E the vector subspace of C(X, E) spanned by the set
of all functions of the form ϕ⊗a, where ϕ ∈ C(X), a ∈ E, and (ϕ⊗a) = ϕ(x)a,
x ∈ X. The weighted topology ωV on CVb(X, E) [12, 5, 6] is defined as the
linear topology which has a base of neighbourhoods of 0 consisting of all sets
of the form

N(v, G) = {f ∈ CVb(X, E) : vf(X) ⊆ G} = {f ∈ CVb(X, E) : ‖f‖v,G ≤ 1}

where v ∈ V , G is a closed shrinkable set in W , and

‖f‖v,G = sup{v(x)ρG(f(x)) : x ∈ X}.

The following are some instances of weighted spaces.
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(1) If V = K+(X) = {λχX : λ > 0}, the set of all non-negative constant
functions on X, then CVb(X, E) = CVb(X, E), CV0(X, E) = C0(X,E), and
ωV is the uniform topology u.

(2) If V = S+
0 (X), then set of all non-negative upper semi- continuous

functions on X which vanish at infinity, then CVb(X,E) = CV0(X, E) =
Cb(X, E) and ωV is the strict topology β [3,4].

(3) If V = K+
c (X) = {λχK : λ > 0 and K ⊆ X, K compact}, then

CVb(X, E) = CV0(X, E) = C(X, E) and ωV is the compact-open topology k.
(4) If V = K+

f (X) = {λχA : λ > 0 and A ⊆ X, A finite},then CVb(X, E) =
CV0(X,E) = C(X, E) and ωV is the pointwise topology p.

The assumption V > 0 implies thta p ≤ ωV . Recall that p ≤ k on C(X, E)
and k ≤ β ≤ u on Cb(X, E).

Definition. For any vector subspace F ⊆ C(X, E), we define the cozero
set of F by

coz(F) := {x ∈ X : f(x) 6= 0 for some f ∈ F}.

If coz(F) = X, i.e. if F does not vanish on X, then F is said to be essential.
In general, F = CV0(X, E) and F = CVb(X, E) need not be essential.

Definition. (cf. [15]) (i) A subspace F of CVb(X, E) is said to be E-solid
if, for every g ∈ C(X, E), g ∈ F ⇔ for any G ∈ W , there exist H ∈ W , f ∈ F
such that

ρG ◦ g ≤ ρH ◦ f (pointwise) on coZ(F). (ES)

(ii) A subspace F of CVb(X, E) is said to be EV -solid if, for every g ∈
CVb(X, E), g ∈ F ⇔ for any u ∈ V , G ∈ W , there exist u ∈ V , H ∈ W
, f ∈ F such that

vρG ◦ g ≤ uρH ◦ f (pointwise) on coZ(F)). (EVS)

(iii) A subspace F of CVb(X, E) is said to have the property (M) if

(ρG ◦ f)⊗ a ∈ F for all G ∈ W , a ∈ E and f ∈ F . (M)

Note. (1) The classical solid spaces (such as Cb(R) and C0(R)) are nothing
but the K-solid ones.

(2) Every EV -solid subspace of CVb(X, E) is E-solid.
(3) Every E-solid subspace F of CVb(X, E) satisfies both conditions (a)

Cb(X)F ⊆ F and (b) (M).
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Examples (i) The spaces CVb(X, E), CV0(X, E) and C00(X, E) are all
EV -solid.

(ii) CVb(X, E) ∩ Cb(X, E), CV0(X, E) ∩ Cb(X, E), CVb(X, E) ∩ C0(X, E)
and CV0(X, E) ∩ C0(X,E) are E-solid but need not be EV -solid.

(iii) C0(R, C) and Cb(R, C) are not CV -solid for V = {λe−
1
n , n ∈ N, λ > 0}.

Let E and F be TV S, and let CL(E, F ) be the set of all continuous linear
mappings T : E → F . Then CL(E, F ) is a vector space with the usual
poinwise operations. If F = E, CL(E) = CL(E, E) is an algebra under
composition:

(ST )(x) = S(T (x)), S, T ∈ CL(E), x ∈ E,

and has identity I : E → E given by I(x) = x (x ∈ E).
Definition. For any collection A of subsets of E, CLA(E, F ) denotes the

subspace of CL(E, F ) consisting of those T which are bounded on the members
of A together with the topology tA of uniform convergence on the elements of
A. This topology has a base of neighbourhoods of 0 consisting of all sets of the
form

U(D, G) = {T ∈ CLA(E, F ) : T (D) ⊆ G} = {T ∈ CLA(E, F ) : ‖T‖D,G ≤ 1},

where D ∈ A, G is a closed shrinkable neighbourhood of 0 in F , and

‖T‖D,G = sup{ρG(T (a)) : a ∈ D}.

If A consists of all bounded (resp. finite) subsets of E, then we will write
CLu(E) (resp. CLp(E)) for CLA(E) and tu (resp. tp) for tA. Clearly, tp ≤ tu.

For the general theory of topological vector spaces and continuous linear
mappings, the reader is refered to [?].

Remarks. (1) If CV0(X) is essential, then clearly CVb(X) is also essential.
The main reason for assuming the essentiality of CV0(X) in earlier papers
[22, 8, 11] as well in the present one is that, for any x ∈ X and any open
neighbourhood U of x in X, we can choose an f ∈ CV0(X) with 0 ≤ f ≤
1, f(X\U) = 0, and f(x) = 1. This follows from ([13], Lemma 2, p. 69) by
taking E = X, M = CV0(X) ⊆ C(X), K = {x}, and U = Ai for all i = 1, ..., n.

(2) If V > 0 and either X is locally compact or V ⊆ S+
0 (X), then CV0(X)

is essential ([22], p. 306). [First suppose that X is locally compact, and let
x ∈ X. There exists an f ∈ C00(X) ⊆ C0(X) such that f(x) = 1. Since
V > 0, choose v ∈ V such that v(x) 6= 0. Then clearly vf ∈ CV0(X) and
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v(x)f(x) 6= 0. Hence CV0(X) is essential. Next, suppose V ⊆ S+
0 (X), and

let x ∈ X. Choose v ∈ V such that v(x) 6= 0. Since X is completely regular,
there exists an f ∈ Cb(X) such that f(x) = 1. Then clearly vf ∈ CV0(X) and
v(x)f(x) 6= 0. Hence CV0(X) is essential.]

(3) If CV0(X) is essential and E is a non-trivial TVS, then CV0(X) ⊗ E
and hence CVb(X)⊗E, CVb(X, E) and CVb(X, E) are also essential. [In fact,
for any x ∈ X, choose ϕ in CV0(X) with ϕ(x) 6= 0. Then, if a (6= 0) in E, the
function ϕ⊗ a belongs to CV0(X)⊗E and clearly (ϕ⊗ a)(x) = ϕ(x)a 6= 0. So
CV0(X)⊗ E is essential.]

3. Characterization of Multiplication Operators on CVb(X, E)

In this section, we extend some results of Oubbi [15] to the general TVS
setting regarding necessary and sufficient conditions for Mπ to be a multi-
plicative operator on a subspace F of CVb(X,E). These results provide, in
particular, extension and correction of some results of Singh and Manhas [21],
Manhas and Singh [11] and Khan and Thaheem [9].

Definition. Let F ⊆ CVb(X, E) be a topological vector space (for a given
topology). Let π : X → CL(E) be a mapping and F (X,E) a set of functions
from X into E. For any x ∈ X, we denote π(x) = πx ∈ CL(E), and let
Mπ : F → F (X, E) be the linear map defined by

Mπ(f)(x) := π(x)[f(x)] = πx[f(x)], f ∈ F , x ∈ X.

Note that Mπ is linear since each πx is linear. Then Mπ is said to be a
multiplication operator on F if (i) Mπ(F) ⊆ F and (ii) Mπ : F → F is
continuous on F .

We begin by modifying an example, due to Oubbi [15], in the general
setting. This example shows that that CVb(X, E) may be trivial.

Example 1. Let X = Q, the set of all rationals with the natural topology.
This is of course a metrizable space. Consider on X the Nachbin family V =
C+(X) consisting of all non-negative continuous functions. We claim that
CVb(X, E) is reduced to {0} for every non-trivial TVS E.

[Indeed, assume that, for a given TVS E, CVb(X, E) 6= {0}, and let f
(6= 0) ∈ CVb(X; E). Then f(x0) 6= 0 for some x0 ∈ X. Since E is a Hausdorff
TVS, there exists some shrinkable neighbourhood G ∈ W so that ρG(f(x0)) 6=
0. With no loss of generality, we assume that ρG(f(x0)) = 1. Since ρG ◦ f :
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X → R is contiuous at x0, taking ε = 1
2
, there exists δ > 0 such that if

|x− x0| < δ,

|ρG(f(x))− ρG(f(x0))| <
1

2
, hence ρG(f(x)) > ρG(f(x0))−

1

2
=

1

2
.

For an irrational t ∈ R with |t− x0| < δ, the function vt : X → R+ given by

vt(x) =
1

|t− x|
, x ∈ X,

belongs to V = C+(X). Now,

sup{vt(x)ρG(f(x)) : x ∈ X} ≥ vt(x0)ρG(f(x0)) =
1

|t− x0|
→ ∞ as t → x0,

and so f /∈ CVb(X; E), a contradiction.]
Theorem 1. Let π : X → CL(E) be a map and F a vector subspace of

CVb(X, E) such that F is a Cb(X)-module and satisfies the condition (M).
(a) If Mπ is a multiplication operator on F , then the following holds: for

any v ∈ V and G ∈ W , there exist u ∈ V, H ∈ W such that

u(x)a ∈ H implies v(x)πx[a] ∈ G for all x ∈ coz(F), a ∈ E;

i.e. v(x)ρG(πx[a]) ≤ u(x)ρH(a) for all x ∈ coz(F), a ∈ E. (A)

(b) Conversely, if, in addition, F is EV -solid, Mπ(F) ⊆ C(X, E) and (A)
holds, then Mπ is a multiplication operator on F .

Proof. (a) Suppose Mπ is a multiplication operator on F . To prove (A),
let v ∈ V and G ∈ W . By continuity of Mπ : F → F , ∃ u ∈ V and H ∈ W
such that

Mπ(N(u, H) ∩ F) ⊆ N(v, G) ∩ F ;

i.e., u(x)f(x) ∈ H implies v(x)Mπ(f)(x) ∈ G for all x ∈ coz(F) and f ∈ F ,

i.e., v(x)ρG(πx[f(x)]) ≤ u(x)ρH(f(x)) for all x ∈ coz(F) andf ∈ F . (1)

In particular, for every x ∈ coz(F) and f ∈ F ,

v(x)ρG(πx[f(x)]) ≤ u(x)ρH(f(x)) ≤ sup
y∈X

u(y)ρH(f(y)). (2)
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To verify (A), fix x0 ∈ coz(F) and a ∈ E. Choose g ∈ F so that g(x0) 6= 0.
For each n ≥ 1, choose hn ∈ Cb(X) such that 0 ≤ hn ≤ 1, hn(x0) = 1, and
hn = 0 outside

Un := {y ∈ X : u(y) < u(x0) +
1

n
and ρH(g(y)) < 1 +

1

n
}.

Now, for each n ≥ 1 and a ∈ E, put fn,a := hn · (ρH ◦ g) ⊗ a. Since F is a
Cb(X)-module and satisfies (M), each fn,a ∈ F . Further, applying (2) to each
fn,a,

v(x0)ρG(πx0fn,a(x0))) ≤ sup
y∈X

(y)ρH(fn,a(y));

v(x0)ρG(πx0 [(hn · (ρH ◦ g)⊗ a)(x0)]) ≤ sup
y∈X

u(y)ρH(hn · (ρH ◦ g)⊗ a)(y));

i.e., v(x0)ρG(πx0 [hn(x0)ρH(g(x0))a]) ≤ sup
y∈X

u(y)ρH(hn(y)ρH(g(y))a). (3)

We may assume that ρH(g(x0)) 6= 0. [Now either ρH(g(x0)) = 0 or ρH(g(x0)) 6=
0. If ρH(g(x0)) = 0, we change g with another g1 ∈ F such that ρH(g1(x0)) 6= 0
as follows: Since g(x0) 6= 0 and E is Hausdorff, there is some H1 ∈ W such
that g(x0) /∈ H1. Then choose another H2 ∈ W with H2 ⊆ H ∩ H1. Since
g(x0) /∈ H1, clearly g(x0) /∈ H2 and so ρH2

(g(x0)) ≥ 1, hence ρH2
(g(x0)) 6= 0.

Now for some b ∈ E (e.g. b ∈ E\H) such that ρH(b) 6= 0, put g1 := (ρH2
◦g)⊗b.

By property (M), this is an element of F and

ρH(g1(x0)) = ρH(ρH2
(g(x0))b) = ρH2

((g(x0))ρH(b) 6= 0.]

Without loss of generality, we may assume that ρH(g(x0)) = 1. Since hn(x0) =
1, (3) becomes

v(x0) · ρG(πx0 [a]) ≤ sup
y∈X

u(y) · hn(y) · ρH(g(y)) · ρH(a). (4)

We now show that, for y ∈ X,

u(y) · hn(y) · ρH(g(y)) · ρH(a) ≤ (u(x0) +
1

n
) · (1 +

1

n
) · ρH(a). (5)

Case I: If y = x0, then hn(y) = hn(x0) = 1, ρH(g(y)) = ρH(g(x0)) = 1, and so

u(y) · hn(y) · ρH(g(y)) · ρH(a) = u(y) · ρH(a).
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Case II: If y 6= x0 and y ∈ Un, then u(y) < u(x0) + 1
n
, 0 ≤ hn(y) ≤ 1,and

ρH(g(y)) < 1 + 1
n
, and so

u(y) · hn(y) · ρH(g(y)) · ρH(a) ≤ (u(x0) +
1

n
) · (1 +

1

n
) · ρH(a).

Case III: If y 6= x0 and y ∈ X\ Un, then hn(y) = 0, and so

u(y) · hn(y) · ρH(g(y)) · ρH(a) = 0 ≤ (u(x0) +
1

n
) · (1 +

1

n
) · ρH(a).

Hence, in each case, (5) holds. Now, by (4) and (5),

v(x0)ρG(πx0 [a]) ≤ (u(x0) +
1

n
)(1 +

1

n
)ρH(a).

Since n is arbitrary, v(x0)ρG(πx0 [a]) ≤ u(x0)ρH(a).
(b) Suppose F is EV -solid, Mπ(F) ⊆ C(X, E) and (A) holds. Then, for

every f ∈ F , Mπ(f) ∈ C(X, E), hence Mπ(f) is continuous on X. So we only
need to show that (i) Mπ(F) ⊆ F , (ii) Mπ : F → F is continuous on F .

(i) Let f ∈ F , and let v ∈ V and G ∈ W . By (A), there exist u ∈ V and
H ∈ W such that

u(x)a ∈ H implies that v(x)πx[a] ∈ G for all x ∈ coz(F), a ∈ E.

In particular, since f(x) ∈ E,

u(x)f(x) ∈ H implies that v(x)πx[f(x)] ∈ G for all x ∈ coz(F);

i.e., vρG ◦Mπ(f) ≤ uρH ◦ f (pointwise) on coz(F)).

Since F is EV -solid, this implies that Mπ(f) ∈ F . Hence Mπ(F) ⊆ F .
(ii) To show that Mπ : F → F is continuous on F , let v ∈ V and G ∈ W .

Again, by (A), as above, there exist u ∈ V and H ∈ W such that

u(x)a ∈ H implies v(x)πx[a] ∈ G for all x ∈ coz(F), a ∈ E. (A1)

We claim that Mπ(N(u, H)∩F) ⊆ N(v, G)∩F . [Let f ∈ N(u, H)∩F . Then
u(x)f(x) ∈ H for all x ∈ coz(F), and so by (A1), v(x)πx[f(x)] ∈ G, or that
v(x)Mπ(f)(x) ∈ G for all x ∈ coz(F); hence Mπ(f) ∈ N(v, G)∩F .] Thus Mπ

is continuous on F . �
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Corollary 1. Let π : X → CL(E) be a map. If Mπ is a multiplication
operator on CVb(X, E), the so is on any EV -solid subspace F (e.g. F =
CV0(X,E) or C0(X, E)) of CVb(X, E).

The converse of the above corollary fails to hold in general, even in the
scalar case, as the following example shows. We have elaborated this example
due to some misprints pointed out to us by the author of [15].

Example 2. ([15], p. 116) Let X := [0, 1]∪Q[1,2], where Q[1,2] denotes the
set of all the rationals contained in [1, 2], E := C and v√2 ∈ C+(X), where

v√2(x) =
1

|x−
√

2|
, x ∈ X.

Take π = v√2 : X → CL(C) = C and V = K+(X) = {λ1 : λ ≥ 0}. We have:
(i) CVb(X) = Cb(X) with the sup norm.
(ii) Since CV0(Q[1,2]) = {0}, for any f ∈ CV0(X) ⊆ Cb(X), f(Q[1,2]) = {0};

hence
CVb(X) = CV0(X) = C1[0, 1] := {f ∈ C[0, 1] : f(1) = 0}

with the uniform norm. This is a Banach algebra.
(iii) It is easy to see that Mπ : f → πf is a multiplication operator on

F = CV0(X) but not on CVb(X). [In fact, in view of Condition (A) of above
theorem, for any λ > 0, there exists some µ > 0 such that

λv√2(x)|a| ≤ µ|a| for all x ∈ X, a ∈ C; i.e.,
1

|x−
√

2|
≤ µ

λ
for all x ∈ X.

This clearly holds for all x ∈ [0, 1] but not for x ∈ X sufficiently close to
√

2.]
�

Remark. Theorem 3.1 of [11] is an anologue of the above theorem for
weighted composition operators in the case of F = CV0(X, E) with E a non-
locally convex TVS. However, there seems to be a minor error in its proof.
In the course of the proof in [11] on p. 279, the authors have obtained
v(x0)πx0(f(φ(x0))) ∈ G by using the inclusion 1

2
G + 1

2
G ⊆ G, where G is

a balanced neighbourhood of 0 in E. But this need not hold unless G is a con-
vex neighbourhood of 0 in E. We can rectify the argument, as follows. Choose
earlier in the proof a balanced neighbouhood U of 0 in E with U + U ⊆ G.
Now simply replace 1

2
G by U.

Using Theorem 1, we now establish the following result concerning the
necessary and sufficient conditions for Mπ to be a multiplication operator in
the case of π : X → CLp(E).
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Theorem 2. Let F be an EV -solid subspace of CVb(X, E) and π : X →
CLp(E) a continuous function. Suppose that, for every x ∈ X, there exists
a neighbourhood D of x with π(D) equicontinuous on E. Then Mπ is a
multiplication operator on F ⇔ the condition (A) holds.

Proof. (⇒) Suppose Mπ is a multiplication operator on F . Since F is
EV -solid and, in particular, E-solid, F is a Cb(X)-module and satisfies (M).
Hence, by Theorem 1, (A) holds.

(⇐) Suppose (A) holds. Since F is EV -solids, in view of Theorem 1, we
only need to show that Mπ(F) ⊆ C(X, E). Let f ∈ F , and let x0 ∈ X and
G ∈ W . Choose a balanced H ∈ W with H + H ⊆ G. By hypothesis, there
exists an open neighbourhood D of x0 such that π(D) is equicontinuous on E.
So there exists a balanced H1 ∈ W such that

πx(H1) ⊆ H for all x ∈ D. (1)

By continuity of f at x0 ∈ X, there exists an open neighbourhood D1 of x0 in
X such that

f(x)− f(x0) ∈ H1 for all x ∈ D1. (2)

Also, since π : X → CLp(E) is continuous at x0 and the set

M({f(x0)}, H) = {T ∈ CL(E) : T (f(x0)) ∈ H}

is a tp-neighbourhood of 0 in CL(E), there exists a neighbourhood D2 of x0 in
X such that

π(x)− π(x0) ∈ M({f(x0)}, H), or (πx− πx0)[f(x0)] ∈ H for all x ∈ D2. (3)

Hence, for any x ∈ D ∩D1 ∩D2, using (1)-(3)

Mπ(f)(x)−Mπ(f)(x0) = πx[f(x)]− πx0 [f(x0)]

= πx[f(x)]− πx[f(x0)] + πx[f(x0)]− πx0 [(f(x0)]

= πx[f(x)− f(x0)] + (πx − πx0)[f(x0)]

∈ πx(H1) + H ⊆ H + H ⊆ G.

Therefore, Mπ(f) is continuous at x0, and so on X. Since f ∈ F is arbitrary,
Mπ(F) ⊆ C(X, E). �

Next, we provide extensions of results of Singh-Manhas [21] to a wider
class of completely regular spaces. Following Oubbi [15], we introduce a class
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of γR-spaces which includes as a special case the kR-spaces and pseudo-compact
spaces.

Definition. Let γ be a property of a net {xα : α ∈ I} which may satisfy
or not. A net {xα : α ∈ I} is called a γ-net if it possesses a certain property
γ. In particular, we shall be interested in the following types of nets:

Definition. A net {xα : α ∈ I} is called:
(i) an s-net if {xα : α ∈ I} = {xn : n ∈ N}, a sequence (i.e. if I = N);
(ii) a k-net if {xα : α ∈ I} is contained in a compact set;
(iii) a b-net if {xα : α ∈ I} is bounding (i.e. every continuous scalar

function on X is bounded on {xα : α ∈ I}).
Definition. (a) Let X and Y be topological spaces. A function f : X → Y

is said to be γ-continuous if, for every x ∈ X and every γ-net {xα : α ∈ I} ⊆
X,

xα → x implies f(xα) → f(x) in Y.

(b) The space X is called a γR-space if every γ-continuous function from
X into R (or equivalently into any completely regular space) is continuous on
X.

Examples. (1) The kR-spaces are nothing but the classical ones (as defined
above).

(2) Every sequential space is a sR-space.
(3) Every pseudo-compact space is a bR-space.
Clearly, every sR-space is a kR-space and every kR-space is a bR-space.
Definition. Let V be a Nachbin family on X. A net {xα : α ∈ I} is called

a V -net if there exists some v ∈ V such that

{xα : α ∈ I} ⊆ Sv,1 := {x ∈ X : v(x) ≥ 1},

i.e. v(xα) ≥ 1 for all α ∈ I.
Using V -nets, we hence get V -continuity. In particular, we get the classical

VR-spaces intorudced by Bierstedt [2]:
Definition. X is said to be a VR-space if a function f : X → R is

continuous whenever, for each v ∈ V, the restriction of f to Sv,1 is continuous.
If V = K+(X), then X is a VR-space means X is a kR-space. (See also [18],
p. 11).

Definition. If A ⊆ CL(E) consists of the γ-nets {xα : α ∈ I} converging
to 0, then we denote CLA(E) by CLγ(E) and tA by tγ. It is then clear that
tp ≤ ts ≤ tk ≤ tb ≤ tu.
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Theorem 3. Let F be an EV -solid subspace of CV (X, E) and X a γR-
space with γ ∈ {s, c, k, b} and also γ is conserved by continuous functions (i,e
whenever {xα} is a γ-net in X, {f(xα)} is a γ-net in E for all f ∈ C(X, E))
and let π : X → CLγ(E) be a continuous map. Then Mπ is a multiplication
operator on F ⇔ (A) holds.

Proof. (⇒) Suppose Mπ is a multiplication operator on F . Since F is
EV -solid, F is Cb(X)-module and satisfies (M). Hence, by Theorem 1, (A)
holds.

(⇐) Suppose (A) holds. Since F is EV -solid, by Theorem 1, we only need
to show that Mπ(F) ⊆ C(X, E). Let f ∈ C(X, E). Since X is a γR-space,
to show that Mπ(f) is continuous on X, it suffices to show that Mπ(f) is
γ-continuous on X. Let x0 ∈ X and G ∈ W . Choose a balanced H ∈ W
such that H + H ⊆ G. Let {xα : α ∈ I} be a γ-net in X with xα → x0.
Since γ is conserved by continuous functions, {f(xα) : α ∈ I} is also a γ-net
with f(xα) → f(x0). Since π : X → CLγ(E) is continuous, there exists a
neighbourhood D of x0 in X such that

πy − πx0 ∈ M({f(xα) : α ∈ I}, H) for all y ∈ D. (1)

Since xα → x0, there exists α0 ∈ I such that xα ∈ D for all α ≥ α0. Hence

(πy − πx0)(f(xα)) ∈ H for all α ≥ α0. (2)

Since πx0 is continuous on E and, in particular, at 0 ∈ E, there exists a
balanced H1 ∈ W such that

πx0(H1) ⊆ H. (3)

Since f(xα) → f(x0), there exists α1 ∈ I such that

f(xα)− f(x) ∈ H1 for all α ≥ α1. (4)

Choose α2 ∈ I with α2 ≥ α0 and α2 ≥ α1. Then, for α ≥ α2, using (1)-(4)

Mπ(f)(xα)−Mπ(f)(x0) = πxα(f(xα))− πx0(f(x0))

= (πxα − πx0)(f(xα)) + πx0 [f(xα)− f(x0)]

∈ H + πx0 [H1] ⊆ H + H ⊆ G.

Therefore Mπ(f) is γ-continuous at x0 and then on the whole of X. �
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As a particular, we obtain the following generalization of ([21], Theorem
3).

Corollary 2. Let F be a EV -solid subspace of CV (X, E) and π : X →
CLu(E) a continuous map. If X is a bR-space (in particular, kR-space, a se-
quential space or a pseudo-compact one), then Mπ is a multiplication operator
on F ⇔ (A) holds.

Proof. Take γ = b in Theorem 3. �
In the following result we consider conditions which ensure the continuity

of π : X → CLp(E) in the case of tA = tp and thus obtain a kind of converse
to Theorems 2 and 3.

Theorem 4. Let F be a subspace of C(X,E) satisfying (M) and π : X →
CLp(E) a map. If Mπ(F) ⊆ C(X, E), then π is continuous on coz(F).

Proof. Let x0 ∈ coz(F), and let a ∈ E and G ∈ W . We show that there
exists a neighbourhood D of x0 in X such that

πy − πx0 ∈ N({a}), G), i.e. ρG[(πy − πx0)(a)] ≤ 1 for all y ∈ D.

Choose balanced J, S ∈ W with J +J ⊆ G and S +S ⊆ J . Since x0 ∈ coz(F)
and coz(F) is Hausdorff, there exists an f ∈ F and H ∈ W such that f(x0) /∈
H, and so ρH(f(x0)) ≥ 1. We may assume that ρH(f(x0)) = 1. Put

D1 = {y ∈ X : |ρH(f(y)− 1| < 1

2
}.

Clearly, D1 is open. Further, D1 ⊆ coz(F) [since, for any y ∈ D1,
1
2

<
ρH(f(y)) < 3/2 and so ρH(f(y)) 6= 0]. Since Mπ(F) ⊆ C(X, E), the map
Mπ(f) : y → πy(f(y)) and in particular Mπ(ρH ◦ f ⊗ a) : y → πy(ρH(f(y))a)
is continuous from X to E (at y = x0), so there exists an open neighbourhood
D2 of x0 in X such that

ρS[πy(ρH ◦ f(y)a)− πx0(ρH ◦ f(x0)a)] <
1

4
for all y ∈ D2. (1)

Case I. Suppose ρS[πx0(a)] = 0. Then, since S + S ⊆ J , (1) gives

ρJ [πy(ρH(f(y)a)] ≤ ρS[πy(ρH(f(y)a))− πx0 [ρH(f(x0)a))] + ρS[πx0(ρH(f(x0)a))]

<
1

4
+ ρH(f(x0)).0 =

1

4
. (2)

If also y ∈ D1 (i.e. y ∈ D1 ∩D2), ρH(f(y) > 1
2
, so by (2),

ρJ [πy(a)] ≤ 1

ρH(f(y))
· 1

4
< 2 · 1

4
=

1

2
. (3)
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Hence, since S ⊆ J and J + J ⊆ G, for any y ∈ D1 ∩D2, (3) gives

ρG[πy(a)− πx0(a))] ≤ ρJ [πy(a)] + ρJ [πx0(a)] <
1

2
+ ρS[πx0(a)) =

1

2
.

This proves the continuity of π at x0.
Case II. Suppose ρS[πx0(a)] 6= 0. Put

D3 = {y ∈ X :

∣∣∣∣ 1

ρH(f(x0))
− 1

∣∣∣∣ <
1

ρS(πx0(a))
}.

Let y ∈ D1 ∩D2 ∩D3. Since S + S ⊆ G,

ρG[πy(a)− πx0(a)] ≤

ρS[
πy[ρH(f(y))a]

ρH(f(y))
− πy[ρH(f(x0))a]

ρH(f(y))
] + ρS[

πy(ρH(f(x0))a]

ρH(f(y))
− πx0(a)]

≤ 1

ρH(f(y))
ρS[πy(ρH(f(y))a]− πx0(ρH(f(x0))a)] +

∣∣∣∣ 1

ρH(f(y))
− 1

∣∣∣∣ ρS[πx0(a))]

< 2 · 1

4
+

1

2ρS(πx0(a))
· ρS(πx0(a)) = 1.

So, also in this case, π is continuous at x0. �
Remark. We mention that the above results are obtained for the subset

coz(F) of X. Consequently, these results provide correction of corresponding
results of [21] and [9] by assuming that the spaces F = CVb(X, E) and F =
CV0(X,E) are essential (i.e. coz(F) = X).
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