SOME SUBCLASS OF ANALYTIC FUNCTIONS

Firas Ghanim and Maslina Darus

Abstract. In this paper we introduce a new class $M^{*}(\alpha, \beta, \gamma, A, \lambda)$ consisting analytic and univalent functions with negative coefficients. The object of the paper is to show some properties for the class $M^{*}(\alpha, \beta, \gamma, A, \lambda)$.

2000 Mathematics Subject Classification: 30C45.
Key words: Analytic functions, Starlike functions, Convex function, Negative coefficients.

1. Introduction

Let S denote the class of normalised analytic univalent function f defined by

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1}
\end{equation*}
$$

for $z \in D=\{z:|z|<1\}$.
Let T denote the subclass of S consisting functions of the form

$$
\begin{equation*}
f(z)=z-\sum_{n=2}^{\infty}\left|a_{n}\right| z^{n} \tag{2}
\end{equation*}
$$

Further, we define the class $M(\alpha, \beta, \gamma, A, \lambda)$ as follows:
Definition. A function f given by (1.1) is said to be a member of the class $M(\alpha, \beta, \gamma, A, \lambda)$ if it satisfies

$$
\left|\frac{z f^{\prime}(z)-f(z)}{\alpha z f^{\prime}(z)-A f(z)-(1-\lambda)(1-A) \gamma f(z)}\right|<\beta
$$

where $0 \leq \alpha \leq 1, \beta(0<\beta \leq 1),-1 \leq A<1,0 \leq \lambda \leq 1$ and $0 \leq \gamma<1$ for all $z \in D$.

Let us write

$$
\begin{equation*}
M^{*}(\alpha, \beta, \gamma, A, \lambda)=T \cap M(\alpha, \beta, \gamma, A, \lambda) \tag{3}
\end{equation*}
$$

We note that when $A=-1$ and $\lambda=\frac{1}{2}$ the class of functions was studied by
Darus [5]. Under the same condition, if we replace $\frac{z f^{\prime}(z)}{f(z)}$ with $f^{\prime}(z)$ we get back to the class of $L^{*}(\alpha)$ and various other subclasses of L^{*} which have been studied rather extensively by Kim and Lee [4], Uralegaddi and Sarangi [1], and Al-Amiri [2]. If $\lambda=0, \beta=1$ and $A=-1$ the class of functions was given by Silverman [3].

Next, our first result will concentrate on the coefficient estimate for the classes $M(\alpha, \beta, \gamma, A, \lambda)$ and $M^{*}(\alpha, \beta, \gamma, A, \lambda)$.

2.Coefficient Inequalities

In this section we will prove a sufficient condition for a function analytic in D to be in $M(\alpha, \beta, \gamma, A, \lambda)$.
Theorem 1. If $f \in S$ satisfies

$$
\begin{gather*}
\sum_{n=2}^{\infty}(n-1+\beta(n \alpha-A-(1-\lambda)(1-A) \gamma))\left|a_{n}\right| \leq \\
\beta(\alpha-A-(1-\lambda)(1-A) \gamma) \tag{4}
\end{gather*}
$$

where $0 \leq \alpha \leq 1,0<\beta \leq 1,-1 \leq A<1,0 \leq \lambda \leq 1$ and $0 \leq \gamma<1$, then $f(z) \in M(\alpha, \beta, \gamma, A, \lambda)$.
Proof. Let us suppose that

$$
\begin{gathered}
\sum_{n=2}^{\infty}(n-1+\beta(n \alpha-A-(1-\lambda)(1-A) \gamma))\left|a_{n}\right| \\
\leq \beta(\alpha-A-(1-\lambda)(1-A) \gamma) \in S
\end{gathered}
$$

It suffices to show that

$$
\begin{equation*}
\left|\frac{\frac{z f^{\prime}(z)}{f(z)}-1}{\alpha \frac{z f^{\prime}(z)}{f(z)}-A-(1-\lambda)(1-A) \gamma}\right|<\beta, \quad(z \in D) \tag{5}
\end{equation*}
$$

$$
\begin{aligned}
& =\left|\frac{\frac{z f^{\prime}(z)}{f(z)}-1}{\alpha \frac{z f^{\prime}(z)}{f(z)}-A-(1-\lambda)(1-A) \gamma}\right| \\
& =\left|\frac{\sum_{n=2}^{\infty}(n-1) a_{n} z^{n}}{\alpha-A-(1-\lambda)(1-A) \gamma+\sum_{n=2}^{\infty}(n \alpha-A-(1-\lambda)(1-A) \gamma) a_{n} z^{n}}\right| \\
& <\frac{\sum_{n=2}^{\infty}(n-1)\left|a_{n}\right|}{\alpha-A-(1-\lambda)(1-A) \gamma-\sum_{n=2}^{\infty}(n \alpha-A-(1-\lambda)(1-A) \gamma)\left|a_{n}\right|}
\end{aligned}
$$

from (5), the last expression satisfies

$$
\begin{gathered}
\sum_{n=2}^{\infty}(n-1)\left|a_{n}\right| \\
\leq \beta\left(\alpha-A-(1-\lambda)(1-A) \gamma-\sum_{n=2}^{\infty}(n \alpha-A-(1-\lambda)(1-A) \gamma)\left|a_{n}\right|\right)
\end{gathered}
$$

that is

$$
\begin{gathered}
\sum_{n=2}^{\infty}(n-1+\beta(n \alpha-A-(1-\lambda)(1-A) \gamma))\left|a_{n}\right| \\
\leq \beta(\alpha-A-(1-\lambda)(1-A) \gamma)
\end{gathered}
$$

which is equivalent to our condition of the theorem.
So that $f \in M(\alpha, \beta, \gamma, A, \lambda)$. Hence the theorem.
Next we give a necessary and sufficient condition for a function $f \in T$ to be in the class $M^{*}(\alpha, \beta, \gamma, A, \lambda)$.
Theorem 2. Let the function f be defined by (2) and let $f \in T$. Then $f \in M^{*}(\alpha, \beta, \gamma, A, \lambda)$. If and only if (4) is satisfied. The result (4) is sharp.

Proof. With the aid of Theorem 1, it suffices to show the (only if) part. Assume that $f \in M^{*}(\alpha, \beta, \gamma, A, \lambda)$. Then

$$
\begin{gathered}
=\left|\frac{\frac{z f^{\prime}(z)}{f(z)}-1}{\alpha \frac{z f^{\prime}(z)}{f(z)}-A-(1-\lambda)(1-A) \gamma}\right| \\
\left.<\frac{\sum_{n=2}^{\infty}(n-1) a_{n} z^{n}}{\alpha-A-(1-\lambda)(1-A) \gamma-\sum_{n=2}^{\infty}(n \alpha-A-(1-\lambda)(1-A) \gamma) a_{n} z^{n}} \right\rvert\, \\
<\frac{\sum_{n=2}^{\infty}(n-1)\left|a_{n}\right|}{\alpha-A-(1-\lambda)(1-A) \gamma-\sum_{n=1}^{\infty}(n \alpha-A-(1-\lambda)(1-A) \gamma)\left|a_{n}\right|}
\end{gathered}
$$

Similarly, the method in Theorem 1 applies and obtained the required result. The result is sharp for function f of the form

$$
\begin{equation*}
f_{n}(z)=z-\frac{\beta(\alpha-A-(1-\lambda)(1-A) \gamma) z^{n}}{(n-1+\beta(n \alpha-A-(1-\lambda)(1-A) \gamma))}, \quad \quad n \geq 2 \tag{6}
\end{equation*}
$$

Corollary 1. Let the function f be defined by (2) and let $f \in M^{*}(\alpha, \beta, \gamma, A, \lambda)$, then

$$
\begin{equation*}
a_{n} \leq \frac{\beta(\alpha-A-(1-\lambda)(1-A) \gamma)}{(n-1+\beta(n \alpha-(1-\lambda)(1-A) \gamma))} \quad n \geq 2 \tag{7}
\end{equation*}
$$

3. Growth and Distortion Theorem

Growth and distortion properties for functions f in the class $M^{*}(\alpha, \beta, \gamma, A, \lambda)$ are given as follows:
Theorem 3. If the function f be defined by (4) is in the class $M^{*}(\alpha, \beta, \gamma, A, \lambda)$, then for $0<|z|=r<1$, we have

$$
r-\frac{\beta(\alpha-A-(1-\lambda)(1-A) \gamma) r^{2}}{(1+\beta(2 \alpha-A-(1-\lambda)(1-A) \gamma))} \leq|f(z)|
$$

$$
\leq r+\frac{\beta(\alpha-A-(1-\lambda)(1-A) \gamma) r^{2}}{(1+\beta(2 \alpha-A-(1-\lambda)(1-A) \gamma))}
$$

with equality for

$$
f_{2}(z)=z-\frac{\beta(\alpha-A-(1-\lambda)(1-A) \gamma) z^{2}}{(1+\beta(2 \alpha-A-(1-\lambda)(1-A) \gamma))}, \quad(z=i r, r)
$$

and

$$
\begin{aligned}
1- & \frac{2 \beta(\alpha-A-(1-\lambda)(1-A) \gamma) r}{(1+\beta(2 \alpha-A-(1-\lambda)(1-A) \gamma))} \leq\left|f^{\prime}(z)\right| \\
& \leq 1+\frac{2 \beta(\alpha-A-(1-\lambda)(1-A) \gamma) r}{(1+\beta(2 \alpha-A-(1-\lambda)(1-A) \gamma))}
\end{aligned}
$$

with equality for

$$
f_{2}(z)=z-\frac{\beta(\alpha-A-(1-\lambda)(1-A) \gamma) z^{2}}{(1+\beta(2 \alpha-A-(1-\lambda)(1-A) \gamma))}, \quad(z= \pm i r, \pm r)
$$

Proof. Since $f \in M^{*}(\alpha, \beta, \gamma, A, \lambda)$, Theorem 1 yields the inequality

$$
\begin{equation*}
\sum_{n=2}^{\infty} a_{n} \leq \frac{\beta(\alpha-A-(1-\lambda)(1-A) \gamma)}{(1+\beta(2 \alpha-A-(1-\lambda)(1-A) \gamma))} \tag{8}
\end{equation*}
$$

Thus, for $0<|z|=r<1$, and making use of (8), we have

$$
\begin{gathered}
|f(z)| \leq|z|+\sum_{n=2}^{\infty} a_{n}\left|z^{n}\right| \leq r+r^{2} \sum_{n=2}^{\infty} a_{n} \\
\leq r+\frac{r^{2} \beta(\alpha-A-(1-\lambda)(1-A) \gamma)}{(1+\beta(2 \alpha-A-(1-\lambda)(1-A) \gamma))}
\end{gathered}
$$

and

$$
\begin{gathered}
|f(z)| \geq|z|+\sum_{n=2}^{\infty} a_{n}\left|z^{n}\right| \geq r+r^{2} \sum_{n=2}^{\infty} a_{n} \\
\geq r+\frac{r^{2} \beta(\alpha-A-(1-\lambda)(1-A) \gamma)}{(1+\beta(2 \alpha-A-(1-\lambda)(1-A) \gamma))}
\end{gathered}
$$

Besides, from Theorem 1, it follow that

$$
\begin{equation*}
\sum_{n=2}^{\infty} n a_{n} \leq \frac{2 \beta(\alpha-A-(1-\lambda)(1-A) \gamma)}{(1+\beta(2 \alpha-A-(1-\lambda)(1-A) \gamma))} \tag{9}
\end{equation*}
$$

Thus

$$
\begin{gathered}
\left|f^{\prime}(z)\right| \leq 1+\sum_{n=2}^{\infty} n a_{n}\left|z^{n-1}\right| \leq \\
1+r \sum_{n=2}^{\infty} n a_{n} \leq 1+\frac{2 r \beta(\alpha-A-(1-\lambda)(1-A) \gamma)}{(1+\beta(2 \alpha-A-(1-\lambda)(1-A) \gamma))}
\end{gathered}
$$

and

$$
\begin{gathered}
\left|f^{\prime}(z)\right| \geq 1-\sum_{n=2}^{\infty} n a_{n}\left|z^{n-1}\right| \geq \\
1-r \sum_{n=2}^{\infty} n a_{n} \geq 1-\frac{2 r \beta(\alpha-A-(1-\lambda)(1-A) \gamma)}{(1+\beta(2 \alpha-A-(1-\lambda)(1-A) \gamma))}
\end{gathered}
$$

Hence completes the proof of Theorem 3.

4.Radii of Starlikeness and Convexity

The radii of starlikeness and convex for the class $M^{*}(\alpha, \beta, \gamma, A, \lambda)$ is given by the following theorem:
Theorem 4. If the function f be defined by (2) is in the class $M^{*}(\alpha, \beta, \gamma, A, \lambda)$, then $f(z)$ is starlike of order $\rho(0 \leq \rho<1)$ in the disk $|z|<r_{1}(\alpha, \beta, \gamma, A, \lambda, \rho)$ where $r_{1}(\alpha, \beta, \gamma, A, \lambda, \rho)$ is the largest value for which

$$
\begin{gathered}
r_{1}=r_{1}(\alpha, \beta, \gamma, A, \lambda, \rho) \\
=\inf _{n \geq 2}\left(\frac{(1-\rho)[(n-1)+\beta(n \alpha-A-(1-\lambda)(1-A) \gamma)]}{(n-\rho) \beta(\alpha-A-(1-\lambda)(1-A) \gamma)}\right)^{\frac{1}{n-1}} .
\end{gathered}
$$

The result is sharp for function $f_{n}(z)$ given by (6).
Proof. It suffices to show that

$$
\left|\frac{z f^{\prime}(z)}{f(z)}-1\right|<1-\rho, \quad \text { for } \quad|z| \leq r_{1}
$$

We have

$$
\begin{gather*}
\left|\frac{z f^{\prime}(z)}{f(z)}-1\right| \\
\leq \frac{\sum_{n=2}^{\infty}(n-1) \frac{\beta(\alpha-A-(1-\lambda)(1-A) \gamma) \mid z n^{n-1}}{(n-1+\beta(n \alpha-A-(1-\lambda)(1-A) \gamma))}}{1-\sum_{n=2}^{\infty} \frac{\left.\beta(\alpha-A-(1-\lambda)(1-A) \gamma) \mid z z^{n-1}\right)}{(n-1+\beta(n \alpha-A-(1-\lambda)(1-A) \gamma))}} \leq 1-\rho \tag{10}
\end{gather*}
$$

Hence (10) holds true if

$$
\begin{gathered}
\sum_{n=2}^{\infty} \frac{(n-1) \beta(\alpha-A-(1-\lambda)(1-A) \gamma)|z|^{n-1}}{(n-1+\beta(n \alpha-A-(1-\lambda)(1-A) \gamma))} \\
\leq(1-\rho)\left(1-\sum_{n=2}^{\infty} \frac{\beta(\alpha-A-(1-\lambda)(1-A) \gamma)|z|^{n-1}}{(n-1+\beta(n \alpha-A-(1-\lambda)(1-A) \gamma))}\right)
\end{gathered}
$$

and it follows that

$$
|z|^{n-1} \leq \frac{(1-\rho)[(n-1)+\beta(n \alpha-A-(1-\lambda)(1-A) \gamma)]}{(n-\rho) \beta(\alpha-A-(1-\lambda)(1-A) \gamma)}, \quad(n \geq 2)
$$

as required.
Theorem 5. If the function f defined by (2) is in the class $M^{*}(\alpha, \beta, \gamma, A, \lambda)$, then f is convex of order $\rho(0 \leq \rho<1)$, in the disk $|z|<r_{2}(\alpha, \beta, \gamma, A, \rho)$, where $r_{2}(\alpha, \beta, \gamma, A, \lambda, \rho)$, is the largest value for which
$r_{2}=r_{2}(\alpha, \beta, \gamma, A, \rho)=\inf _{n \geq 2}\left(\frac{(1-\rho)[(n-1)+\beta(n \alpha-A-(1-\lambda)(1-A) \gamma)]}{n(n-\rho) \beta(\alpha-A-(1-\lambda)(1-A) \gamma)}\right)^{\frac{1}{n-1}}$.
The result is sharp for function $f_{n}(z)$ given by (6).
Proof. By using the same techniques as in the proof of the Theorem 4, we can show that

$$
\left|\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right|<\rho-1 \quad \text { for } \quad|z| \leq r_{2}
$$

with the aid of Theorem 1. Thus we have the assertion of Theorem 5.

5.Convex Linear Combinations

Our next result involves a linear combination of function of the type (6).
Theorem 5.1. Let

$$
\begin{equation*}
f_{1}=z \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
f_{n}(z)=z-\frac{\beta(\alpha-A-(1-\lambda)(1-A) \gamma) z^{n}}{(n-1+\beta(n \alpha-A-(1-\lambda)(1-A) \gamma))}, \quad(n \geq 2) \tag{12}
\end{equation*}
$$

Then $f \in M^{*}(\alpha, \beta, \gamma, A, \lambda)$ if and only if it can be expressed in the form

$$
\begin{equation*}
f(z)=\sum_{n=1}^{\infty} \delta_{n} f_{n}(z) \tag{13}
\end{equation*}
$$

Where $\delta_{n} \geq 0$ and $\sum_{n=1}^{\infty} \delta_{n}=1$.
Proof. From (11), (12) and (13), it is easy to see that

$$
\begin{equation*}
f(z)=\sum_{n=1}^{\infty} \delta_{n} f_{n}(z)=z-\sum_{n=2}^{\infty} \frac{\beta(\alpha-A-(1-\lambda)(1-A) \gamma) \delta_{n} z^{n}}{(n-1+\beta(n \alpha-A-(1-\lambda)(1-A) \gamma))} . \tag{14}
\end{equation*}
$$

Since

$$
\begin{gathered}
\sum_{n=2}^{\infty} \frac{(n-1+\beta(n \alpha-A-(1-\lambda)(1-A) \gamma))}{\beta(\alpha-A-(1-\lambda)(1-A) \gamma)} \\
\cdot \frac{\beta(\alpha-A-(1-\lambda)(1-A) \gamma) \delta_{n}}{(n-1+\beta(n \alpha-A-(1-\lambda)(1-A) \gamma))} \\
=\sum_{n=1}^{\infty} \delta_{n}=1-\delta_{1} \leq 1 .
\end{gathered}
$$

It follows from Theorem 1 that the function $f \in M^{*}(\alpha, \beta, \gamma, A, \lambda)$. Since

$$
a_{n} \leq \frac{\beta(\alpha-A-(1-\lambda)(1-A) \gamma)}{(n-1+\beta(n \alpha-A-(1-\lambda)(1-A) \gamma))}, \quad(n \geq 2)
$$

Setting

$$
\delta_{n}=\frac{(n-1+\beta(n \alpha-A-(1-\lambda)(1-A) \gamma))}{\beta(\alpha-A-(1-\lambda)(1-A) \gamma)} a_{n}, \quad(n \geq 2)
$$

and

$$
\delta_{1}=1-\sum_{n=2}^{\infty} \delta_{n}
$$

it follows that $f(z)=\sum_{n=2}^{\infty} \delta_{n} f_{n}(z)$. This completes the proof of the theorem. Finally we prove the following:
Theorem 5.2. The class $M^{*}(\alpha, \beta, \gamma, A, \lambda)$ is closed under convex linear combinations.
Proof. Suppose that the functions $f_{1}(z)$ and $f_{2}(z)$ defined by

$$
\begin{equation*}
f_{j}(z)=z-\sum_{n=2}^{\infty} a_{n, j} z^{n}, \quad(j=1,2 ; z \in D) \tag{15}
\end{equation*}
$$

are in the class $M^{*}(\alpha, \beta, \gamma, A, \lambda)$. Setting

$$
\begin{equation*}
f(z)=\mu f_{1}(z)+(1-\mu) f_{2}(z), \quad 0 \leq \mu \leq 1 \tag{16}
\end{equation*}
$$

we find from (15) that

$$
\begin{equation*}
f(z)=z-\sum_{n=1}^{\infty}\left\{\mu a_{n, 1}+(1-\mu) a_{n, 2}\right\} z^{n}, \quad(0 \leq \mu \leq 1 ; z \in D) \tag{17}
\end{equation*}
$$

In view of Theorem 1, we have

$$
\begin{gathered}
\sum_{n=2}^{\infty}\left[n-1+\beta(n \alpha-A-(1-\lambda)(1-A) \gamma)\left\{\mu a_{n, 1}+(1-\mu) a_{n, 2}\right\}\right] \\
=\mu \sum_{n=2}^{\infty}[n-1+\beta(n \alpha-A-(1-\lambda)(1-A) \gamma)] a_{n, 1} \\
+ \\
\quad(1-\mu) \sum_{n=2}^{\infty}[n-1+\beta(n \alpha-A-(1-\lambda)(1-A) \gamma)] a_{n, 2}
\end{gathered}
$$

$$
\begin{gathered}
\leq \mu \beta(\alpha-A-(1-\lambda)(1-A) \gamma)+(1-\mu) \beta(\alpha-A-(1-\lambda)(1-A) \gamma) \\
=\beta(\alpha-A-(1-\lambda)(1-A) \gamma)
\end{gathered}
$$

which shows that $f \in M^{*}(\alpha, \beta, \gamma, A, \lambda)$. Hence the theorem.
ACKNOWLEDGEMENT: The work presented here was partially supported by eScienceFund: 04-01-02-SF0425, MOSTI, MALAYSIA.

References

[1] B. A. Uralegaddi and S. M. Sarangi, The radius of convexity and starlikeness for certain classes of analytic functions with negative coefficients, Rend. Acad. Naz. Lincei., 65 (1978), 38-42.
[2] H.S. Al-Amiri, On a subclass of close-to-convex functions with negative coefficients, Mathematica (Cluj)., 31 (54) no. 1 (1989), 1-7.
[3] H. Silverman, Univalent functions with negative coefficient, Proc. Amer. Math. Soc., 51 ,(1975), 109-116.
[4] H.S. Kim and S. K. Lee, Some classes or univalent functions, Math. Japon, 32(5) (1987), 781-796.
[5] M. Darus, Some subclasses of analytic functions, Jour. Inst. Math. Comp. Sci., 16, No. 3 (2003), 121-126.

Authors:

Firas Ghanim
School of Mathematical Sciences
Faculty of Science and Technology
Universiti Kebangsaan Malaysia
Bangi 43600 Selangor D. Ehsan, Malaysia
email:Firas.Zangnaa@Gmail.com

Maslina Darus
School of Mathematical Sciences
Faculty of Science and Technology
Universiti Kebangsaan Malaysia
Bangi 43600 Selangor D. Ehsan, Malaysia
email:maslina@ukm.my

