AMENABILITY AND WEAK AMENABILITY OF LIPSCHITZ OPERATORS ALGEBRAS

A.A. SHOKRI, A. EBADIAN AND A.R. MEDGHALCHI

ABSTRACT. In a recent paper by H.X. Cao, J.H. Zhang and Z.B. Xu a α -Lipschitz operator from a compact metric space into a Banach space A is defined and characterized in a natural way in the sence that $F: K \to A$ is a α -Lipschitz operator if and only if for each $\sigma \in X^*$ the mapping σoF is a α -Lipschitz function. The Lipschitz operators algebras $L^{\alpha}(K, A)$ and $l^{\alpha}(K, A)$ are developed here further, and we study their amenability and weak amenability of these algebras. Moreover, we prove an interesting result that $L^{\alpha}(K, A)$ and $l^{\alpha}(K, A)$ and $l^{\alpha}(K, A)$ are isometrically isomorphic to $L^{\alpha}(K) \otimes A$ and $l^{\alpha}(K) \otimes A$ respectively.

2000 Mathematics Subject Classification: 47B48, 46J10.

1. INTRODUCTION

Let (K, d) be compact metric space with at least two elements and $(X, \| . \|)$ be a Banach space over the scalar field \mathbf{F} (= R or C). For a constant $\alpha > 0$ and an operator $T : K \to X$, set

$$L_{\alpha}(T) := \sup_{s \neq t} \frac{\| T(t) - T(s) \|}{d(s, t)^{\alpha}},$$
(1)

which is called the Lipschitz constant of T. Define

$$T_{\alpha}(x,y) = \frac{T(x) - T(y)}{d(x,y)^{\alpha}} , \quad x \neq y$$
$$L^{\alpha}(K,X) = \{T: K \to X : L_{\alpha}(T) < \infty\}$$

and

$$l^{\alpha}(K,X) = \{T: K \to X \quad : \quad \parallel T_{\alpha}(x,y) \parallel \to 0 \quad as \quad d(x,y) \to 0\}.$$

The elements of $L^{\alpha}(K, X)$ and $l^{\alpha}(K, X)$ are called big and little Lipschitz operators, respectively [1].

Let C(K, X) be the set of all continuous operators from K into X and for each $T \in C(K, X)$, define

$$\parallel T \parallel_{\infty} = \sup_{x \in K} \parallel T(x) \parallel$$

For S, T in C(K, X) and λ in F, define

$$(S+T)(x) = S(x) + T(x) \quad , \quad (\lambda T)(x) = \lambda T(x), \quad (x \in X).$$

It is easy to see that $(C(K, X), \| . \|_{\infty})$ becomes a Banach space over F and $L^{\alpha}(K, X)$ is a linear subspace of C(K, X). For each element T of $L^{\alpha}(K, X)$, define $\| T \|_{\alpha} = L_{\alpha}(T) + \| T \|_{\infty}$.

In their papers[3,4], Cao, Zhang and Xu proved that $(L^{\alpha}(K, X), \| \cdot \|_{\alpha})$ is a Banach space over F and $l^{\alpha}(K, X)$ is a closed linear subspace of $(L^{\alpha}(K, X), \| \cdot \|_{\alpha})$. Now, let $(A, \| \cdot \|)$ be a unital Banach algebra with unit e. In this paper, we show that $(L^{\alpha}(K, A), \| \cdot \|_{\alpha})$ is a Banach algebra under pointwise and scalar multiplication and $l^{\alpha}(K, A)$ is a closed linear subalgebra of $(L^{\alpha}(K, A), \| \cdot \|_{\alpha})$ and study many aspects of these algebras. The spaces $L^{\alpha}(K, A)$ and $l^{\alpha}(K, A)$ are called big and little Lipschitz operators algebras. Note that Lipschitz operators algebras are, in fact, extensions of Lipschitz algebras. Sherbert [12, 13], Weaver [14, 15], Honary and Mahyar [7], Johnson [9], Alimohammadi and Ebadian[1], Ebadian[6], Bade, Curtis and Dales[2], studied some properties of Lipschitz algebras. Finally, we will study (weak) amenability of Lipschitz operators algebras.

2. Characterizations Of Lipschitz Operators Algebras

In this section, let (K, d) be a compact metric space which has at least two elements and $(A, \| \cdot \|)$ to denote a unital Banach algebra over the scalar field F(= R or C).

Theorem 2.1. $L^{\alpha}(K, A)$, $\| . \|_{\alpha}$ is a Banach algebra over F and $l^{\alpha}(K, A)$ is a closed linear subspace of $(L^{\alpha}(K, A), \| . \|_{\alpha})$.

Proof. As we have already $L^{\alpha}(K, A)$ is a Banach space and $l^{\alpha}(K, A)$ is a closed linear subspace if it. Now let $T, S \in L^{\alpha}(K, A)$, and define

$$(TS)(t) = T(t)S(t) \quad (t \in K).$$

Then

$$\| TS \|_{\alpha} = \| TS \|_{\infty} + L_{\alpha}(TS)$$

$$\leq \| T \|_{\infty} \| S \|_{\infty} + \sup_{t \neq s} \frac{\| T(t)S(t) - T(s)S(s) \|}{d(t,s)^{\alpha}}$$

$$\leq \| T \|_{\infty} \| S \|_{\infty} + \| T \|_{\infty} L_{\alpha}(S) + \| S \|_{\infty} L_{\alpha}(T)$$

$$\leq (\| T \|_{\infty} + L_{\alpha}(T))(\| S \|_{\infty} + L_{\alpha}(S))$$

$$= \| T \|_{\alpha} \| S \|_{\alpha}.$$

So that we see that $(L^{\alpha}(K, A), \| . \|_{\alpha})$ is a Banach algebra and $l^{\alpha}(K, A)$ is a closed linear subspace of $(L^{\alpha}(K, A), \| . \|_{\alpha})$.

Theorem 2.2. Let (K, d) be a compact metric space. Then $L^{\alpha}(K, A)$ is uniformly dense in C(K, A).

Proof. Let $f \in C(K, A)$. Then for every $\sigma \in A^*$ we have $\sigma of \in C(K)$, so that there is $g \in L^{\alpha}(K)$ such that $|| g - \sigma of ||_{\infty} < \varepsilon$. We define, the map $\eta : \mathbb{C} \to A$ by $\eta(\lambda) = \lambda.e$. It is easy to see that $\eta og \in L^{\alpha}(K, A)$, and for every $\sigma \in A^*$, we have

$$\sigma(g(x).e - f(x)) \mid = \mid g(x) - (\sigma o f)(x) \mid < \varepsilon \quad , \quad (x \in K).$$

Therefor $|\sigma(\eta og - f)(x)| < \varepsilon$ for every $\sigma \in A^*$ and $x \in K$. This implies that $||(\eta og - f)(x)|| < \varepsilon$ for every $x \in K$. Therefor, $||\eta og - f||_{\infty} < \varepsilon$ and the proof is complete. \bigtriangleup

Remark 2.3. Let A, B be unital Banach algebras over F. Then the injective tensor $A \otimes B$ is a unital Banach algebra under norm $\|.\|_{\epsilon}$ [11].

Theorem 2.4. $L^{\alpha}(K, A) = \{F : K \to A | \sigma oF \in L^{\alpha}(K, C), (\forall \sigma \in A^*)\}$ *Proof.* Use the principle of Uniform Boundedness.

For every Banach algebra B, let Φ_B be the space of maximal ideal of B.

Theorem 2.5. $\Phi_{L^{\alpha}(K,A)}$ and $\Phi_{l^{\alpha}(K,A)}$ are identified with K. *Proof.* Similarly to the proof of Lipschitz algebras.

Theorem 2.6. Let (K, d) be a compact metric space and A be a unital Banach algebra. Then $L^{\alpha}(K, A)$ is isometrically isomorphic to $L^{\alpha}(K) \check{\otimes} A$. Proof. It is straightforward to prove that the mapping $V : L^{\alpha}(K) \times A \to$

 $L^{\alpha}(K, A)$ defined by

$$V(f,a) = fa \quad (f \in L^{\alpha}(K), \quad a \in A),$$

$$(fa)(x) := f(x)a \quad (x \in K),$$

is bilinear. Therefor there exists a unique linear map $T : L^{\alpha}(K) \check{\otimes} A \to L^{\alpha}(K, A)$ such that $T(f \otimes a) = V(f, a)$, [11]. We have

$$\| T(f \otimes a) \|_{\alpha} = \| V(f,a) \|_{\alpha} = \| fa \|_{\alpha} = \| fa \|_{\infty} + L_{\alpha}(fa)$$

= $\| f \|_{\infty} \| a \| + L_{\alpha}(f) \| a \|$
= $\| f \|_{\alpha} \| a \| = \| f \otimes a \|_{\varepsilon}$.

Therefor T is a linear isometry of $L^{\alpha}(K) \otimes A$ into $L^{\alpha}(K, A)$. Now, we show that the range of T, R_T is a closed and dense subset of $L^{\alpha}(K, A)$. It is easy to see that R_T is closed. Let $f \in L^{\alpha}(K, A)$ and $\gamma > 0$. There exist $a_1, \ldots, a_n \in A$ such that $X := f(K) \subset \bigcup_{i=1}^n B(a_i, \gamma)$. Set $U_j = f^{-1}(B(a_j, \gamma))$ where $j = 1, \cdots, n$. Then there exist $f_1, \ldots, f_n \in L^{\alpha}(K, A)$ and $\sigma \in A^*$ such that $supp(f_j) \subset U_j$ for $j = 1, \ldots, n$ and $\sigma o(f_1 + \ldots + f_n) = 1$. For every $x \in K$ we have,

$$\| f(x) - ((\sigma of_1)a_1 + \dots + (\sigma of_n)a_n)(x) \|$$

= $\| f(x)((\sigma of_1)(x) + \dots + (\sigma of_n)(x)) - ((\sigma of_1)(x)a_1 + \dots + (\sigma of_n)(x)a_n) \|$
= $\| (\sigma of_1)(x)(f(x) - a_1) + \dots + (\sigma of_n)(x)(f(x) - a_n) \|$
 $\leq \sum_{i=1}^n | (\sigma of_i)(x) | \| f(x) - a_i \| < \gamma,$

since $supp f_j \subset U_j$. Therefore,

$$\parallel f - ((\sigma of_1)a_1 + \dots + (\sigma of_n)a_n) \parallel_{\alpha} < \gamma.$$

This implies that

$$\| f - \sum_{i=1}^{n} T(\sigma of_i, a_i) \|_{\alpha} < \gamma.$$

We conclude that $\overline{R}_T = L^{\alpha}(K, \alpha)$. Let τ and τ' be topologies on $L^{\alpha}(K) \check{\otimes} A$ and $L^{\alpha}(K, A)$ respectively. Let $U \in \tau$, we show that $T(U) \in \tau'$. Let p be a limit point in $L^{\alpha}(K, A) \setminus T(U)$. Then there exists a sequence $\{p_n\}$ in $L^{\alpha}(K, A) \setminus T(U)$ converges to p. Since T is onto, there is a sequence $\{q_n\}$ in $L^{\alpha}(K) \check{\otimes} A$ such that $T(q_n) = p_n$. Therefore $T(q_n)$ converges to p in $L^{\alpha}(K)$. Since $q_n \in L^{\alpha}(K) \check{\otimes} A$,

we can find $m \in \mathbb{N}$, $f_j^{(n)} \in L^{\alpha}(K)$ and $a_j^{(n)} \in A$ such that whenever $1 \le j \le m$ we have

$$T(q_n) = \sum_{j=1}^m f_j^{(n)} a_j^{(n)}.$$
(1)

Also, since $q \in L^{\alpha}(K) \check{\otimes} A$ there exist $r \in \mathbb{N}$, $g_i \in L^{\alpha}(K)$ and $b_i \in A$ such that

$$p = T(q) = \sum_{i=1}^{r} g_i b_i.$$
 (2)

Since $||T(q_n) - p||_{\alpha} \to 0$ as $n \to \infty$, for every positive number γ there exists a positive integer N such that

$$\|\sum_{j=1}^{m} f_j^{(n)} a_j^{(n)} - \sum_{i=1}^{r} g_i b_i \|_{\alpha} < \gamma,$$
(3)

when $n \ge N$. By applying (3), we have

$$\sup_{\substack{(x \in K) \\ (x \neq y)}} \left\| \sum_{j=1}^{m} f_{j}^{(n)}(x) a_{j}^{(n)} - \sum_{i=1}^{r} g_{i}(x) b_{i} \right\|$$

+
$$\sup_{\substack{(x \neq y) \\ (x \neq y)}} \frac{1}{d(x, y)^{\alpha}} \left\| \sum_{j=1}^{m} f_{j}^{(n)}(x) a_{j}^{(n)} - \sum_{i=1}^{r} g_{i}(x) b_{i} - \sum_{j=1}^{m} f_{j}^{(n)}(y) a_{j}^{(n)} + \sum_{i=1}^{r} g_{i}(y) b_{i} \right\|$$

< γ .

Therefore if $\sigma \in A^*$ with $\|\sigma\| \leq 1$ then

$$\begin{split} \sup_{(x \in K)} \| \sum_{j=1}^{m} f_{j}^{(n)}(x) \sigma(a_{j}^{(n)}) - \sum_{i=1}^{r} g_{i}(x) \sigma(b_{i}) \| \\ + \sup_{(x \neq y)} \frac{1}{d(x, y)^{\alpha}} \| \sum_{j=1}^{m} f_{j}^{(n)}(x) \sigma(a_{j}^{(n)}) - \sum_{i=1}^{r} g_{i}(x) \sigma(b_{i}) \sum_{j=1}^{m} f_{j}^{(n)}(y) \sigma(a_{j}^{(n)}) \\ + \sum_{i=1}^{r} g_{i}(y) \sigma(b_{i}) \| \\ < \gamma. \end{split}$$

This implies that

$$\|\sum_{j=1}^{m} f_{j}^{(n)} \sigma(a_{j}^{(n)}) - \sum_{i=1}^{r} g_{i} \sigma(b_{i})\|_{\alpha} < \gamma$$
(4)

Now by using (4), for every $\phi \in L^{\alpha}(K)^*$ with $\|\phi\|_{\alpha} \leq 1$ we have,

$$|\phi(\sum_{j=1}^{m} f_{j}^{(n)}\sigma(a_{j}^{(n)}) - \sum_{i=1}^{r} g_{i}\sigma(b_{i}))| < \gamma,$$

hence

$$\sum_{j=1}^{m} \phi(f_j^{(n)}) \sigma(a_j^{(n)}) - \sum_{i=1}^{r} \phi(g_i) \sigma(b_i) | < \gamma.$$
(5)

By (5), we conclude

$$\sup \left|\sum_{j=1}^{m} \phi(f_j^{(n)}) \sigma(a_j^{(n)}) - \sum_{i=1}^{r} \phi(g_i) \sigma(b_i)\right| < \gamma, \quad \|\sigma\| \le 1, \quad \|\phi\|_{\alpha} \le 1.$$
(6)

Therefore $||q_n - q||_{\epsilon} \leq \gamma$ and hence $q_n \to q$ or $q_n \to T^{(-1)}(p)$ in $L^{\alpha}(K) \check{\otimes} A$. This show that $p \in T(U)^c$ and the proof is complete.

Remark 2.7. By using the above theorem we can prove that $l^{\alpha}(K, A) \cong l^{\alpha}(K) \check{\otimes} A$.

3.(Weak) Amenability Of $L^{\alpha}(K, A)$

Let A be a Banach algebra and X be a Banach A-module over F. The linear map $D: A \to X$ is called an X-derivation on A, if D(ab) = D(a).b + a.D(b), for every $a, b \in A$. The set of all continues X-derivations on A is a vector space over F which is denoted by $Z^1(A, X)$. For each $x \in X$ the map $\delta_x : A \to X$, defined by $\delta_x(a) = a.x - x.a$, is a continues X-derivation on A. The X-derivation $D: A \to X$ is called an inner derivation on A if there exists an $x \in X$ such that $D = \delta_x$. The set of all inner X-derivations on A is a linear subspace of $Z^1(A, X)$ which is denoted by $B^1(A, X)$. The quotient space $Z^1(A, X)/B^1(A, X)$ is denoted by $H^1(A, X)$ and is called the first cohomology group of A with coefficients in X.

Definition 3.1. The Banach algebra A over F is called amenable if for every Banach A-module X over F, $H^1(A, X^*) = \{0\}$. The Banach algebra Aover F is called weakly amenable if $H^1(A, A^*) = \{0\}$.

The notion of amenability of Banach algebras were first introduced by B. E. Johnson in 1972 [8]. Bade, Curtis and Dales [2], studied the (weak) amenability of Lipschitz algebras in 1987 [2]. In this section, we study the (weak) amenability of $L^{\alpha}(K, A)$.

Definition 3.2. Let A be a commutative Banach algebra and let $\phi \in \Phi_A \cup \{0\}$. The non-zero linear functional D on A is called point derivation at ϕ if

$$D(ab) = \phi(a)D(b) + \phi(b)D(a), \quad (a, b \in A).$$

Lemma 3.3. For each non-isolated point $x \in K$ and $\sigma \in A^*$, if the map $\phi : L^{\alpha}(K, A) \to \mathbb{C}$ is given by

$$\phi(f) = (\sigma o f)(x), \quad (f \in L^{\alpha}(K, A))$$

 \triangle

then $\phi \in \Phi_{L^{\alpha}(K,A)}$. Proof.Obvious.

Let (K, d) be a fixed non-empty compact metric space, set

$$\Delta = \{ (x, y) \in K \times K : x = y \}, \quad W = K \times K - \Delta.$$

We now examine the amenability and weak amenability of Lipschitz operators algebras $L^{\alpha}(K, A)$ and $l^{\alpha}(K, A)$.

Theorem 3.4. Let (K, d) be an infinite compact metric space and take $\alpha \in (0, 1]$. Then $L^{\alpha}(K, A)$ is not weakly amenable. Proof. Let x be a non-isolated point in K. We define

$$W_x := \{\{(x_n, y_n)\}_{n=1}^{\infty} : (x_n, y_n) \in W, \quad (x_n, y_n) \to (x, x) \quad as \quad n \to \infty\}$$

For the net $w = \{(x_n, y_n)\}_{n=1}^{\infty}$ in W_x and $\sigma \in A^*$, we put

$$\overline{w}(f) = \frac{(\sigma o f)(x_n) - (\sigma o f)(y_n)}{d(x_n, y_n)^{\alpha}}, \quad (f \in L^{\alpha}(K, A))$$

then $\|\overline{w}(f)\|_{\infty} \leq \|\sigma\| \|f\|_{\alpha}$. Hence, \overline{w} is continues. Now set

$$D_w(f) = LIM(\overline{w}(f))$$
, $(f \in L^{\alpha}(K, A))),$

where LIM(.) is Banach limit [12]. We show that the linear map D_w is a non-zero point derivation at ϕ , which ϕ is given by Lemma 6. We have,

$$D_w(fg) = LIM(\overline{w}(fg))$$

$$= LIM\frac{(\sigma ofg)(x_n) - (\sigma ofg)(y_n)}{d(x_n, y_n)^{\alpha}}$$

$$= LIM\frac{1}{d(x_n, y_n)^{\alpha}} \left[\sigma o\left(f(x_n)g(x_n) - f(x_n)g(y_n)\right)\right]$$

$$= LIM\frac{1}{d(x_n, y_n)^{\alpha}} \left[\sigma o\left(f(x_n)(g(x_n) - g(y_n))\right)$$

$$+ g(y_n)(f(x_n) - f(y_n))\right)\right]$$

$$= (\sigma of)(x)LIM(\overline{w}(g)) + (\sigma og)(x)LIM(\overline{w}(g))$$

$$= \phi(f)D_w(g) + \phi(g)D_w(f)$$

Therefor, by the continuity f, g and properties of Banach limit we conclude D_w is a non-zero, continues point derivation at ϕ on $L^{\alpha}(K, A)$, an so by [5], $L^{\alpha}(K, A)$ is not weakly amenable.

Corollary 3.5. $L^{\alpha}(K, A)$ is not amenable.

Definition 3.6. A subset E of an abelian group G is said to be independent if E has the foolowing property: for every choice of distinct points x_1, \ldots, x_k of E and integers n_1, \ldots, n_k , either

$$n_1 x_1 = n_2 x_2 = \dots = n_k x_k = 0 \tag{2}$$

or

$$n_1 x_1 + n_2 x_2 + \dots + n_k x_k \neq 0$$
 (3)

In other words, no linear combination (3) can be zero unless every summands is zero, [10].

Theorem 3.7. Let $K \subseteq C$ be an infinite compact set, and take $\alpha \in (0, 1)$. Then $l^{\alpha}(K, A)$ is not amenable. Proof. Let $x_0 \in K$. We define

$$M_{x_0} := \{ f \in l^{\alpha}(K, A) : (\sigma o f)(x_0) = 0 \quad \forall \sigma \in A^* \}$$

If $\sigma \in A^*$, then for each $f \in M^2_{x_0}$ we have

$$\frac{(\sigma of)(x)}{d(x,x_0)^{2\alpha}} \longrightarrow 0 \quad as \quad d(x,x_0) \longrightarrow 0.$$

For $\beta \in (\alpha, 2\alpha)$, set $f_{\beta}(x) := \eta(d(x, x_0)^{\beta})$, $x \in K$ where, the map $\eta : \mathbb{C} \to A$ defined by $\eta(\lambda) = \lambda.e$. Then $f_{\beta} \in M_{x_0}$ and $\{f_{\beta} + M_{x_0}^2 : \beta \in (\alpha, 2\alpha)\}$ is a linearly independent set in $\frac{M_{x_0}}{M_{x_0}^2}$ because x_0 is non-isolated in K. Therefor $M_{x_0}^2$ has infinite codimension in M_{x_0} , and so $M_{x_0} \neq M_{x_0}^2$ then by [5] M_{x_0} has not a bounded approximate identity, and since M_{x_0} is closed ideal in $l^{\alpha}(K, A)$, then $l^{\alpha}(K, A)$ is not amenable.

Theorem 3.8. Let (K, d) be a compact metric space and A be a unital commutative Banach algebra. If $\frac{1}{2} < \alpha < 1$, then $l^{\alpha}(T, A)$ is not weakly amenable, where T is unit circle in complex plane.

Proof. By remark 7, we have $l^{\alpha}(T, A) \cong l^{\alpha}(T) \check{\otimes} A$. Since by [5] $l^{\alpha}(T)$ is not weakly amenable, hence $l^{\alpha}(T, A)$ is not weakly amenable.

Corollary3.9. Let A be a finite-dimensional weakly amenable Banach algebra. If $0 < \alpha < \frac{1}{2}$, then $l^{\alpha}(K, A)$ is weakly amenable. Proof. By [11], $l^{\alpha}(K) \hat{\otimes} A$ is weakly amenable. Now by [11], we have $l^{\alpha}(K) \hat{\otimes} A \cong l^{\alpha}(K) \check{\otimes} A$ and this implies that $l^{\alpha}(K) \check{\otimes} A$ is weakly amenable and so $l^{\alpha}(K, A)$ is weakly amenable. \bigtriangleup

References

[1] Alimohammadi, D. and Ebadian, A. *Headberg's theorem in real Lipschitz algebras*, Indian J. Pure Appl. Math, 32, (2001), 1479-1493.

[2] Bade, W. G., Curtis, P. C. and Dales, H. G., Amenability and weak amenability for Berurling and Lipschitz algebras, Proc. London. Math. Soc. (3), 55 (1987), 359-377, .

[3] Cao, H. X. and Xu, Z. B., Some properties of Lipschitz- α operators, Acta Mathematica Sinica, English Series, 45 (2), (2002), 279-286.

[4] Cao, H. X., Zhang, J. H. and Xu, Z. B., Characterizations and extentions of Lipschitz- α operators, Acta Mathematica Sinica, English Series, 22 (3), (2006), 671-678.

95

[5] Dales, H. G., *Banach algebras and Automatic Continuty*, Clarendon press. oxford, 2000.

[6] Ebadian, A., Prime ideals in Lipschitz algebras of finite differentable function, Honam Math. J., 22 (2000), 21-30, .

[7] Honary, T. G. Mahyar, H., Approximation in Lipschitz algebras, Quest. Math. 23, (2000), 13-19.

[8] Johnson, B. E., *Cohomology in Banach algebras*, Men. Amer. Soc, 127 (1972).

[9] Johnson, B. E., Lipschitz spaces, Pacfic J. Math, 51, (1975), 177-186.

[10] Rudin, W. Fourier analysis on groups, Wiley, 1990.

[11] Runde, Volker, Lectures on amenability, Springer, 2001.

[12] Sherbert, D. R., Banach algebras of Lipschitz functions, Pacfic J. Math, 13, (1963), 1387-1399.

[13] Sherbert, D. R., The structure of ideals and point derivations in Banach algebras of Lipschitz functions, Trans. Amer. Math. Soc., 111, (1964), 240-272.

[14] Weaver, N., Subalgebras of little Lipschitz algebras, Pacfic J. Math., 173, (1996), 283-293.

[15] Weaver, N., *Lipschitz algebras*, World Scientific Publishing Co., Inc., River Edge, NJ, 1999.

Authors:

A.A. Shokri

Faculty Of Basic Science, Science And Research Brunch, Islamic Azad University (IAU), Tehran, Iran. email:*a-shokri@iau-ahar.ac.ir*

A. Ebadian Department of mathematics, Faculty of science, Urmia University, Urmia, Iran. email: a.ebadian@urmia.ac.ir

A.R. Medghalchi Department of Mathematics, Tarbiat Moallem University, 599 Talegani Avenue, Tehran, Iran. email:*a-medghalchi@saba.tmu.ac.ir*

96