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Abstract.The G-star and the G-discrepancy are generalizations of the
well known star and the extreme discrepancy; thereby G denotes a given con-
tinuous distribution function on the d-dimensional unit cube [0, 1]d. We list
and prove some results that describe the behavior of the G-star and the G-
discrepancy in terms of the dimension d and the number of sample points
N .

Our main focus is on so-called mixed sequences, which are d-dimensional
hybrid-Monte Carlo sequences that result from concatenating a d′-dimensional
deterministic sequence q with a d′′-dimensional sequence X of independently
G-distributed random vectors (here d = d′+d′′). We show that a probabilistic
bound on the G-discrepancy of mixed sequence from [11] is unfortunately incor-
rect, and correct it by proving a new probabilistic bound for the G-discrepancy
of mixed sequences. Moreover this new bound exhibits for fixed dimension d
a better asymptotical behavior in N , and a similar bound holds also for the
G-star discrepancy.

2000 Mathematics Subject Classification: 11K36, 11K38, 11K45, 65C05.

1. Introduction

We consider the d-dimensional unit cube [0, 1]d endowed with the usual
σ-algebra of Borel sets. Let λG be a probability measure on [0, 1]d, and let G
be its distribution function, i.e., G(x) = λG([0, x)) for all x ∈ [0, 1]d, where
[0, x) denotes the d-dimensional subinterval [0, x1)× · · · × [0, xd).

Put Cd = {[0, x) |x ∈ [0, 1]d} (the set of d-dimensional “cubes”) and Rd =
{[y, z) | y, z ∈ [0, 1]d, y ≤ z} (the set of d-dimensional “rectangles”); here and
in the rest of this paper inequalities like y ≤ z are meant componentwise.
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The G-star discrepancy of a point set P = {p1, . . . , pN} is defined to be

D∗
G,N(P ) = sup

C∈Cd

∣∣∣∣∣ 1

N

N∑
i=1

1C(pi)− λG(C)

∣∣∣∣∣ ,
where 1C is the characteristic function of the set C. Furthermore, the G-
discrepancy of P is given by

DG,N(P ) = sup
R∈Rd

∣∣∣∣∣ 1

N

N∑
i=1

1R(pi)− λG(R)

∣∣∣∣∣ .
If p is an infinite sequence in [0, 1]d, then D∗

G,N(p) and DG,N(p) should be
understood as the discrepancies of its first N points. Let D∗

G(N, d) be the
smallest possible G-star discrepancy of any N -point set in [0, 1]d, and define
the inverse of the G-star discrepancy N∗

G(ε, d) by

N∗
G(ε, d) = min{N ∈ N |D∗

G(N, d) ≤ ε}.

Analogously, we define DG(N, d) and NG(ε, d). Observe that we always have
D∗

G,N(P ) ≤ DG,N(P ) for all N -point sets P ⊂ [0, 1]d, and consequently

D∗
G(N, d) ≤ DG(N, d) and N∗

G(ε, d) ≤ NG(ε, d).

In the case where λG is the ordinary d-dimensional Lebesgue measure λd

restricted to [0, 1]d, we simply omit any reference to the corresponding distribu-
tion function. The associated discrepancies D∗

N(P ) and DN(P ) are the well-
known star discrepancy and the extreme discrepancy (sometimes also called
unanchored discrepancy or simply discrepancy). (Notice that our denomina-
tions G-star and G-discrepancy differ a bit from the denominations, e.g., in
[8, 11]. We chose these names, because they are consistent with the classical
names “star discrepancy” and “discrepancy”.)

G-star and G-discrepancy have, e.g., applications in quasi-Monte Carlo
importance sampling, see [1, 8]. Here we are especially interested in the be-
havior of the G-star and G-discrepancy with respect to the dimension d. The
following Theorem is a direct consequence of [4, Theorem 4].

Theorem 0.1. There exists a universal constant C > 0 such that for every d
and each probability measure λG on [0, 1]d we have for all N ∈ N

D∗
G(N, d) ≤ C d1/2N−1/2 and DG(N, d) ≤

√
2 C d1/2N−1/2. (1)
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This implies

N∗
G(ε, d) ≤ dC2d ε−2e and NG(ε, d) ≤ d2 C2d ε−2e. (2)

The dependence of the inverses of the G-star and the G-discrepancy on
d in (2) can in general not be improved. This was shown by a lower bound
on the inverse of the star discrepance in [4], which is, of course, also a lower
bound of the extreme discrepancy. An improved lower bound was presented
by A. Hinrichs in [5]. To state it in a quite general form, let us quickly recall
the notion of covering numbers.

For a class K of measurable subsets of [0, 1]d we define the pseudo-metric
dλG

= dG by dG(K, K ′) = λG(K4K ′) for all K,K ′ ∈ K; here K4K ′ denotes
the symmetric difference (K \ K ′) ∪ (K ′ \ K) of K and K ′. The covering
number N(G;K, ε) is the smallest number of closed ε-balls BK(G; K, ε) =
{K ′ ∈ K | dG(K, K ′) ≤ ε} that cover K.

Theorem 4 from [5] gives us in particular:

Theorem 0.2. Let λG be an arbitrary probability measure on [0, 1]d. Assume
that there exists a constant κ ≥ 1 such that

N(G; Cd, ε) ≥ (κε)−d for all ε ∈ (0, 1]. (3)

Then there exist constants c, ε0 > 0 such that

D∗
G(N, d) ≥ min{ε0, cd/N} for all N ∈ N (4)

and
N∗

G(ε, d) ≥ cd/ε for all ε ∈ (0, ε0). (5)

We want to stress that the constants c, ε0 do not depend on the dimension
d. Indeed, following the proof of [5, Theorem 4] one observes that (4) and (5)
hold for the choice c = ε0 = 1/4κe.

2. A Result on Covering Numbers

The question that arises here is for which measures λG do we have a lower
bound on the covering number of the form (3)?

If λG is a discrete measure of, e.g., the form λG(A) = (1/M)
∑M

i=1 1A(pi) for
P = {p1, . . . , pM} ⊂ [0, 1]d, then N(G; Cd, ε) ≤ |{P ∩C |C ∈ Cd}| =: µP ≤ 2M .
(Due to Sauer’s Lemma, see, e.g., [13, Sect.2.6], one gets actually even the
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better bound µP ≤
∑d

j=0

(
M
j

)
.) Indeed, if one chooses sets C1, . . . CµP

∈ Cd

such that |{P ∩ Ci | i = 1, . . . , µP}| = µP , then the ε-balls BCd
(G; Ci, ε), i =

1, . . . , µP , cover Cd. Hence in this case (3) does obviously not hold. On the
other hand we get in this case D∗

G(kM, d) = 0 for all k ∈ N, showing that
the bound (4) does also not hold. In general, discrete measures do imply less
interesting integration problems, since the integral itself is already a cubature
formula. Thus approximating the integral via a cubature is trivial (at least if
we know the discrete measure explicitly).

So let us confine to another class of distribution functions G, which is
interesting for the mixed sequences we want to study in the next section. A
distribution function G is in G if we have for i = 1, . . . , d integrable functions
gi : [0, 1] → [0,∞) satisfying

∫ 1

0
gi(t) dt = 1, and if Gi(x) =

∫ x

0
gi(t) dt and

G(x) = G1(x1) . . . Gd(xd) for all x ∈ [0, 1]d. In particular, all distribution
functions in G are continuous functions on [0, 1]d.

For this restricted class of measures the covering number does not depend
on the particular choice of G:

Proposition 0.3. For all d ∈ N and all G ∈ G we have

N(G; Cd, ε) = N(Cd, ε) for all ε ∈ (0, 1]. (6)

In particular, we have

N(G; Cd, ε) ≥ (8eε)−d for all ε ∈ (0, 1]. (7)

Before starting with the proof, let us define the generalized inverse func-
tions

Gi(t) = inf{s ∈ [0, 1] |Gi(s) = t} and Gi(t) = sup{s ∈ [0, 1] |Gi(s) = t};
(8)

these functions are well defined since the mapping Gi : [0, 1] → [0, 1] is sur-
jective. Put G(x) = (G1(x1), . . . , Gd(xd)) and G(x) = (G1(x1), . . . , Gd(xd))
for all x ∈ [0, 1]d. Let us consider functions G−

i with Gi ≤ G−
i ≤ Gi. As Gi

and Gi also G−
i is a right inverse of Gi, i.e., we have Gi(G

−
i (t)) = t for all

t ∈ [0, 1]. (Observe that any right inverse of Gi has necessarily to be of the
form G−

i .) Notice that if Gi is injective, then there exists an inverse G−1
i and

we obviously have G−1
i = Gi = Gi = G−

i . Put Ĝ(x) = (G1(x1), . . . , Gd(xd))

and Ĝ−(x) = (G−
1 (x1), . . . , G

−
d (xd)). We have Ĝ(Ĝ−(x)) = x for all x ∈ [0, 1]d.
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Proof of Proposition 0.3. For general ζ ∈ [0, 1]d and z = Ĝ(ζ) we have

λG([0, ζ)) = G(ζ) = G1(ζ1) . . . Gd(ζd) = z1 . . . zd = λd([0, z)). (9)

Now let x1, . . . , xm ∈ [0, 1]d be such that the ε-balls BCd
([0, xi), ε), i = 1, . . . ,m,

cover Cd. Then also the ε-balls BCd
(G; [0, Ĝ−(xi)), ε), i = 1, . . . ,m, cover Cd.

To see this, let η ∈ [0, 1]d be arbitrary, and let y = Ĝ(η). Then we find
an i ∈ {1, . . . ,m} such that [0, y) ∈ BCd

([0, xi), ε), which is equivalent to
λd([0, y)4[0, xi)) ≤ ε. Now

λd([0, y)4[0, xi)) =λd([0, y) \ [0, xi)) + λd([0, x
i) \ [0, y))

=λd([0, y)) + λd([0, x
i))− 2λd([0, y ∧ xi)),

where (y ∧ xi)j = min{yj, x
i
j}. Similarly,

λG([0, η)4[0, Ĝ−(xi))) = λG([0, η)) + λG([0, Ĝ−(xi)))− 2λG([0, η ∧ Ĝ−(xi))).

Since y = Ĝ(η), xi = Ĝ(Ĝ−(xi)), and y ∧ xi = Ĝ(η ∧ Ĝ−(xi)), we get from (9)

λG([0, η)4[0, Ĝ−(xi))) = λd([0, y)4[0, xi)) ≤ ε,

implying [0, η) ∈ BCd
(G; [0, Ĝ−(xi)), ε). Thus we have shown that N(Cd, ε) ≥

N(G; Cd, ε). Similarly, if we have ξ1, . . . , ξk ∈ [0, 1]d such that the ε-balls

BCd
(G; [0, ξi), ε), i = 1, . . . , k, cover Cd, then also the ε-balls BCd

([0, Ĝ(ξi)), ε),
i = 1, . . . , k, cover Cd. This gives N(Cd, ε) ≤ N(G; Cd, ε).

The bound (7) was established by A. Hinrichs for N(Cd, ε) in the course
of the proof of [5, Theorem 2]. Identity (6) shows that it is true for general
G ∈ G.

Corollary 0.4. Let d ∈ N, and let G ∈ G. Then the bounds (4) und (5) hold
for c = ε0 = 1/32e2.

3. Mixed Sequences

Let d, d′, d′′ ∈ N with d = d′+d′′. Let G ∈ G, and let G′, G′′ be the uniquely
determined distribution functions on [0, 1]d

′
and [0, 1]d

′′
respectively that satisfy

G(x) = G′(x′)G′′(x′′) for all x = (x′, x′′) ∈ [0, 1]d
′ × [0, 1]d

′′
. Furthermore, let

q = (qk) be a deterministic sequence in [0, 1)d′
, and let X = (Xk) be a sequence
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of independent G′′-distributed random vectors in [0, 1)d′′
. The resulting d-

dimensional sequence m = (mk) = (qk, Xk) is called a mixed sequence. (Other
authors call m a mixed sequence if q is a low-discrepancy sequence. Since the
latter property is irrelevant for the proof of our main result on mixed sequences,
Theorem 0.9, we do not require it here.)

Compared to pure Monte Carlo or quasi-Monte Carlo methods, mixed se-
quences based on low-discrepancy sequences showed a favorable performance in
many numerical experiments. They were introduced by J. Spanier in [12] and
studied further in several papers, see, e.g., [3,6,7,9,11]. Probabilistic bounds
for the star discrepancy of mixed sequences were provided in [3,9], and deter-
ministic bounds were derived in the recent paper [6]. In this section we want
to provide probabilistic bounds for the G-star and G-discrepancy of m.

3.1 An Error Correction

Such a result was published in [11, Theorem 8], which states

If q satisfies DG′,N(q) ≤ O(log(N)d′
/N) for N ≥ 2, then we have for all

ε > 0

P
(
DG,N(m) ≤ ε + DG′,N(q)

)
≥ 1− 1

ε2

1

4N
(DG′,N(q) + 1). (10)

We will show now that this result is unfortunately incorrect, regardless of
the distribution function G ∈ G: Assume (10) is true. Let ε ∈ (0, 1/2] be
given. Choose d′ = 1. There exists a C > 0 such that DG′,N(q) ≤ C log(N)/N
for N ≥ 2. Let us consider N large enough to satisfy C log(N)/N < ε/2.
Recall that DG′,N(q) ≤ 1. Then (10) implies for the mixed sequence m

P
(
DG,N(m) ≤ ε

)
≥P
(
DG,N(m) ≤ (ε− C log(N)/N) + DG′,N(q)

)
≥ 1− 1

(ε− C log(N)/N)2

1

2N
≥ 1− 2

Nε2
.

It is easy to see that there exists a constant K independent of d and ε such that
for all N ≥ Kε−2 the inequalities C log(N)/N < ε/2 and P (DG,N(m) ≤ ε) > 0
hold. Hence, for each d ∈ N and each N ≥ Kε−2 there exists in particular an
N -point set P ⊂ [0, 1)d such that DG,N(P ) ≤ ε. Thus NG(ε, d) ≤ dKε−2e for
all d ∈ N, contradicting Corollary 0.4, which says that for ε < 1/32e2 we have
NG(ε, d) ≥ N∗

G(ε, d) ≥ d/32e2ε.
Since the statement of [11, Theorem 8] is incorrect, the proof has to be in-

correct, too. The source of the incorrectness is [11, Lemma 7] whose statement
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is ambigious (an all-quantifier “∀J” is missing in some place in the if-condition)
and which is used for an inadmissable conclusion in the proof of [11, Theorem
8].

Remark 0.5. In [11, Corollary 6] it was shown for a mixed sequence m that

Var

(
1

N

N∑
k=1

1J(mk)− λG(J)

)
≤ 1

4N
(DG′,N(q) + 1),

where J ∈ Rd and the variance is taken with respect to the random variables
X1, X2, . . .. In fact a better result holds, namely

Var

(
1

N

N∑
k=1

1J(mk)− λG(J)

)
≤ 1

4N
.

To realize this, one has to estimate the sum
∑N

k=1 1J ′(qk)/N appearing in the
course of the proof of [11, Corollary 6] by 1. The same is true for the analogous
estimate in [7, Lemma 1].

3.2 New Probabilistic Bounds

Now we derive correct probabilistic bounds for the G-star and G-discrepancy
of a mixed sequence, which additionally exhibit a better asymptotical behavior
in N than the incorrect bound (10). First we define G-δ-covers and prove two
helpful results about them.

Definition 0.6. Let δ ∈ (0, 1], and let Kd ∈ {Cd,Rd}. A finite set Γ ⊂
Kd is called a G-δ-cover of Kd if for all B ∈ Kd there are A, C ∈ Γ ∪ {∅}
such that A ⊆ B ⊆ C and λG(C) − λG(A) ≤ δ. We put N (G;Kd, δ) :=
min{|Γ| |Γ is a G-δ-cover of Kd}.

In the case where Kd = Cd, it is convenient to identify the elements [0, x)
of Cd with their upper right edge points x. Following this convention, we view
δ-covers of Cd as finite subsets of [0, 1]d.

Proposition 0.7. For all d ∈ N and all G ∈ G we have for all δ ∈ (0, 1]

N (G; Cd, δ) = N (Cd, δ) and N (G;Rd, δ) = N (Rd, δ). (11)
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Proof. Let Γ be a δ-cover of Cd. Put ΓG := {G(x) |x ∈ Γ}. Then |ΓG| = |Γ|
(since G is injective). Let η ∈ [0, 1)d be given and y = Ĝ(η). There exist x
,z ∈ Γ ∪ {0} with x ≤ y ≤ z and λd([0, z))− λd([0, x)) ≤ δ. If yi 6= 0 for all i,
then it is easy to see that we can choose x and z in such a way that xi < yi

for all i. (Consider for ε sufficiently small vectors y−ε := (y1 − ε, . . . , yd − ε).
Since Γ is finite, we find x, z ∈ Γ ∪ {0} with λd([0, z)) − λd([0, x)) ≤ δ such
that for infinitely many ε > 0 we have y−ε ∈ [x, y]. Hence y ∈ [x, y] and

xi < yi for all i.) Since Ĝ is non-decreasing with respect to each component,
we have G(x) ≤ η ≤ G(z). Furthermore, λG([0, G(z))) − λG([0, G(x))) =
λd([0, z))−λd([0, x)) ≤ δ. If yi = 0 for some i, then λd([0, x)) = 0. Thus we get
0 ≤ η ≤ G(z) and λG([0, G(z))) − λG([0, 0)) = λG([0, G(z))) = λd([0, z)) ≤ δ.
Hence ΓG is a G-δ-cover of Cd. Thus N (G; Cd, δ) ≤ N (Cd, δ).

Let now ΓG be an arbitrary G-δ-cover of Cd. Then it is easily verified that
Γ := {Ĝ(ξ) | ξ ∈ ΓG} is a δ-cover of Cd with |Γ| ≤ |ΓG|. Hence N (G; Cd, δ) ≥
N (Cd, δ).

Let Γ̃ be a δ-cover of Rd. We may assume ∅ /∈ Γ̃. Put

Γ̃G := {[G(x), G(z)) | [x, z) ∈ Γ̃}.

We have |Γ̃G| = |Γ̃|. Let B := [ξ, η) ∈ Rd \ {∅} be given, and let B̂ :=

[Ĝ(ξ), Ĝ(η)). Then there exist Â, Ĉ ∈ Γ̃ ∪ {∅} with Â ⊆ B̂ ⊆ Ĉ and λd(Ĉ)−
λd(Â) ≤ δ. If B̂ 6= ∅, we may assume that Â = [x, x) with Ĝi(ξi) < xi ≤ xi <

Ĝi(ηi) for all i. (Consider for ε sufficiently small boxes B̂ε = [Ĝ(ξ)+ε, Ĝ(η)−ε).

Since Γ̃ is finite, we find Â, Ĉ ∈ Γ̃ ∪ {∅} with λd(Ĉ) − λd(Â) ≤ δ such that

Â ⊆ B̂ε ⊆ Ĉ for infinitely many ε > 0. These Â and Ĉ do the job.) But

then [G(x), G(x)) ⊆ [ξ, η), since Ĝ is non-decreasing with respect to each

component. In any case, we have for Ĉ = [z, z) that [ξ, η) ⊆ [G(z), G(z)).
Furthermore,

λG([G(z), G(z)))− λG([G(x), G(x)))

=
d∏

i=1

(Gi(Gi(zi))−Gi(Gi(zi)))−
d∏

i=1

(Gi(Gi(xi))−Gi(Gi(xi)))

=
d∏

i=1

(zi − zi)−
d∏

i=1

(xi − xi) = λd(Ĉ)− λd(Â) ≤ δ.

If B̂ = ∅, then λd(Â) = 0. If Ĉ = [z, z), we thus have ∅ ⊆ B ⊆ [G(z), G(z))
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and λG([G(z), G(z))) − λG(∅) ≤ δ. This shows that Γ̃G is a G-δ-cover of Rd.
Thus N (G;Rd, δ) ≤ N (Rd, δ).

Again, the second inequality is easier to show; for any G-δ-cover Γ̃G of Rd

the set Γ̃ := {[Ĝ(ξ), Ĝ(ζ)) | [ξ, ζ) ∈ Γ̃G} is a δ-cover of Rd with |Γ̂| ≤ |Γ̃G|.

From [2, Thm. 1.15] we know thatN (Cd, δ) ≤ (2d)d(δ−1+1)d/d! ≤ (2e)d(δ−1+
1)d. In [2, Lemma 1.17] the inequality N (Rd, δ) ≤ N (Cd, δ/2)2 was proved.
Thus we get from Proposition 0.7

N (G; Cd, δ) ≤ (2e)d(δ−1 + 1)d and N (G;Rd, δ) ≤ (2e)2d(2δ−1 + 1)2d. (12)

One may use δ-covers to discretize the G-star or G-discrepancy at the cost
of a discretization error at most δ.

Lemma 0.8. Let P = {p1, . . . , pN} ⊂ [0, 1]d. Let Γ be a G-δ-cover of Cd, then

D∗
G,N(P ) ≤ D∗

G,N,Γ(P ) + δ, where

D∗
G,N,Γ(P ) := max

x∈Γ

∣∣∣∣∣λG([0, x))− 1

N

N∑
j=1

1[0,x)(p
j)

∣∣∣∣∣ .
Let Γ̃ be a G-δ-cover of Rd, then

DG,N(P ) ≤ DG,N,Γ̃(P ) + δ, where

DG,N,Γ̃(P ) := max
R∈Γ̃

∣∣∣∣∣λG(R)− 1

N

N∑
j=1

1R(pj)

∣∣∣∣∣ .
Proof. Let B ∈ Rd. Then we find A, C ∈ Γ̃ ∪ {∅} such that A ⊆ B ⊆ C and
λG(C)− λG(A) ≤ δ. Hence we get

λG(A)+δ− 1

N

N∑
j=1

1A(pj) ≥ λG(B)− 1

N

N∑
j=1

1B(pj) ≥ λG(C)−δ− 1

N

N∑
j=1

1C(pj).

From this the statement for the G-discrepancy follows. Similarly, one shows
the statement for the G-star discrepancy.

Theorem 0.9. Let q = (qk) be a deterministic sequence in [0, 1)d′
, X = (Xk)

be a sequence of independent and G-distributed random vectors in [0, 1)d′′
, and
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let m = (mk) = (qk, Xk) be the resulting d-dimensional mixed sequence. Then
we have for all ε ∈ (0, 1]

P
(
D∗

G,N(m)−D∗
G′,N(q) < ε

)
> 1− 2N (G; Cd, ε/2) exp

(
−ε2N

2

)
(13)

and

P
(
DG,N(m)−DG′,N(q) < ε

)
> 1− 2N (G;Rd, ε/2) exp

(
−ε2N

2

)
. (14)

Let θ ∈ [0, 1). We have with probability strictly larger than θ

D∗
G,N(m) < D∗

G′,N(q) +

√
2

N

(
d ln(ρ) + ln

(
2

1− θ

))1/2

, (15)

where ρ = ρ(N, d) := 6e(max{1 , N/(2 ln(6e)d)})1/2, and

DG,N(m) < DG′,N(q) +

√
2

N

(
2d ln(ρ̃) + ln

(
2

1− θ

))1/2

, (16)

where ρ̃ = ρ̃(N, d) := 5e(max{1 , N/(ln(5e)d)})1/2.

Remark 0.10. In front of the exponential function in the bounds (13) and
(14) there necessarily has to appear a function depending exponentially on the
dimension d: If we have a bound of the form P

(
D∗

G,N(m) − D∗
G′,N(q) ≤ ε

)
≥

1− f(q; d, ε) exp
(
− ε2N

2

)
for all ε in some interval (0, ε∗], all d > d′ and all N

(or an analoguous bound for the G-discrepancy of mixed sequences), then for
a low-discrepancy sequence q and all ε sufficiently small the function f(q; d, ε)
has to increase at least exponentially in d. This was proved in [3, Remark
2.6] for the case of the classical star discrepancy, and the proof can easily be
transfered to the case of the G-star and G-discrepancy.

Proof of Theorem 0.9. Let R ∈ Rd, and let R′ ∈ Rd′ , R′′ ∈ Rd′′ such that
R = R′×R′′. Put ξk = ξk(R) := λG(R)− 1R(mk) for k = 1, 2, . . .. The ξk, k =
1, 2, . . ., are independent random variables with E(ξk) = λG′′(R′′)(λG′(R′) −
1R′(qk)). Thus we have∣∣∣∣∣E

(
1

N

N∑
k=1

ξk

)∣∣∣∣∣ = λG′′(R′′)

∣∣∣∣∣λG′(R′)− 1

N

N∑
k=1

1R′(qk)

∣∣∣∣∣ ≤ DG′,N(q).
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Let δ := ε/2. Then Hoeffding’s inequality (see, e.g., [10, p.191]) gives us

P

(∣∣∣∣∣ 1

N

N∑
k=1

ξk

∣∣∣∣∣ ≥ DG′,N(q) + δ

)
≤ P

(∣∣∣∣∣ 1

N

N∑
k=1

(ξk − E(ξk))

∣∣∣∣∣ ≥ δ

)
≤ 2 exp(−2δ2N).

(17)

Now let Γ̃ be a minimal G-δ-cover of Rd. Then Lemma 0.8 and (17) gives us

P
(
DG,N(m)−DG′,N(q) < ε

)
≥P
(
DG,N,Γ̃(m)−DG′,N(q) < δ

)
=1− P

(
DG,N,Γ̃(m) ≥ DG′,N(q) + δ

)
≥1−

∑
R∈Γ̃

P

(∣∣∣∣∣ 1

N

N∑
k=1

ξk(R)

∣∣∣∣∣ ≥ DG′,N(q) + δ

)
>1− 2|Γ̃| exp

(
−2δ2N

)
.

(In the last estimate we obtained “>”, since we have necessarily I = [0, 1)d ∈ Γ̃
and ξk(I) = 0 for all k.) This proves (14).

Now 1− 2|Γ̃| exp(−2δ2N) ≥ θ iff

δ2 ≥ 1

2N

(
ln |Γ̃|+ ln

(
2

1− θ

))
. (18)

Due to (12) we have |Γ̃| ≤ (2e)2d(2δ−1 + 1)2d. Therefore it is easily verified

that (18) holds if we choose δ to be δ =
√

1
2N

(
2d ln(ρ̃) + ln

(
2

1−θ

))1/2
. This

proves that (16) holds with probability > θ.
The verification of (13) and (15) can be done with the same proof sheme

and was done in [3, Theorem 3.3] for the classical star discrepancy.

3.3 An Alternative Approach

One could prove a version of Theorem 0.9 without proving the results on
G-δ-covers in Proposition 0.7 and Lemma 0.8, and proving instead the next
theorem on the G-star discrepancy and a similar one for the G-discrepancy:

Theorem 0.11. Let d ∈ N, and let G ∈ G. Let P = {p1, . . . , pN} ⊂ [0, 1)d.
Then

D∗
N(Ĝ(P )) ≤ D∗

G,N(P ). (19)
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Under the additional assumption Ĝ(P ) ⊂ [0, 1)d we get

D∗
N(Ĝ(P )) = D∗

G,N(P ). (20)

In particular, for all P = {p1, . . . , pN} ⊂ [0, 1)d and a right inverse Ĝ− of Ĝ
as defined above we get

D∗
N(P ) = D∗

G,N(Ĝ−(P )). (21)

Remark 0.12. Without the condition Ĝ(P ) ⊂ [0, 1)d the bound D∗
G,N(P ) ≤

D∗
N(Ĝ(P )) does not necessarily hold as the following simple example reveals:

Let d = 2, G1(x) = min{1, 2x}, and G2(x) = x. Furthermore, let ε ∈
(0, 1/2) and P = {p1, p2} with p1 = (1/4, ε), p2 = (1/2, ε). Then Ĝ(P ) =

{(1/2, ε), (1, ε)} and D∗
N(Ĝ(P )) = 1/2 < 1− ε = D∗

G,N(P ).

Using Theorem 0.11 and [3, Theorem 3.3]Note one can conclude (13) and

(15) under the additional assumption that Ĝ′(qk) ∈ [0, 1)d′
for all k. This

assumption seems a little bit artificial to us and is—as Theorem 0.9 shows—
in fact unnecessary. Apart from that, even if one proves a result similar to
Theorem 0.11 for the G-discrepancy, one still has to establish (14) and (16)
for the classical extreme discrepancy.

In the case where the density function g of G is strictly positive, identity
(21) is covered by the statement of [8, Lemma 4.1]. Since we only require that
the density function g is non-negative and since in the proof of [8, Lemma
4.1] only the case d = 1 is treated explicitly, we give here a rigorous proof of
Theorem 0.11

Proof of Theorem 0.11. Let us start by showing (19): Let x ∈ [0, 1]d be given.

Then λd([0, x)) = λG([0, G(x))). Let p ∈ [0, 1)d. Then Ĝ(p) ∈ [0, x) =

[0, Ĝ(G(x))) iff p ∈ [0, G(x)), since Ĝ is monotone increasing with respect
to every component. This gives∣∣∣∣∣ 1

N

N∑
i=1

1[0,x)(Ĝ(pi))− λd([0, x))

∣∣∣∣∣ =

∣∣∣∣∣ 1

N

N∑
i=1

1[0,G(x))(p
i)− λG([0, G(x)))

∣∣∣∣∣ .
This shows that D∗

N(Ĝ(P )) ≤ D∗
G,N(P ).

Let us now additionally assume that Ĝ(P ) ⊂ [0, 1)d and prove D∗
G,N(P ) ≤

D∗
N(Ĝ(P )): Let ζ ∈ [0, 1]d be given and z = Ĝ(ζ). Then λG([0, ζ)) = λd([0, z)).
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Let p ∈ [0, 1)d with Ĝ(p) ∈ [0, 1)d. Since Ĝ(p) ∈ [0, z) implies p ∈ [0, ζ), we

obtain λG([0, ζ))− 1
N

∑N
i=1 1[0,ζ)(p

i) ≤ λd([0, z))− 1
N

∑N
i=1 1[0,z)(Ĝ(pi)).

Since Ĝ is not necessarily injective, we cannot conclude from p ∈ [0, ζ)

that Ĝ(p) ∈ [0, z) holds. So let us define zi(ε) = min{zi + ε, 1} for ε > 0
and i = 1, . . . , d. For all i ∈ {1, . . . , d} we get the following: If zi = 1,
then Gi(pi) ∈ [0, zi) = [0, zi(ε)). If zi < 1, then we get from pi < ζi that

Gi(pi) ≤ Gi(ζi) = zi < zi(ε). Thus p ∈ [0, ζ) always implies Ĝ(p) ∈ [0, z(ε)).
With δ(ε) = λd([0, z(ε)))− λd([0, z)) we get

1

N

N∑
i=1

1[0,ζ)(p
i)− λG([0, ζ)) ≤ 1

N

N∑
i=1

1[0,z(ε))(Ĝ(pi))− λd([0, z))

=
1

N

N∑
i=1

1[0,z(ε))(Ĝ(pi))− λd([0, z(ε))) + δ(ε).

Since we have limε→0 δ(ε) = 0, we obtain

1

N

N∑
i=1

1[0,ζ)(p
i)− λG([0, ζ)) ≤ sup

ε>0

∣∣∣∣∣ 1

N

N∑
i=1

1[0,z(ε))(Ĝ(pi))− λd([0, z(ε)))

∣∣∣∣∣ .
These arguments establish D∗

G,N(P ) ≤ D∗
N(Ĝ(P )). Thus identity (20) holds.

Then identity (21) follows immediately, since D∗
N(P ) = D∗

N(Ĝ(Ĝ−(P ))) =

D∗
G,N(Ĝ−(P )).
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for the star-discrepancy, J. Complexity, 20, (2004), 477–483.

[6] H. Niederreiter, On the discrepancy of some hybrid sequences, preprint,
2008, 20 pp..
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Babeş-Bolyai University
Faculty of Economics and Business Administration
Str. Teodor Mihali, Nr. 58-60, Cluj-Napoca, Romania
email: alin.rosca@econ.ubbcluj.ro

110


