
ACTA UNIVERSITATIS APULENSIS No 18/2009

EFFICIENT OFFLINE ALGORITHMIC TECHNIQUES FOR
SEVERAL PACKET ROUTING PROBLEMS IN DISTRIBUTED

SYSTEMS

Mugurel Ionuţ Andreica, Nicolae Ţăpuş

Abstract. In this paper we consider several problems concerning packet
routing in distributed systems. Each problem is formulated using terms from
Graph Theory and for each problem we present efficient, novel, algorithmic
techniques for computing optimal solutions. We address topics like: bottleneck
paths (trees), optimal paths with non-linear costs, optimal paths with multiple
optimization objectives, maintaining aggregate connectivity information under
a sequence of network link failures, and several others.

2000 Mathematics Subject Classification: 90B18, 90B20, 90B25, 90B35,
90C27, 90C35, 90C39, 90C47, 94A05.

1. Introduction

The development of distributed systems worldwide follows a steeper and
steeper ascending trend, as such systems become natural solutions to many
real-life problems. Communication (at a lower level) and collaboration (at a
higher level) are two key elements of a distributed system. At the lowest level,
packet routing techniques are employed by the intermediate nodes, switches
and routers in order to transfer packets from a source to one or several des-
tinations. However, we have little control over the packet routing techniques
employed by the routers in the Internet and, furthermore, the Internet does
not provide any kind of Quality-of-Service (QoS) guarantees. Because of this,
devising new communication architectures and novel, efficient packet routing
algorithms and techniques is an important step towards obtaining increased
communication performance and QoS guarantees.

111



M. I. Andreica, N. Ţăpuş - Efficient Offline Algorithmic Techniques...

In this paper we present novel algorithmic techniques for several offline
packet routing problems. The offline property means that all the required
information is stable and available in advance. Moreover, it is assumed that
we have full control over the entire distributed system and its topology. These
assumptions are somewhat unrealistic for a practical setting if we consider the
entire distributed system. However, they are useful as a theoretical basis for
evaluating the performance of online techniques, and as practical tools, if we
restrict their scope to limited parts of a large distributed systems.

The rest of this paper is structured as follows. In Sections 2− 5 we discuss
several problems regarding bottleneck paths (trees). We present (nearly) opti-
mal algorithms both for computing only one such path (tree) and for answering
efficiently multiple path computation queries. In Sections 6 − 9 we consider
several optimization problems regarding optimal paths with non-linear costs,
ordering constraints, or multiple objectives. In Section 10 we consider the
problem of maintaining aggregate connectivity information under a sequence
of edge deletions in an undirected network. In Section 11 we present related
work and in Section 12 we conclude.

2. Maximum Capacity Path (Tree)

We are given a directed graph with n vertices and m edges. Each directed
edge (u, v) has a capacity c(u, v) ≥ 0. In the Unconstrained Maximum Capac-
ity Path problem we need to find a path having maximum capacity between
a pair of vertices s and t. A path is a sequence of vertices v(1), v(2), . . . , v(q)
(q > 0), where v(1) = s, v(q) = t and there exists a directed edge (v(i), v(i+1))
(1 ≤ i ≤ q − 1). The capacity of the path is the minimum capacity of the
edges composing the path, i.e. min{c(v(i), v(i + 1))|1 ≤ i ≤ q − 1}. In order
to find a maximum capacity path from s to t, we can use a modified Dijk-
stra’s algorithm. We will compute cmax(i)=the maximum capacity of a path
from s to i and, when expanding a vertex i, we consider every directed edge
(i, j) and update cmax(j) to max{cmax(j), min{cmax(i), c(i, j)}} (initially,
we have cmax(s) = +∞ and cmax(i) = 0, for i 6= s). cmax(t) contains
the maximum capacity of a path from s to t. By storing ”parent” pointers
(parent(j) = i, if i was the last vertex whose expansion updated cmax(j)),
we can reconstruct the actual path (from s to t). The time complexity of this
approach is O(m·log(n)) (when implementing Dijkstra’s algorithm using a pri-
ority queue) or O(n2). If the capacities are integer numbers bounded by a small
constant CAPMAX, the time complexity can become O(n+m+CAPMAX),

112



M. I. Andreica, N. Ţăpuş - Efficient Offline Algorithmic Techniques...

by maintaining a linked-list LL(c) for every possible value of the capacity c
(0 ≤ c ≤ CAPMAX). Initially, LL(CAPMAX) contains only the vertex s
(or, if we start from multiple sources, LL(CAPMAX) contains all of these
sources) and LL(0) contains all the other vertices. We traverse the capacities
from CAPMAX down to 0 and for each capacity c we traverse the linked-list
LL(c) and expand every vertex i in it (this means that cmax(i) = c). When
expanding a vertex i, we consider all the edges (i, j) and update cmax(j) (as
before). If the value cmax(j) changes, we remove vertex j from its old linked-
list and insert it into LL(cmax(j)) (it is possible even that cmax(j) = c). A
variation of this technique uses lazy deletion, i.e. it does not delete the vertex
j from its old linked-list and just copies it to the new linked-list (correspond-
ing to a higher capacity). Then, when traversing the vertices i ∈ LL(c), we
also need to verify if cmax(i) = c; if it is not, then this occurrence of the
vertex i is ”old” and will be ignored. Another approach is based on binary
searching the capacity Cpath of the path from s to t. We choose a candidate
capacity Cpath and then we perform a feasibility test, in order to verify if a
path with capacity larger than or equal to Cpath exists from s to t. The fea-
sibility test runs in O(n + m) time. All the edges with capacities smaller than
Cpath are ignored and then we perform a depth-first or breadth-first search
(DFS or BFS) starting from s. If vertex t is visited during this search, then a
path with capacity c ≥ Cpath exists and we can test a larger value of Cpath;
otherwise, we test a smaller value. The time complexity of this approach is
O((n + m) · log(m)) if we sort all the edges initially (according to their capac-
ities) and then we choose the value Cpath from the set of edge capacities, or
O((n + m) · log(CAPMAX)) if we binary search the capacity in the interval
[0, CAPMAX], where CAPMAX is the maximum capacity of an edge (in
this case, if the capacities are not integers, we stop the binary search when
the search interval becomes smaller than a constant ε > 0). The algorithm
also works for undirected graphs, by transforming them into directed graphs:
every undirected edge (u, v) is replaced by two directed edges (u, v) and (v, u)
with the same capacities as the undirected edge.

The Unconstrained Maximum Capacity Multicast Tree problem asks for a
directed multicast tree from a source vertex s to a subset of vertices D={d(1),
d(2), . . . , d(k)} (called destinations) with maximum capacity. The capacity
of a tree is the minimum capacity of an edge of the tree. The tree may
contain additional vertices (except the source vertex s and the destinations).
We can use the same techniques we used for the Unconstrained Maximum

113



M. I. Andreica, N. Ţăpuş - Efficient Offline Algorithmic Techniques...

Capacity Path problem. By computing the same values cmax(i) for each vertex
i, representing the maximum capacity of a path from s to i, the maximum
capacity of a multicast tree is min{cmax(d(j))|1 ≤ j ≤ k}. The actual tree is
obtained as the union of the paths from the source vertex s to every destination
d(j) (1 ≤ j ≤ k). We consider the destinations in some order and then follow
the ”parent” pointers we stored during the computation of the optimal paths,
all the way to the source vertex s. This approach constructs the tree in O(n ·k)
time, as the length of every path from s to a destination may contain O(n)
vertices. In order to reduce the complexity of the tree construction phase to
O(n), we will mark every vertex visited by following the ”parent” pointers.
When we follow these pointers starting from a destination d(j), we stop when
we reach the source vertex s or when we reach a vertex which has previously
been marked. The parent in the tree of every marked vertex v (except s) is its
predecessor (i.e. ”parent”) on the optimal path from s to v.

We can also use binary search to look for the capacity Ctree of the tree.
Then, we perform a feasibility test, in order to check if a tree with capacity
larger than or equal to Ctree exists. We ignore all the edges with capacity
smaller than Ctree and perform a BFS or DFS traversal from the vertex s. If
all the destinations are reachable, then such a tree exists and we will test a
larger value of Ctree next; otherwise, we test a smaller value. After finding the
optimal capacity and obtaining a DFS (or BFS) tree rooted at s, we repeatedly
remove a leaf from this tree, if the leaf is not one of the destinations. We can
perform this stage in O(n) time by recursively traversing the tree, starting
from the root; when we return from the recursive traversals of all of vertex v’s
sons and v has no (more) sons, we check if v is one of the destinations; if it
is not, then we remove v from the tree and remove it from the list of sons of
its parent in the tree (or we simply decrement by 1 the number of actual sons
vertex v’s parent still has). Both algorithms also work for undirected graphs,
using the same transformation described previously.

3. Maximum Capacity Path Queries

We are given a connected, undirected graph composed of n vertices and m
edges. Each edge (u, v) has a capacity cap(u, v). We want to be able to answer
the following types of queries efficiently: what is the maximum capacity of
a path between two vertices u and v ? The capacity of a path between two
vertices u and v is the minimum capacity of an edge on the path. We could
use one of the algorithms described in the previous section in order to find

114



M. I. Andreica, N. Ţăpuş - Efficient Offline Algorithmic Techniques...

the answer for each query, but this would be too inefficient. Instead, we will
preprocess the graph into a data structure using a solution for the Union-
Find problem [4], such that each query can be answered in O(log(n)) time.
We first sort all the edges of the graph in decreasing (non-increasing) order
of their capacities. Then, we construct n disjoint sets, one for every vertex
of the graph and we start traversing the edges in the sorted order. When
encountering an edge (u, v), we compute ru = Find(u) and rv = Find(v), the
representatives of the sets of the vertices u and v. If ru 6= rv, then we will
unite the sets corresponding to ru and rv. We do this using the union by rank
heuristic and setting parent(ru) = rv, if the height of the subtree rooted at
ru is smaller than the height of the subtree rooted at rv (otherwise, we set
parent(rv) = ru). Assuming that we are in the case parent(ru) = rv, we
update the height of the subtree rooted at rv (as max{h(old)(rv), h(ru) + 1})
and set the weight of the tree edge (rv, ru) to cap(u, v); the other case is
symmetrical. We will not use the path compression technique in combination
with the union by rank heuristic (as it is customary). This way, once an edge
(rv, ru) is added to a tree, it will continue to remain a tree edge. We now add a
special vertex r and connect r to the root vertex ru of every tree (representing
a connected component) by an edge of capacity 0 (and set parent(ru) = r).

In order to answer maximum capacity path queries, we perform a DFS
traversal from r and compute the level of every vertex in the tree. We have
level(r) = 0 and level(u) = level(parent(u)) + 1. Then, for each query asking
for the largest capacity of a path between two vertices u and v, we perform
the following actions. We initialize pu to u and pv to v. Then, as long as
pu 6= pv, we set pu to parent(pu), if level(pu) > level(pv) (otherwise, we set
pv = parent(pv)). The maximum capacity of a path between u and v is the
minimum capacity of an edge on the path between u and the final value of pu
or on the path between v and the final value of pv. Because using the union
by rank heuristic the height of every tree is O(log(n)), it takes O(log(n)) steps
before pu and pv become equal to LCA(u, v) (the lowest common ancestor of
the vertices u and v) and there are O(log(n)) edges on the paths between u
and LCA(u, v), and v and LCA(u, v). We will name this simple technique of
computing the LCA of two vertices the level-by-level technique.

The preprocessing stage takes O(m · log(m) + m · log(n) + n) time and
each query takes O(log(n)) time. We can improve the query time in sev-
eral ways, by performing some extra preprocessing. Let’s assume that the
height of the tree is H. We perform a DFS traversal of the tree, starting

115



M. I. Andreica, N. Ţăpuş - Efficient Offline Algorithmic Techniques...

from the root. During this traversal, we perform several actions. Each vertex
i is assigned its corresponding DFS number, DFSnum(i) (DFSnum(i) = j
if vertex i is the jth different vertex visited during the tree traversal); for
each vertex i we compute DFSmax(i), the maximum DFS number of a ver-
tex in its subtree. DFSmax(i)=max{DFSnum(i), DFSmax(s(i,1)), . . . , DF-
Smax(s(i,ns(i)))} (ns(i)=the number of sons of vertex i and s(i, j)=the jth

son of vertex i). During the traversal we maintain a stack S of the visited
vertices (the vertices on the path from the root to the current vertex). We
denote by S(i) the ith entry in the stack, counting from the bottom (S(1) is
the tree root). Let’s assume that S(top) is the currently visited vertex. Then
S(top− j) is the jth ancestor of S(top). For each vertex i we store two values:
Anc(i, 1)=the parent of the current vertex i (i.e. S(top − 1)); Anc(i, 2)=the
ancestor of vertex i which is located k levels above (i.e. S(top− k), or S(1) if

top− k ≤ 0). k is a value which depends on H (we will show that k = H
1
2 is a

good choice). We will use the values Anc(i, ∗) in order to compute efficiently
the lowest common ancestor of any two vertices u and v. We will initialize a
pointer pu to u. Then, while DFSnum(v) /∈ [DFSnum(pu), DFSmax(pu)],
we set pu = Anc(pu, 2). Eventually, we will reach a vertex pu (possibly the tree
root) where the condition holds. This vertex is an ancestor of LCA(u, v). Let’s
denote by ppu the previous value of pu (the one before reaching the final value).
Obviously, we have Anc(ppu, 2) = pu. We will now move ppu up the tree level
by level. As long as DFSnum(v) /∈ [DFSnum(ppu), DFSmax(ppu)], we set
ppu = Anc(ppu, 1). The final value of ppu is LCA(u, v). The time complexity

of this approach is O(k + H/k) per query. By choosing k = H
1
2 , we obtain a

very practical O(H
1
2 ) algorithm for computing the lowest common ancestor of

any two vertices (using O(n) preprocessing and O(n) memory storage). There
are better algorithms for LCA queries for any pair of vertices in a tree, but
the one mentioned before is extremely easy to implement. For instance, there
exists an algorithm with O(n) preprocessing and O(1) LCA query time (but it
is quite difficult to implement) [5] and another one, based on the jump pointers
method, with O(n · log(n)) preprocessing time and O(log(n)) query time [10].
After computing LCA(u, v), we have two cases. If LCA(u, v) = u, then the
answer to the query is the capacity of the last tree edge on the path between
v and u (the edge adjacent to vertex u on this path). A similar argument
holds for the case LCA(u, v) = v. In the second case, LCA(u, v) 6= u and
LCA(u, v) 6= v. The answer is the minimum of the capacities of the edges
(su, LCA(u, v)), (sv, LCA(u, v)), where su (sv) is the son of LCA(u, v) con-

116



M. I. Andreica, N. Ţăpuş - Efficient Offline Algorithmic Techniques...

taining u (v) in its subtree. In order to compute su (sv), we start from u
(v) and advance along the Anc(∗, 2) pointers, until we reach the highest an-
cestor a whose interval [DFSnum(a), DFSmax(a)] is strictly included inside
[DFSnum(LCA(u, v)), DFSmax(LCA(u, v))] Afterwards, we advance along
the Anc(∗, 1) pointers until we reach the highest ancestor with the same prop-
erty; this ancestor is su (sv).

4. Farthest Distance Path (Tree)

We are given an undirected graph with n vertices and m edges. Each edge
(u, v) has a length len(u, v) ≥ 0. We are also given k ≤ n obnoxious vertices
ov(1), . . . , ov(k) (e.g. vertices with byzantine failures). We want to compute
a path connecting two given vertices s and t which is as far away as possible
from the obnoxious vertices. To be more precise, let’s consider all the vertices
v(i) on the path between s and t and let dmin(v(i)) be the minimum distance
from v(i) to the closest obnoxious vertex. We want to find a path P which
maximizes the value min{dmin(v(i))|v(i) is a vertex on the path P}.

First, we compute the values dmin(i) for all the n vertices of the graph.
We set dmin(ov(i)) = 0 (1 ≤ i ≤ k) and dmin(j) = +∞ (for j /∈ {ov(1), . . . ,
ov(k)}). We now run Dijkstra’s algorithm, starting from multiple sources
(i.e. ov(1), . . . , ov(k)). We will maintain a priority queue (e.g. binary heap,
Fibonacci heap, set of buckets) Q into which we insert all the obnoxious vertices
(in the beginning). The key of every vertex i inserted into Q is dmin(i). The
rest of the algorithm is a normal implementation of Dijkstra’s algorithm, i.e.
when expanding a vertex i, we consider all the edges (i, j) and, if dmin(j) >
dmin(i) + len(i, j), we set dmin(j) = dmin(i) + len(i, j), delete j from the
priority queue (if it was previously inserted in it) and insert it again with the
new value of dmin(j). If all the len(∗, ∗) values are identical, we can consider
len(∗, ∗) = 1 and use BFS instead. We insert all the obnoxious vertices in the
queue in the beginning (there are multiple vertices at distance 0) and then
we repeatedly extract the vertex i at the front of the queue, consider all the
edges (i, j), and if dmin(j) > dmin(i) + 1, we set dmin(j) = dmin(i) + 1 and
insert j at the end of the queue; initially, all the non-obnoxious vertices j have
dmin(j) = +∞.

After computing the values dmin(∗), we want to find a path from s to t
for which the minimum value dmin(x) of a vertex x on the path is maximum.
We can reduce the problem to the maximum capacity path problem, discussed
previously. We have two reduction possibilities. The first one consists of

117



M. I. Andreica, N. Ţăpuş - Efficient Offline Algorithmic Techniques...

transforming the graph into a directed graph. We transform every vertex
u into two vertices uin and uout and add a directed edge (uin, uout) between
them, whose capacity will be dmin(u). Then, we transform each undirected
edge (u, v) into two directed edges, (uout, vin) and (vout, uin); the capacities
of these edges will be +∞. A maximum capacity path from sin to tout in
the transformed graph is equivalent to a path from s to t which is farthest
away from the obnoxious vertices in the initial graph. The second possible
transformation is to maintain the graph undirected. We will add to each edge
(u, v) a capacity equal to min{dmin(u), dmin(v)}. Now, a maximum capacity
path from s to t in this graph is farthest away from the obnoxious vertices in
the initial graph.

If we want to compute a farthest distance tree connecting a source vertex s
to several destination vertices, we can use the same transformations and then
use the solution for the maximum capacity tree problem presented earlier.

5. Farthest Distance Path Queries

Let’s consider the same problem as in the previous section. We want to
answer very fast queries of the following type: what is the path between two
given vertices s and t which is farthest away from the obnoxious vertices ? Since
running the algorithm presented in the previous section for each query would
be too inefficient, we will focus on the second type of graph transformation
we presented. With that transformation, the problem was reduced to finding
a maximum capacity path between two given vertices. This problem was
handled in a previous section, such that each query can be answered in a
time complexity ranging from O(log(n)) to O(1), after an O(m · log(m)) time
preprocessing.

6. Generalized Optimal Path Algorithm

We consider here a more general version of the problems presented in the
previous section, in which every edge (u, v) has k non-negative weights w1(u, v),
. . . ,wk(u, v). We also have k aggregation functions, f1, . . . , fk, from the set
{min, max, +}. We want to compute the optimal paths from a set of source
vertices s1, . . . , sm to every vertex in the graph. The weight of a path P
is a k-element array (wP (1), . . . , wP (k)), where wP (i) is the aggregate of
all the weights wi(u, v) of the edges (u, v) on P , using function fi. We also
have k optimizaton functions o1, . . . , ok, where oi = max, if fi = min, and

118



M. I. Andreica, N. Ţăpuş - Efficient Offline Algorithmic Techniques...

oi = min, if fi ∈ {max, +}. A path P1 is better than a path P2 if there
exists an index q (1 ≤ q ≤ k), such that wP1(i) = wP2(i) (1 ≤ i ≤ q − 1)
and (wP1(q) 6= wP2(q) and oq(wP1(q), wP2(q)) = wP1(q)). We can now use
Dijkstra’s algorithm on this graph. For each vertex v of the graph, we will
compute the k-element array (wopt(v, 1), . . . , wopt(v, k)) corresponding to the
best path from one of the source vertices to v. For a source vertex si, we have
wopt(si, j) = 0, if fj ∈ {max, +} and wopt(si, j) = +∞, if fj = min. Since
we have a total order over the set of all possible k-element arrays, every two
arrays are comparable and, thus, we can correctly maintain the priority queue
required by Dijkstra’s algorithm. At the beginning, we insert all the source
vertices in the priority queue. Then, as long as the queue is not empty, we
extract the vertex i with the smallest weight vector (wopt(i, 1), . . . , wopt(i, k))
and ”relax” its outgoing edges. For every such edge (i, j), we check if the
weight vector wnew = (f1(wopt(i, 1), w1(i, j)), . . . , fk(wopt(i, k), wk(i, j))) is
better than the current weight vector of the vertex j; if it is, we set wnew as
the new weight vector of vertex j, remove j from the priority queue and insert
it back with the new weight vector. The time complexity of the generalized
algorithm is the same as that of the original Dijkstra’s algorithm, possibly
multiplied by a factor of k (if k is not a constant). This generalization leads to
many interesting problems, like, for instance, the Maximum Capacity Shortest
Path problem. If we want to compute the path to a given destination vertex
t and f1 ∈ {max, min}, we can binary search the weight of the first element
and use the previously described algorithm on the remaining k − 1 weights,
as a feasibility test (checking that a path exists if we ignore the edges (u, v)
with w1(u, v) smaller (larger) than a candidate value, for o1 = max(min)).
The time complexity of this approach is that of the optimal path computation
algorithm, multiplied by O(log(WMAX)), where WMAX denotes the range
of the binary search for the first component of the weight vector (if we sort all
the w1 weights of all the edges and use this sorted array for the binary search,
we have WMAX = O(m), where m is the number of edges of the graph).

7. Optimal k-Packet Routing with Ordering Constraints

Let’s consider a network composed of n vertices, 1, . . . , n. We want to
send k < n identical packets from the vertices vinit(1), . . . , vinit(k) (with
min{vinit(1), . . . , vinit(k)} = 1), such that at least one packet passes by ev-
ery vertex, subject to the following constraint: after a packet is received by a
vertex i, it can only be sent further to a vertex j > i. The cost of forwarding a

119



M. I. Andreica, N. Ţăpuş - Efficient Offline Algorithmic Techniques...

packet from a vertex i to a vertex j > i is c(i, j) and we want to minimize the
total cost. The costs satisfy the triangle inequality, i.e. c(i, j) ≤ c(i, k)+c(k, j)
(otherwise, we can replace the costs c(i, j) by the length of the shortest path
between the two vertices). We will compute Cmin(v(1), . . . , v(k)), where
v(1) ≥ . . . ≥ v(k) are the vertices at which the k packets have currently arrived
and all the vertices in the interval [1, v(1)] have been visited by at least one
packet. We initially have Cmin(v0(1), . . . , v0(k)) = 0 (where v0(1), . . . , v0(k)
is the descendingly sorted sequence of the values vinit(1), . . . , vinit(k)) and
Cmin(∗, . . . , ∗) = +∞ for the other sequences. We will consider the sequences
(v(1), . . . , v(k)) which are lexicographically larger than the initial sequence
v0(1), . . . , v0(k), in increasing lexicographic order. An O(k · nk+1) algorithm
is easy to devise. For every sequence v(1), . . . , v(k), we consider every packet
j (1 ≤ j ≤ k) and every previous vertex v′(j) < v(j). For each such pos-
sibility, we sort the sequence v(1), . . . , v(j − 1), v′(j), v(j + 1), . . . , v(k) de-
creasingly, as v′′(1) ≥ . . . ≥ v′′(k). Then, Cmin(v(1), . . . , v(k)) is the mini-
mum value among all the possibilities Cmin(v′′(1), . . . , v′′(k)) + c(v′(j), v(j)).
We can improve the time complexity to O(k · nk), by always forwarding a
packet to a vertex which was never visited by another packet. For every se-
quence, we consider the case of forwarding a packet to v(1) from some ver-
tex v′ < v(1). We have the following cases. If v(1) − 1 > v(2), then v′ =
v(1)−1 and Cmin(v(1), . . . , v(k)) = Cmin(v(1)−1, v(2), . . . , v(k))+ c(v(1)−
1, v(1)). Otherwise, we consider every previous vertex v′ < v(1), sort decreas-
ingly the sequence v′, v(2), . . . , v(k), obtain a sequence v′′(1), . . . , v′′(k) and
set Cmin(v(1), . . . , v(k))=min{Cmin(v(1), . . . , v(k)), Cmin(v′′(1), . . . , v′′(k))
+c(v′, v(1))}. There are O(nk) sequences for which we compute Cmin(. . .) in
O(k) time and O(nk−1) sequences for which we compute Cmin(. . .) in O(k ·n)
time. The optimal cost is min{Cmin(n, ∗, . . . , ∗)}. From the Cmin(∗, . . . , ∗)
values we can easily derive the paths of the k packets. Note that whenever
we need to sort a sequence of vertices during the algorithm, this step can be
performed in O(k) time. This is because the new sequence is obtained from an
already sorted sequence, where only one value is replaced; thus, in O(k) time,
we can find the (new) correct position of the new value.

Another version of this problem is the following: we have n vertices and
m packet requests. The ith request asks that a packet is sent to vertex
r(i). We have k packet flows, which need to satisfy the m requests in or-
der. Once a packet served a request i, we can send it to any vertex r(j)
(j > i), in order to satisfy the request j. We maintain the packet transfer

120



M. I. Andreica, N. Ţăpuş - Efficient Offline Algorithmic Techniques...

costs c(a, b) between pairs of vertices (a, b) of the graph. The dynamic pro-
gramming formulation is as follows: we compute Cmin(i, v(1), ..., v(k − 1)),
with v(q) ≤ v(q + 1) (1 ≤ q ≤ k − 2), meaning: the minimum cost of sat-
isfying the first i requests, such that k − 1 packets are located at v(1), . . . ,
v(k − 1) and the kth packet is located ar r(i − 1) (i.e. v(k) = r(i − 1)).
Initially, every packet p (1 ≤ p ≤ k) is located at the vertex vinit(p). We
will consider r(0) = vinit(k) and have Cmin(0, v′(1), . . . , v′(k−1)) = 0, where
v′(1), . . . , v′(k−1) is the sorted sequence of the values vinit(1), . . . , vinit(k−1);
we will have Cmin(0, ∗) = +∞ for any other sequence of vertices. The dy-
namic programming equations are quite simple. We will initially consider that
Cmin(i ≥ 1, ∗) = +∞. We consider the tuples (i, v(1), . . . , v(k−1)) in increas-
ing order of i and, for each such tuple, we consider every packet j to be sent
to r(i+1); thus, we will set Cmin(i+1, v′(1), . . . , v′(k− 1)) = min{Cmin(i+
1, v′(1), . . . , v′(k − 1)), Cmin(i, v(1), . . . , v(k − 1)) + c(v(j), r(i + 1))}, where
v′(1), . . . , v′(k − 1) is obtained by sorting in ascending order the sequence
v(1), . . . , v(j − 1), v(j + 1), . . . , v(k). In case the packet flows are different,
we may drop the ordering constraint for the values v(1), . . . , v(k − 1) of a
state.

8. Optimal Path with Non-Linear Costs

Let’s consider a path v(1) = s, v(2), . . . , v(n − 1), v(n) = t from a source
s to a destination t consisting of n − 2 intermediate nodes. There are k
types of connections between any two consecutive nodes v(i) and v(i + 1)
(1 ≤ i ≤ n− 1). Each connection (i, j) (of type j, between v(i) and v(i + 1))
has a latency of l(i, j) ≥ 0 time units. When sending a packet from s to t, we
may use any of the k connections at every step. Let’s assume that the sum of
the latencies of the connections of type j traversed by the packet is ltotal(j)
(1 ≤ j ≤ k). Then, the aggregate cost is cagg = f(ltotal(1), . . . , ltotal(k)),
where f is a non-decreasing function on every argument. For instance, we may
have f(ltotal(1), . . . , ltotal(k)) = g(c(1) · ltotal(1)p(1), . . . , c(k) · ltotal(k)p(k))
(c(j) > 0, p(j) ≥ 1, 1 ≤ j ≤ k), where g could be + or max. We want
to compute a packet sending strategy which minimizes the aggregate cost.
When the latencies are integer numbers and the sums of the latencies of all
the connections of the same type are not too large, we can use the follow-
ing pseudo-polynomial dynamic programming algorithm. We will compute
Lmin(i, ltotal(1), . . . , ltotal(k−1))=the minimum sum of latencies of the type
k connections required to reach v(i), if the sums of the latencies of the type

121



M. I. Andreica, N. Ţăpuş - Efficient Offline Algorithmic Techniques...

j connections (1 ≤ j ≤ k − 1) is ltotal(j). We have Lmin(1, 0, . . . , 0) = 0
and Lmin(1, ltotal(1), . . . , ltotal(k − 1)) = +∞, if at least one value ltotal(j)
is larger than 0. For i > 1, we have: Lmin(i, ltotal(1), . . . , ltotal(k − 1)) =
min{min{Lmin(i, ltotal(1), . . . , ltotal(j − 1), ltotal(j) − l(i − 1, j), ltotal(j +
1), . . . , ltotal(k − 1)) |1 ≤ j ≤ k − 1}, Lmin(i − 1, ltotal(1), . . . , ltotal(k −
1)) + l(i − 1, k)}. After computing these values, the minimum total cost
is min(ltotal(1),...,ltotal(k−1)){f(ltotal(1), . . . , ltotal(k − 1), Lmin(n, ltotal(1), . . . ,
ltotal(k − 1)))}. For the case mentioned above, if g = max, we can also
binary search the optimal aggregate cost on a suitable interval [0, CMAX]
with a suitable precision ε > 0. The feasibility test for a candidate value
Ccost consists of the following operations. For each type of connections j
we compute lmax(j), the integer part of (Ccost/c(j))1/p(j). Then, we com-
pute the same Lmin values as before, except that the indices ltotal(j) (1 ≤
j ≤ k − 1) are upper bounded by lmax(j). If there exists at least a value
Lmin(n, ltotal(1), . . . , ltotal(k− 1)) < lmax(k), then Ccost is a feasible value.

We can extend the algorithm to the case where the vertices form an arbi-
trary directed graph (not just a path) and we have multiple possible sources
and destinations. In this case, we construct the expanded graph composed
of tuples (i, ltotal(1), . . . , ltotal(k − 1)). We have an edge of cost 0 between
a tuple (i, ltotal(1), . . . , ltotal(k − 1)) and a tuple (j, ltotal(1), . . . , ltotal(p −
1), ltotal(p)+l(i, j, p), ltotal(p+1), . . . , ltotal(k−1)) if there exists a connection
(i, j) of type p (1 ≤ p ≤ k − 1) in the original graph of latency l(i, j, p). We
also have edges of weight l(i, j, k) between tuples (i, ltotal(1), . . . , ltotal(k−1))
and (j, ltotal(1), . . . , ltotal(k− 1)), if there exists a type k connection between
i and j, of latency l(i, j, k). We now compute the shortest paths from any
initial tuple (si, 0, . . . , 0) (1 ≤ i ≤ number of sources) to every tuple in the
expanded graph (where si is one of the source vertices in the original graph).
In order to do this, the shortest path value corresponding to an initial tuple is
set to 0 and all the initial tuples are inserted into the queue (or priority queue)
used by the shortest path algorithm. This way, we compute the shortest path
from any of the initial tuples using only one invocation of the shortest path
algorithm.

Another solution consists of constructing the hyper-graph with vertices
(i, ltotal(1), . . . , ltotal(k)). We have an edge between a tuple (i, ltotal(1), . . . ,
ltotal(k)) and a tuple (j, ltotal(1), . . . , ltotal(p−1), ltotal(p)+l(i, j, p), ltotal(p+
1), . . . , ltotal(k)) if there exists a connection (i, j) of type p (1 ≤ p ≤ k) in
the original graph of latency l(i, j, p). In this graph we only need to perform

122



M. I. Andreica, N. Ţăpuş - Efficient Offline Algorithmic Techniques...

a breadth-first (BF) or depth-first traversal (DF) starting from each of the
initial tuples and mark all the reachable states (in the case of BF, we do not
insert into the queue an already marked state, and in the case of DF, we do not
call the recursive traversal function for neighboring tuples that were previously
marked). We can compute the non-dominated paths from the set of reachable
states.

9. Optimal Paths with Multiple Objectives

We consider a directed graph with n vertices and m edges, where every
edge (i, j, eid), directed from i to j, has p costs: cq(i, j, eid) ≥ 0 (1 ≤ q ≤ p)
(eid distinguishes between multiple edges between the same pair of vertices
and having the same orientation). Let ne(i, j) be the number of edges directed
from i to j; these edges will be labeled (i, j, eid) (1 ≤ eid ≤ ne(i, j)). For
a path P = v(1), . . . , v(k) we can compute p costs: sci|v(1),...,v(k) = fi(pscj =
scj|v(1),...,v(k−1), . . . (1 ≤ j ≤ p), pcl,eid = cl(v(k − 1), v(k), eid), . . . (1 ≤ l ≤
p)), if the last edge of the path is (v(k − 1), v(k), eid). The functions fi can
be arbitrary functions, e.g. fi = max (or min) {psci, pci,eid}, fi = psci +
pci,eid / (if (pcj,eid = 0) then pscj else pcj,eid), or fi = psci + pci,eid. When
using the addition or the max functions, we will have sci|v(1) = 0, while for
functions like min, we will have sci|v(1) = +∞. We will also use a set of
boolean comparison functions betterj, which are capable of comparing two
values of the function fj and decide if the first one is better than the second
one. We want to compute all the non-dominated paths from a set of source
nodes srci to a set of destination nodes destj. A path v(1), . . . , v(k) is non−
dominated if there exists no other path v′(1), . . . , v′(k′) (with v′(1) being one of
the source vertices and v′(k′) being one of the destination vertices), such that
betterj(scj|v′(1),...,v′(k′), scj|v(1),...,v(k)) = true for all the values of j (1 ≤ j ≤ p).

We will present a solution for the case when every function has integer
values, between 0 and V MAX. We will build a directed hyper-graph, in
which every vertex is a tuple (i, s1, . . . , sp). We will add a directed edge from
a state (i, s1, . . . , sp) to every state (j, fk(s1, . . . , sp, cl(i, j, eid)(1 ≤ l ≤ p))(1 ≤
k ≤ p)), if the directed edge (i, j, eid) exists in the original graph. We will now
traverse the hyper-graph in a breadth-first manner starting from the vertices
(srci, sck|srci

(1 ≤ k ≤ p)) (we insert them all in the BF queue in the beginning)
and mark all the reachable states. The non-dominated paths can then be
computed easily.

123



M. I. Andreica, N. Ţăpuş - Efficient Offline Algorithmic Techniques...

If the functions fp are monotonically increasing (or decreasing), we can
optimize the previous solution, as follows. Every state will be represented
by a tuple (i, s1, . . . , sp−1). For each such state we will compute a value
sp(i, s1, . . . , sp−1) = the best scp value of a path from one of the source nodes
to node i, having the (other) costs sc1, . . . , scp−1 equal to s1, . . . , sp−1. In order
to compute these values, whenever we have a directed edge (i, j, eid) in the
original graph, we will add directed edges from a state (i, s1, . . . , sp−1) to all
the states (j, fk(s1, . . . , sp−1, sp(i, s1, . . . , sp−1), cl(i, j, eid)(1 ≤ l ≤ p))(1 ≤ k ≤
p−1)). We will then compute a shortest path in this hyper-graph, starting from
all the states (srci, sck|srci

(1 ≤ k ≤ p−1)) (we add all of them in the beginning
to the priority queue, and their initial costs will be scp|srci

). The path length
optimization function will be fp (i.e. when expanding a tuple (i, s1, . . . , sp−1),
we set sp(S) = min{sp(S), fp(s1, . . . , sp−1, sp(i, s1, . . . , sp−1), cl(i, j, eid)(1 ≤
l ≤ p))}, where S = (j, fk(s1, . . . , sp−1, sp(i, s1, . . . , sp−1), cl(i, j, eid)(1 ≤ l ≤
p))(1 ≤ k ≤ p− 1)) and the directed edge (i, j, eid) exists in the graph). Note
that the graph is not fully known in the beginning. The edges between dif-
ferent states depend on the values sp(i, s1, . . . , sp−1) computed by the shortest
path algorithm.

When the fi functions are addition functions and when we do not need
to rebuild the non-dominated paths (we are only interested in their costs),
we can improve the amount of memory we use. Let’s consider cmaxk =
max{ck(i, j, eid)|(i, j, eid) is a directed edge in the graph}. In order to compute
sp(i, s1, . . . , sp−1) we only need values like sp(j, s′1 ≥ s1 − cmax1, . . . , s

′
p−1 ≥

sp−1 − cmaxp−1), and not all of the computed values. We can use only
O(cmax1 · V MAXp−2) memory for every node i of the original graph. The
value sp(i, s1, . . . , sp−1) can be stored in an array a(i) with cmax1 entries, at
the position (s1 mod cmax1).

We can extend the problem as follows. We can use a directed edge (i, j, eid)
only if every function fk, applied on the costs of a path from one of the source
nodes to a node i, takes values from a given set V (i, k). In this case, it is
possible that, at some point, some of the edges may not be used. Because of
this, we might need to insert zero, one or more ”waiting edges” from a node i
to itself, which may have costs, but have no usage restrictions for the values
of the functions fk.

124



M. I. Andreica, N. Ţăpuş - Efficient Offline Algorithmic Techniques...

10. Maintaining Connectivity Information Under Edge
Deletions

We are given an undirected graph with n vertices and m edges. We are also
given a sequence of operations, consisting of queries and deletions. A deletion
consists of deleting an existing edge (i, j) from the graph. Each vertex i of
the graph has a weight w(i). Each connected component cc of the graph has a
weight wcc(cc), which is equal to the aggregate of the weights of the vertices
contained in cc. The aggregate function is called ccagg and could be, for
instance, +, max,min, ∗ or any other commutative function. The graph itself
also has a weight wg, which is computed as an aggregate over the weights
of its connected components, using a commutative aggregate function gagg,
for which an inverse function gagg−1 exists (e.g. +, ∗, xor, etc.). We want to
be able to efficiently support the following types of queries: 1) which is the
weight wg of the graph ? ; 2) which is the weight of the connected component
containing vertex x ? We will propose a solution based on the techniques
developed for the Union-Find problem, when the entire sequence of queries
and deletions is known in advance, i.e. in the offline case.

We will traverse the sequence of queries and deletions and perform all the
deletions, without answering the queries. After all the deletions were per-
formed, we compute the connected components of the graph, their weights, as
well as the weight of the graph. We will represent every connected component
as a rooted tree. At first, we choose an arbitrary vertex x in each compo-
nent and make x the parent of all the other vertices in the component. The
root of a tree contains the weight wcc of the component. We now traverse
the sequence of queries and deletions backwards (in reverse order). Whenever
we encounter a deletion of an edge (i, j), we insert the edge (i, j) back into
the graph. When doing this, we compute the two representatives ri and rj of
the two vertices i and j. If ri 6= rj, then we combine the connected compo-
nents of the vertices i and j into one component. In order to do this, we will
make one of the two representatives the parent of the other one. Assuming
that we set parent(ri) = rj, we update the weight of the connected compo-
nent: wcc(new)(rj) = ccagg(wcc(old)(rj), wcc(ri)). We also update the overall
weight of the graph: wg(new) = gagg(gagg−1(wg(old), wcc(old)(rj)), wcc(new)(rj))
(e.g. wg(new) = wg(old) − wcc(old)(rj) + wcc(new)(rj), for gagg = +). When we
encounter a query for the connected component of a vertex x, we find the rep-
resentative vertex rx of the component containing vertex x and set the query’s
result to wcc(rx). When we encounter a query for the overall weight of the

125



M. I. Andreica, N. Ţăpuş - Efficient Offline Algorithmic Techniques...

graph, we set the query’s result to the current weight wg of the graph. We
use the union by rank heuristic for unions and the path compression technique
when searching for the representative of the connected component of a ver-
tex x. The problem can be extended by allowing vertex deletions. A vertex
deletion consists of deleting all the adjacent edges and, afterwards, removing
the remaining 1-vertex connected component from the graph. When travers-
ing the sequence of operations backwards and we encounter a vertex deletion
operation, we create a new connected component cc containing the deleted
vertex x, set its weight appropriately (possibly wcc(cc) = w(x)) and adjust
the weight of the entire graph accordingly (wg = gagg(wg,wcc(cc))). Then,
we insert back into the graph all the edges that were adjacent to x and for
which the vertex at the other endpoint exists in the graph. When inserting
an edge (x, y) back into the graph, we perform the same operations that we
mentioned previously (when we inserted a deleted edge back into the graph).

11. Related Work

Computing optimal bottleneck paths and trees are fundamental problems
which attracted a lot of attention both from a theoretical and a practical per-
spective. In [1], several assignment problems, including optimal bottleneck
assignments, were studied. In [2], the problem of computing bottleneck mul-
ticast trees was studied and a modified Dijkstra’s algorithm was proposed.
In [3], the authors present the construction of a tree for answering bottle-
neck path queries, which is similar in essence to the solution we proposed
for the maximum capacity path query problem. Efficient algorithms for con-
strained bottleneck paths and trees were also proposed in [11]. The problem of
maintaining connectivity information in undirected graphs under an arbitrary
sequence of edge insertions and deletions was studied in [6]. For a survery
on dynamic graph algorithms, see [7]. In this paper we considered an easier
version of the connectivity maintenance problem, where only edge deletions
were allowed. Efficient packet routing and content delivery strategies in tree
networks were considered in many papers (e.g. [8,9]). The optimal k-packet
routing problem with ordering constraints is similar to the well-known bitonic
tour problem for k = 2.

12. Conclusions

In this paper we addressed several fundamental theoretical problems with
applications to the optimization of packet routing techniques. The problems

126



M. I. Andreica, N. Ţăpuş - Efficient Offline Algorithmic Techniques...

spanned several important topics in Graph Theory and Network Optimization,
like computing bottleneck paths (trees), computing optimal paths with non-
linear costs, maintaining aggregate connectivity information under a sequence
of network link failures (graph edge deletions) and computing optimal packet
routing strategies. We presented new, efficient (and in several cases optimal)
algorithms for all the problems we studied. Although the developed techniques
assume that all the required information is available and stable, which is un-
realistic for large scale distributed systems, the proposed algorithms can be
used for performing local optimizations on some small parts of a distributed
system. As future work, we intend to use some of the described algorithms and
techniques for message routing optimization in a peer-to-peer communication
framework.

References

[1] R.E. Burkard, and E. Cela, Linear assignment problems and extensions,
Handbook of Combinatorial Optimization, vol. 4, Kluwer Academic Publish-
ers, Dordrecht, 1999.

[2] L. Georgiadis, Bottleneck multicast trees in linear time, IEEE Commu-
nications Letters, vol. 7, no. 11, (2003), pp. 564-566.

[3] H. Rohnert, Moving a Disk Between Polygons, Algorithmica, vol. 6, no.
2, (1991), pp. 182-191.

[4] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms, 2nd edition, MIT Press, 2001.

[5] M. A. Bender, and M. Farach-Colton, The LCA Problem revisited, Pro-
ceedings of the Latin American Symposium on Theoretical Informatics, Lecture
Notes in Computer Science, vol. 1776, (2000), pp. 88-94.

[6] Z. Galil, and G. F. Italiano, Fully Dynamic Algorithms for Edge Con-
nectivity Problems, Proc. of the 23rd ACM Symp. on Theory of Computing,
(1991), pp. 317-327.

[7] D. Eppstein, Z. Galil, and G. F. Italiano, Dynamic Graph Algorithms,
Algorithms and Theoretical Computing Handbook, CRC Press, chap. 8, 1999.

[8] B. D. Birchler, A.-H. Esfahanian, and E. K. Torng, Information Dis-
semination in Restricted Routing Networks, Proceedings of the International
Symposium on Combinatorics and Applications, (1996), pp. 33-44.

[9] M. I. Andreica, and N. Tapus, Maximum Reliability K-Hop Multicast
Strategy in Tree Networks, Proceedings of the IEEE International Symposium

127



M. I. Andreica, N. Ţăpuş - Efficient Offline Algorithmic Techniques...

on Consumer Electronics, (2008), pp. 169-172.
[10] M. A. Bender, and M. Farach-Colton, The Level Ancestor Problem

Simplified, Theoretical Computer Science, vol. 321, (2004), pp. 5-12.
[11] M. I. Andreica, N. Tapus, Offline Algorithmic Techniques for Several

Content Delivery Problems in Some Restricted Types of Distributed Systems,
Proceedings of the Intl. Workshop on High Performance Grid Middleware,
(2008), pp. 65-72.

Authors:

Mugurel Ionuţ Andreica
Department of Computer Science and Engineering
Politehnica University of Bucharest
Splaiul Independentei 313, sector 6, Bucharest, Romania
email:mugurel.andreica@cs.pub.ro

Nicolae Ţăpuş
Department of Computer Science and Engineering
Politehnica University of Bucharest
Splaiul Independentei 313, sector 6, Bucharest, Romania
email:nicolae.tapus@cs.pub.ro

128


