ON VECTOR-BUNDLE VALUED COHOMOLOGY ON COMPLEX FINSLER MANIFOLDS

Cristian Ida

Abstract. In this paper we define a complex adapted connection of type Bott on vertical bundle of a complex Finsler manifold. When this connection is flat we get a vertical vector valued cohomology. The notions are introduced by analogy with the real case for foliations. Finally, using the partial Bott connection we give a characterization of strongly Kähler-Finsler manifolds.

2000 Mathematics Subject Classification: 53B40, 32C35.
Key Words: Complex Finsler manifolds, vertical Bott type connection, cohomology.

1. Introduction and preliminaries notions

In the first section of this paper, following [2], [3], [7], we recall briefly some notions on complex Finsler manifolds, concerning to the Chern-Finsler linear connection, the canonical linear connection and the Levi-Civita connection associated with the Hermitian metric structure on holomorphic tangent bundle given by Sasaki lift of the fundamental tensor $g_{i \bar{j}}$. In the second section, by analogy with the real case for foliations (see [4], [9], [11]), we define an adapted vertical complex connection of Bott type on vertical bundle $V_{C}\left(T^{\prime} M\right)$, denoted by D^{v}. In the third section we assume that the connection D^{v} is flat, then the natural exterior derivative $d_{D^{v}}$ associated with D^{v} on $V_{C}\left(T^{\prime} M\right)$-vector valued differential forms has the property $d_{D^{v}}^{2}=0$. Thus we can think a cohomology of $V_{C}\left(T^{\prime} M\right)$-vector valued differential forms $H^{*}\left(T^{\prime} M, V_{C}\left(T^{\prime} M\right)\right)$. Finally, using the partial Bott connection [2], we give a characterization of strongly KählerFinsler manifolds.

Let $\pi: T^{\prime} M \longrightarrow M$ be the holomorphic tangent bundle of a complex manifold $M, \operatorname{dim}_{C} M=n$. Denote by $\left(\pi^{-1}(U),\left(z^{k}, \eta^{k}\right)\right)_{k=\overline{1, n}}$ the induced complex local coordinates on $T^{\prime} M$, where $\left(U, z^{k}\right)$ is a local chart domain of M.

At local change charts on $T^{\prime} M$, the transformation rules of these coordinates are given by:

$$
\begin{equation*}
z^{\prime k}=z^{\prime k}(z) ; \eta^{\prime k}=\frac{\partial z^{\prime k}}{\partial z^{j}} \eta^{j} \tag{1}
\end{equation*}
$$

where $\frac{\partial z^{\prime} k}{\partial z^{j}}$ are holomorphic functions on z and $\operatorname{det}\left(\frac{\partial z^{\prime} k}{\partial z^{j}}\right) \neq 0$
It is well known the fact that $T^{\prime} M$ has a structure of $2 n$-dimensional complex manifold, because the transition functions $\frac{\partial z^{k}}{\partial z^{j}}$ are holomorphic.

Consider $T_{C}\left(T^{\prime} M\right)=T^{\prime}\left(T^{\prime} M\right) \oplus T^{\prime \prime}\left(T^{\prime} M\right)$ the complexified tangent bundle of $T^{\prime} M$ where $T^{\prime}\left(T^{\prime} M\right)$ and $T^{\prime \prime}\left(T^{\prime} M\right)=\overline{T^{\prime}\left(T^{\prime} M\right)}$ are the holomorphic and antiholomorphic tangent bundles of $T^{\prime} M$.

On $T^{\prime} M$ we fix an arbitrary complex nonlinear connection, briefly (c.n.c) having the local coefficients $N_{k}^{j}(z, \eta)$, which determines the following decomposition:

$$
\begin{equation*}
T^{\prime}\left(T^{\prime} M\right)=H^{\prime}\left(T^{\prime} M\right) \oplus V^{\prime}\left(T^{\prime} M\right) \tag{2}
\end{equation*}
$$

By conjugation over all, we get a decomposition of the complexified tangent bundle, namely:

$$
\begin{equation*}
T_{C}\left(T^{\prime} M\right)=H^{\prime}\left(T^{\prime} M\right) \oplus V^{\prime}\left(T^{\prime} M\right) \oplus H^{\prime \prime}\left(T^{\prime} M\right) \oplus V^{\prime \prime}\left(T^{\prime} M\right) \tag{3}
\end{equation*}
$$

The adapted frames with respect to this (c.n.c) are given by,

$$
\begin{equation*}
\left\{\delta_{k}=\partial_{k}-N_{k}^{j} \dot{\partial}_{j} ; \dot{\partial}_{k} ; \delta_{\bar{k}}=\partial_{\bar{k}}-N_{\bar{k}}^{\bar{j}} \dot{\partial}_{\bar{j}} ; \dot{\partial}_{\bar{k}}\right\} \tag{4}
\end{equation*}
$$

where $\partial_{k}=\frac{\partial}{\partial z^{k}} ; \dot{\partial}_{k}=\frac{\partial}{\partial \eta^{k}}$ and the adapted coframes, are given by

$$
\begin{equation*}
\left\{d z^{k} ; \delta \eta^{k}=d \eta^{k}+N_{j}^{k} d z^{j} ; d \bar{z}^{k} ; \delta \bar{\eta}^{k}=d \bar{\eta}^{k}+N_{\bar{j}}^{\bar{k}} d \bar{z}^{j}\right\} \tag{5}
\end{equation*}
$$

Definition 1 A strictly pseudoconvex complex Finsler metric on M, is a continuous function $F: T^{\prime} M \rightarrow R$ satisfying:
(i) $L:=F^{2}$ is C^{∞}-smooth on $T^{\prime} M-\{0\}$;
(ii) $L(z, \eta) \geq 0$ and $L(z, \eta)=0 \Leftrightarrow \eta=0$;
(iii) $L(z, \lambda \eta)=|\lambda|^{2} L(z, \eta), \forall \lambda \in C$;
(iv) the following Hermitian matrix $\left(g_{i \bar{j}}=\dot{\partial}_{i} \dot{\partial}_{\bar{j}}(L)\right)$ is positive defined on $T^{\prime} M-\{0\}$ and defines a Hermitian metric on vertical bundle.

Definition 2 The pair (M, F) is called a complex Finsler manifold.

Proposition $1 A$ (c.n.c) on (M, F) depending only on the complex Finsler metric F is the Chern-Finsler (c.n.c) given by:

Proposition 2 The Lie brackets of the adapted frames from $T_{C}\left(T^{\prime} M\right)$, with repect to the Chern-Finsler (c.n.c) are,

$$
\begin{aligned}
& {\left[\delta_{j}, \delta_{k}\right]=\left(\delta_{k} \stackrel{C F}{N_{j}^{i}}-\delta_{j} \stackrel{C F}{N_{k}^{i}}\right) \dot{\partial}_{i}=0 ;\left[\delta_{j}, \delta_{\bar{k}}\right]=\left(\delta_{\bar{k}} \stackrel{C F}{N}\right) \dot{\partial}_{i}^{i}-\left(\delta_{j}{ }^{C F} N_{\bar{i}}^{i}\right) \dot{\partial_{\bar{i}}} ;} \\
& {\left[\delta_{j}, \dot{\partial}_{k}\right]=\left(\stackrel{C F}{\partial_{k}}{ }_{j}^{i}\right) \dot{\partial}_{i} ;\left[\delta_{j}, \dot{\partial}_{\bar{k}}\right]=\left(\stackrel{C F}{\partial_{\bar{k}}}{ }_{j}^{i}\right) \dot{\partial}_{i} ;\left[\dot{\partial}_{j}, \dot{\partial}_{k}\right]=\left[\dot{\partial}_{j}, \dot{\partial}_{\bar{k}}\right]=0}
\end{aligned}
$$

and their conjugates.
In the sequel we will consider the adapted frames and adapted coframes with respect to the Chern-Finsler (c.n.c) and the Hermitian metric structure G on $T^{\prime} M$ given by the Sasaki lift of fundamental tensor $g_{i \bar{j}}$:

$$
\begin{equation*}
G=g_{i \bar{j}} d z^{i} \otimes d \bar{z}^{j}+g_{i \bar{j}} \delta \eta^{i} \otimes \delta \bar{\eta}^{j} \tag{7}
\end{equation*}
$$

 canonical linear connection $\left.\stackrel{c}{D} \Gamma=\stackrel{C F}{\left(N_{j}^{i}\right.}, L_{j k}^{i}, C_{j k}^{i}, L_{\bar{j} k}^{\stackrel{c}{i}}, C_{\bar{j} k}^{\stackrel{c}{i}}\right)$, where

$$
\begin{aligned}
C F & L_{j k}^{i} \\
L^{i} & =g^{\bar{m} i} \delta_{k} g_{j \bar{m}} ; C_{j k}^{i}=g^{\bar{m} i} \dot{\partial}_{k} g_{j \bar{m}} ; \\
L_{j k}^{i} & =\frac{1}{2} g^{\bar{m} i}\left(\delta_{k} g_{j \bar{m}}+\delta_{j} g_{k \bar{m}}\right) ; C_{j k}^{c}=\frac{1}{2} g^{\bar{m} i}\left(\dot{\partial}_{k} g_{j \bar{m}}+\dot{\partial}_{j} g_{k \bar{m}}\right) ; \\
L_{\bar{j} k}^{c} & =\frac{1}{2} g^{\bar{i} m}\left(\delta_{k} g_{m \bar{j}}-\delta_{m} g_{k \bar{j}}\right) ; C_{\bar{j} k}^{\bar{i}}=\frac{1}{2} g^{\bar{i} m}\left(\dot{\partial}_{k} g_{m \bar{j}}-\dot{\partial}_{m} g_{k \bar{j}}\right)
\end{aligned}
$$

for details (see [7] p.51, p.61). By homogenity conditions of complex Finsler metric F, we note that

$$
\begin{equation*}
\stackrel{C F}{L_{j k}^{i}}=\stackrel{C F}{\partial_{j}}{ }_{k}^{i} ; \stackrel{C F}{C_{j k}^{i}}=\stackrel{C F}{C_{k j}^{i}} \tag{8}
\end{equation*}
$$

We denote by ∇ the Levi-Civita connection associated to G, i.e. $\nabla G=0$ and the torsion $T_{\nabla}=0$. According to [7] p. 52 and [3] p.93, the local expression of
∇ is given by:

$$
\begin{aligned}
\nabla_{\delta_{k}} \delta_{j} & =L_{j k}^{i} \delta_{i} ; \nabla_{\delta_{k}} \dot{\partial}_{j}=B_{j k}^{i} \delta_{i}+{ }^{C F} L_{j k}^{i} \dot{\partial}_{i} ; \\
\nabla_{\delta_{k}} \delta_{\bar{j}} & =L_{k \bar{j}}^{i} \delta_{i}+D_{\bar{j} k}^{i} \dot{\partial}_{i}+L_{\bar{j} k}^{c} \delta_{\bar{i}}^{i}+E_{\bar{j} k}^{\bar{i}} \dot{\partial}_{\bar{i}} ; \nabla_{\delta_{k}} \dot{\partial}_{\bar{j}}=F_{\bar{j} k}^{i} \delta_{i} ; \\
\nabla_{\dot{\partial}_{k}} \delta_{j} & =B_{k j}^{i} \delta_{i} ; \nabla_{\dot{\partial}_{k}} \dot{\partial}_{j}=G_{j k}^{i} \delta_{i}+C_{j k}^{i} \dot{\partial}_{i} ; \nabla_{\dot{\partial}_{k}} \delta_{\bar{j}}=F_{k \bar{j}}^{\bar{i}} \delta_{\bar{i}}+H_{\bar{j} k}^{\bar{i}} \dot{\partial}_{\bar{i}}
\end{aligned}
$$

where

$$
\begin{aligned}
& B_{j k}^{i}=\frac{1}{2} g^{\overline{\bar{l}}}\left(g_{j \bar{h}} \delta_{k} N_{\bar{l}}^{C F}+\dot{\partial}_{j} g_{k \bar{l}}\right) ; D_{\bar{j} k}^{i}=\frac{1}{2} g^{\overline{\bar{i}}}\left(g_{h \bar{l}} \delta_{\bar{j}}{ }^{C F} N_{k}^{h}-\dot{\partial}_{\bar{l}} g_{k \bar{j}}\right) ; \\
& E_{\bar{j} k}^{\bar{i}}=-\frac{1}{2} g^{\bar{i} l}\left(g_{l \bar{h}} \delta_{k} N_{\overline{\bar{j}}}^{\overline{\bar{h}}}+\dot{\partial}_{l} g_{k \bar{j}}\right) ; F_{\bar{j} k}^{i}=-\frac{1}{2} g^{\overline{\bar{l}}}\left(g_{h \bar{j}} \delta_{\bar{l}} N_{k}^{h}-\dot{\partial}_{\bar{j}} g_{k \bar{l}}\right) ; \\
& G_{j k}^{i}=g^{\bar{l} i} g_{j \bar{h}} \dot{\partial_{k}} N_{\bar{l}}^{C F} ; ; H_{\bar{j} k}^{\bar{i}}=-\dot{\partial_{k}} N N_{\bar{j}}^{\bar{i}}
\end{aligned}
$$

and their conjugates.
We remark that the Levi-Civita connection ∇ is not compatible with the natural complex structure J on $T^{\prime} M$, defined by:

$$
\begin{equation*}
J\left(\delta_{k}\right)=i \delta_{k} ; J\left(\delta_{\bar{k}}\right)=-i \delta_{\bar{k}} ; J\left(\dot{\partial}_{k}\right)=i \dot{\partial}_{k} ; J\left(\dot{\partial}_{\bar{k}}\right)=-i \dot{\partial}_{\bar{k}} \tag{9}
\end{equation*}
$$

Imposing the condition that ∇ to be compatible with the complex structure J, namely:

$$
\begin{equation*}
\left(\nabla_{\xi_{1}} J\right) \xi_{2}=\nabla_{\xi_{1}}\left(J \xi_{2}\right)-J\left(\nabla_{\xi_{1}} \xi_{2}\right)=0 ; \forall \xi_{1}, \xi_{2} \in \Gamma\left(T_{C}\left(T^{\prime} M\right)\right) \tag{10}
\end{equation*}
$$

we get the conditions,

$$
\begin{equation*}
\delta_{i} g_{j \bar{k}}=\delta_{j} g_{i \bar{k}} ; g^{\bar{i} l} \dot{\partial}_{\bar{k}} g_{j \bar{i}}=\stackrel{C F}{\left(\delta_{\bar{k}}\left(N_{j}^{l}\right)\right.} \tag{11}
\end{equation*}
$$

and in this case we call the metric structure G-total Kähler.

2. The vertical Bott type complex connection

In the similar manner with the real case for foliations, (see [4], [9], [11]), for the complex vertical vector fields $V, V_{1}, V_{2} \in \Gamma\left(V_{C}\left(T^{\prime} M\right)\right)$ and a complex horizontal vector field $X \in \Gamma\left(H_{C}\left(T^{\prime} M\right)\right)$, we define on vector bundle $V_{C}\left(T^{\prime} M\right)$ a connection D^{v}, as follows:

$$
\begin{equation*}
D_{V_{1}}^{v} V_{2}=\left(v^{\prime}+v^{\prime \prime}\right) \nabla_{V_{1}} V_{2} ; D_{X}^{v} V=\left(v^{\prime}+v^{\prime \prime}\right)[X, V] \tag{12}
\end{equation*}
$$

where v^{\prime} and $v^{\prime \prime}$ are the complex vertical projectors, and ∇ is the Levi-Civita connection.

Definition 3 The connection D^{v} from (12) is called vertical Bott type complex connection.

The local expression of the connection D^{v} is given by,

$$
\begin{aligned}
& D_{\dot{\partial}_{k}}^{v} \dot{\partial}_{j}=\left(v^{\prime}+v^{\prime \prime}\right) \nabla_{\dot{\partial}_{k}} \dot{\partial}_{j}=C_{j k}^{i} \dot{\partial}_{i} ; D_{\delta_{k}}^{v} \dot{\partial}_{j}=\left(v^{\prime}+v^{\prime \prime}\right)\left[\delta_{k}, \dot{\partial}_{j}\right]=L_{j k}^{i} \dot{\partial}_{i} \\
& D_{\dot{\partial}_{k}}^{v} \dot{\partial}_{\bar{j}}=\left(v^{\prime}+v^{\prime \prime}\right) \nabla_{\dot{\partial}_{k}} \dot{\partial}_{\bar{j}}=0 ; D_{\delta_{k}}^{v} \dot{\partial}_{\bar{j}}=\left(v^{\prime}+v^{\prime \prime}\right)\left[\delta_{k}, \dot{\partial}_{\bar{j}}\right]=\left(\dot{\partial}_{\bar{j}}^{C F} N_{k}^{i}\right) \dot{\partial}_{i}
\end{aligned}
$$

and their conjugates, since $\overline{D_{\xi}^{v} V}=D_{\bar{\xi}}^{v} \bar{V}, \forall \xi \in \Gamma\left(T_{C}\left(T^{\prime} M\right)\right), V \in \Gamma\left(V_{C}\left(T^{\prime} M\right)\right)$.
Let $R^{D^{v}}$ and $R^{v \nabla}$ be the curvature tensors on $V_{C}\left(T^{\prime} M\right)$ induced by D^{v} and ∇, where $v=v^{\prime}+v^{\prime \prime}$. For the complex horizontal vector fields X, Y and the complex vertical vector fields U, V, W we have,

Proposition 3

(i) $R_{X, Y}^{D^{v}} V=-v \nabla_{V} v[X, Y]$
(ii) $R_{X, U}^{D^{v}} V=\left(\mathcal{L}_{X} v \nabla\right)_{U} V$
(iii) $R_{U, W}^{D^{v}} V=R_{U, W}^{v} V$
where \mathcal{L}_{X} denotes the Lie derivative.
Proof: (i) $R_{X, Y}^{D^{v}} V=D_{X}^{v} D_{Y}^{v} V-D_{Y}^{v} D_{X}^{v} V-D_{[X, Y]}^{v} V=v[X, v[Y, V]]-$

$$
\begin{gathered}
v[Y, v[X, V]]-v[h[X, Y], V]-v \nabla_{v[X, Y]} V=[X,[Y, V]]-[Y,[X, V]]- \\
v[[X, Y]-v[X, Y], V]-v \nabla_{v[X, Y]} V=[X,[Y, V]]-[Y,[X, V]]-[[X, Y], V]+
\end{gathered}
$$

$$
\begin{gathered}
{[v[X, Y], V]-v \nabla_{v[X, Y]} V=[v[X, Y], V]-v \nabla_{v[X, Y]} V . \text { From } T_{\nabla}=0 \text { we have, }} \\
{[v[X, Y], V]=v[v[X, Y], V]=v \nabla_{v[X, Y]} V-v \nabla_{V} v[X, Y] .}
\end{gathered}
$$

So,

$$
R_{X, Y}^{D^{v}} V=v \nabla_{v[X, Y]} V-v \nabla_{V} v[X, Y]-v \nabla_{v[X, Y]} V=-v \nabla_{V} v[X, Y]
$$

The relations (ii) and (iii) follows in a similar manner. Q.e.d
Remark 1 Proposition 2.1 shows that the curvature of the vertical Bott type connection D^{v}, is related only in terms of the induced Levi-Civita connection on $V_{C}\left(T^{\prime} M\right)$.

Taking all combination of X, Y, U, V, W in local frames $\left\{\delta_{k} ; \dot{\partial}_{k} ; \delta_{\bar{k}} ; \dot{\partial}_{\bar{k}}\right\}$ a direct calculus leads to the following nonzero curvature of the vertical Bott type complex connection D^{v} :

$$
\begin{aligned}
& v^{\prime} R_{\delta_{k}, \delta_{\bar{i}}}^{D^{v}} \dot{\partial}_{i}=\stackrel{C F}{\delta_{\bar{j}}\left(L_{i k}^{l}\right)} \dot{\partial}_{l}-\delta_{\bar{j}}\left(\stackrel{C F}{N_{k}^{m}}\right) \stackrel{C F}{C_{m i}^{l}} \dot{\partial}_{l}=\stackrel{C F}{R_{i, \bar{j} k}^{l}} \dot{\partial}_{l} \\
& v^{\prime \prime} R_{\delta_{k}, \delta_{\bar{i}}}^{D^{v}} \dot{\partial}_{i}=\dot{\partial}_{i} \delta_{k}\left(N_{\bar{j}}^{\bar{l}}\right), \dot{\partial}_{\bar{l}}=\widetilde{R_{i, \bar{j} k}^{\bar{l}}} \dot{\partial}_{\bar{l}} \\
& v^{\prime} R_{\delta_{k}, \dot{\partial}_{j}}^{D^{v}} \dot{\partial}_{\bar{i}}=-\dot{\partial}_{\bar{i}}\left(\stackrel{C F}{\left(L_{j k}^{l}\right)} \dot{\partial}_{l}-\dot{\partial}_{\bar{i}}\left(\stackrel{C F}{N_{k}^{m}}\right) \stackrel{C F}{C_{m j}^{l}} \dot{\partial}_{l}=\stackrel{C F}{Q} \stackrel{Q_{\bar{i}, j k}^{l}}{l} \dot{\partial}_{l}\right. \\
& v^{\prime} R_{\delta_{\bar{k}}, \dot{\partial}_{j}}^{D^{v}} \dot{\partial}_{i}=\stackrel{C F}{\delta_{\bar{k}}\left(C_{i j}^{l}\right)} \dot{\partial}_{l}=\stackrel{C F}{P_{i, j \bar{k}}^{l}} \dot{\partial}_{l} \\
& v^{\prime \prime} R_{\delta_{\bar{k}}, \dot{\partial}_{j}}^{D^{v}} \dot{\partial}_{i}=\stackrel{C F}{\dot{\partial}_{m}\left(N_{\bar{k}}^{\bar{l}}\right)} \stackrel{C F}{C_{i j}^{m}} \dot{\partial}_{\bar{l}}-\dot{\partial}_{j} \dot{\partial}_{i}\left(N N_{\bar{l}}^{C l}\right) \dot{\partial_{\bar{l}}}=\widetilde{P_{i, j \bar{l}}} \dot{\partial}_{\bar{l}} \\
& v^{\prime} R_{\dot{\partial}_{k}, \dot{\partial}_{\bar{j}}}^{D^{v}} \dot{\partial}_{i}=-\dot{\partial}_{\bar{j}}\left(\stackrel{C F}{C l}{ }_{i k}^{l}\right) \dot{\partial}_{l}=\stackrel{C F}{S_{i, \bar{j} k}^{l}} \dot{\partial}_{l}
\end{aligned}
$$

and their conjugates.
Remark 2 The curvatures of the vertical Bott type complex connection differs from the curvatures of the Chern-Finsler connection by two components, namely $\widetilde{R_{i, j k}^{\bar{l}}}$ and $\widetilde{P_{i, j \bar{l}}}$.

Proposition 4 If the complex Finsler metric is locally Minkowski and the Hermitian metric G is vertical Kahler, i.e. it satisfy the second condition of (11), then the vertical Bott type conection D^{v} is flat.

Proof: If the complex Finsler metric is locally Minkowski, namely $L=L(\eta)$ [2], then $g_{i \bar{j}}=g_{i \bar{j}}(\eta)$ and $\stackrel{C F}{N_{k}^{j}}=0$. Thus all curvatures of the vertical Bott type connection except $\stackrel{C F}{S_{i, \bar{j} k}^{l}}$ are vanish. Imposing the condition $g^{\bar{i} l} \dot{\partial}_{\bar{k}} g_{j \bar{i}}=0$ we $\operatorname{get} \stackrel{C F}{S_{i, \bar{j} k}^{l}}=0$. Q.e.d

3. Cohomology with vertical vector values

Let $\Omega^{p}\left(V_{C}\left(T^{\prime} M\right)\right)$ be the set of all V_{C}-vector valued differential p-forms on $T^{\prime} M$ and $\Omega\left(V_{C}\left(T^{\prime} M\right)\right)=\sum_{p=0}^{4 n} \Omega^{p}\left(V_{C}\left(T^{\prime} M\right)\right)$. We note that $\Omega^{0}\left(V_{C}\left(T^{\prime} M\right)\right)=$ $\Gamma\left(V_{C}\left(T^{\prime} M\right)\right)$ and for every $\phi \in \Omega^{p}\left(V_{C}\left(T^{\prime} M\right)\right)$ we have,

$$
\begin{equation*}
\phi\left(\xi_{1}, \ldots, \xi_{p}\right) \in \Gamma\left(V_{C}\left(T^{\prime} M\right)\right), \forall \xi_{1}, \ldots, \xi_{p} \in \Gamma\left(T_{C}\left(T^{\prime} M\right)\right) \tag{13}
\end{equation*}
$$

By analogy with the real case for foliations, we define the following exterior differential with respect to the complex connection D^{v} :

$$
\begin{equation*}
d_{D^{v}}: \Omega^{p}\left(V_{C}\left(T^{\prime} M\right)\right) \longrightarrow \Omega^{p+1}\left(V_{C}\left(T^{\prime} M\right)\right) \tag{14}
\end{equation*}
$$

where

$$
\begin{align*}
& d_{D^{v}} \phi\left(\xi_{0}, \xi_{1}, \ldots, \xi_{p}\right)=\sum_{j=0}^{p}(-1)^{j} D_{\xi_{j}}^{v}\left(\phi\left(\xi_{0}, \ldots, \widehat{\xi}_{j}, \ldots, \xi_{p}\right)\right)+ \\
& \quad+\sum_{0 \leq i<j \leq p}(-1)^{i+j} \phi\left(\left[\xi_{i}, \xi_{j}\right], \xi_{0}, \ldots, \widehat{\xi}_{i}, \ldots, \widehat{\xi}_{j}, \ldots, \xi_{p}\right) \tag{15}
\end{align*}
$$

Proposition 5

$$
d_{D^{v}}^{2} \phi\left(\xi_{0}, \xi_{1}, \xi_{2}\right)=\sum_{\text {cicl }} R_{\xi_{i}, \xi_{j}}^{D_{j}^{v}} \phi\left(\xi_{k}\right) \text { on } \Omega^{1}\left(V_{C}\left(T^{\prime} M\right)\right)
$$

Proof: We have $d_{D^{v}} \phi\left(\xi_{0}, \xi_{1}\right)=D_{\xi_{0}}^{v} \phi\left(\xi_{1}\right)-D_{\xi_{1}}^{v} \phi\left(\xi_{0}\right)-\phi\left(\left[\xi_{0}, \xi_{1}\right]\right)$ and directly we get $d_{D^{v}}^{2} \phi\left(\xi_{0}, \xi_{1}, \xi_{2}\right)=R_{\xi_{0}, \xi_{1}}^{D_{1}^{v}} \phi\left(\xi_{2}\right)+R_{\xi_{1}, \xi_{2}}^{D^{v}} \phi\left(\xi_{0}\right)+R_{\xi_{2}, \xi_{0}}^{D^{v}} \phi\left(\xi_{1}\right)$. Q.e.d

More general on $\Omega^{p}\left(V_{C}\left(T^{\prime} M\right)\right)$ we have,

$$
\begin{equation*}
d_{D^{v}}^{2} \phi\left(\xi_{0}, \xi_{1}, \ldots, \xi_{p+1}\right)=\sum_{c i c l} R_{\xi_{i}, \xi_{j}}^{D_{j}^{v}} \phi\left(\xi_{0}, \ldots, \widehat{\xi}_{i}, \ldots, \widehat{\xi}_{j}, \ldots, \xi_{p+1}\right) \tag{16}
\end{equation*}
$$

Thus we get a complex,

$$
\begin{equation*}
\Omega^{0}\left(V_{C}\left(T^{\prime} M\right)\right) \xrightarrow{d_{D^{v}}} \Omega^{1}\left(V_{C}\left(T^{\prime} M\right)\right) \xrightarrow{d_{D^{v}}} \ldots \xrightarrow{d_{D^{v}}} \Omega^{p}\left(V_{C}\left(T^{\prime} M\right)\right) \xrightarrow{d_{D^{v}}} \ldots \tag{17}
\end{equation*}
$$

From the above discussion we have,

Theorem 1 Let (M, F) be a complex Finsler manifold. If the vertical Bott type complex connection D^{v} is flat i.e., $R_{\xi_{1}, \xi_{2}}^{D^{v}}=0, \forall \xi_{1}, \xi_{2} \in \Gamma\left(T_{C}\left(T^{\prime} M\right)\right)$, then,

$$
\begin{equation*}
d_{D^{v}}^{2}=0 \tag{18}
\end{equation*}
$$

In this case $d_{D^{v}}$ determines a cohomology

$$
H^{*}\left(T^{\prime} M, V_{C}\left(T^{\prime} M\right)\right)=\sum_{p=0}^{4 n} H^{p}\left(T^{\prime} M, V_{C}\left(T^{\prime} M\right)\right)
$$

where

$$
H^{p}\left(T^{\prime} M, V_{C}\left(T^{\prime} M\right)\right)=\frac{\operatorname{Ker}\left\{d_{D^{v}}: \Omega^{p}\left(V_{C}\left(T^{\prime} M\right)\right) \rightarrow \Omega^{p+1}\left(V_{C}\left(T^{\prime} M\right)\right)\right\}}{\operatorname{Im}\left\{d_{D^{v}}: \Omega^{p-1}\left(V_{C}\left(T^{\prime} M\right)\right) \rightarrow \Omega^{p}\left(V_{C}\left(T^{\prime} M\right)\right)\right\}}
$$

In the sequel for every complex vector fields $\xi, \xi_{1}, \xi_{2} \in \Gamma\left(T_{C}\left(T^{\prime} M\right)\right)$ we define

$$
\begin{equation*}
\omega(\xi)=v \xi ; \Theta\left(\xi_{1}, \xi_{2}\right)=v\left[h \xi_{1}, h \xi_{2}\right] \tag{19}
\end{equation*}
$$

where $v=v^{\prime}+v^{\prime \prime}$ and $h=h^{\prime}+h^{\prime \prime}$. Then, $\omega \in \Omega^{1}\left(V_{C}\left(T^{\prime} M\right)\right)$ and $\Theta \in$ $\Omega^{2}\left(V_{C}\left(T^{\prime} M\right)\right)$.

We have,

Theorem 2

$$
\begin{equation*}
d_{D^{v}} \omega=-\Theta \tag{20}
\end{equation*}
$$

Proof: It sufficient to verify the relation (20) for every two complex horizontal and vertical vector fields. Let X, Y be horizontal vector fields and U, V be vertical vector fields. We have:
$d_{D^{v}} \omega(X, Y)=D_{X}^{v} \omega(Y)-D_{Y}^{v} \omega(X)-\omega([X, Y])=0-0-v[X, Y]=-\Theta(X, Y) ;$
$d_{D^{v}} \omega(X, V)=D_{X}^{v} \omega(V)-D_{V}^{v} \omega(X)-\omega([X, V])=D_{X}^{v} V-0-v[X, V]=$
$v[X, V]-v[X, V]=0=-v[h X, h V]=-\Theta(X, V) ;$
$d_{D^{v}} \omega(U, V)=D_{U}^{v} \omega(V)-D_{V}^{v} \omega(U)-\omega([U, V])=v \nabla_{U} V-v \nabla_{V} U-v[U, V]=$
$T_{\nabla}^{v v}=0=-v[h U, h V]=-\Theta(U, V)$. Q.e.d
Theorem 3 Let (M, F) be a complex Finsler manifold. Then $H_{C}\left(T^{\prime} M\right)$ is integrable if and only if $d_{D^{v}} \omega=0$.

Proof: If $H_{C}\left(T^{\prime} M\right)$ is integrable then, $v[X, Y]=0, \forall X, Y \in \Gamma\left(H_{C}\left(T^{\prime} M\right)\right)$ and the Theorem 3.2 leads to $\Theta=0$ and, so $d_{D^{v}} \omega=0$. Conversely, if $d_{D^{v}} \omega=0$ we obtain that $v[X, Y]=0, \forall X, Y \in \Gamma\left(H_{C}\left(T^{\prime} M\right)\right)$, so $H_{C}\left(T^{\prime} M\right)$ is integrable. Q.e.d

Proposition $6 d_{D^{v}} \Theta=0$ provided D^{v} is flat.
According to (8) and (9) we have,
Proposition 7 Let (M, F) be a complex Finsler manifold. Then,

$$
\left(d_{D^{v}} J\right)(U, V)=0, \forall U, V \in \Gamma\left(V_{C}\left(T^{\prime} M\right)\right)
$$

Finally, we give a characterization of strongly Kähler-Finsler manifolds. According to [2] the partial Bott connection is defined by,

$$
\begin{equation*}
\stackrel{B}{D}_{X} V=v^{\prime}[X, V], \forall X \in \Gamma\left(H^{\prime}\left(T^{\prime} M\right)\right), V \in \Gamma\left(V^{\prime}\left(T^{\prime} M\right)\right) \tag{21}
\end{equation*}
$$

Definition 4 (Cf. [1]) The complex Finsler manifold (M, F) is called strongly Kähler if $\begin{gathered}C F \\ L_{j k}^{i}= \\ =L_{k j}^{i}\end{gathered}$.
If we consider $\Omega^{p}\left(H^{\prime}\left(T^{\prime} M\right) ; V^{\prime}\left(T^{\prime} M\right)\right)$ the set of all horizontal p - differentials forms with vertical valued, then the exterior derivative associated to the partial Bott connection is given by

$$
d_{B}: \Omega^{p}\left(H^{\prime}\left(T^{\prime} M\right) ; V^{\prime}\left(T^{\prime} M\right)\right) \rightarrow \Omega^{p+1}\left(H^{\prime}\left(T^{\prime} M\right) ; V^{\prime}\left(T^{\prime} M\right)\right)
$$

where

$$
\left(d_{B} \phi\right)\left(X_{0}, \ldots, X_{p}\right)=\sum_{j=0}^{p}(-1)^{j} \stackrel{B}{D} X_{j} \phi\left(X_{0}, \ldots, \widehat{X}_{j}, \ldots, X_{p}\right)
$$

$\forall \phi \in \Omega^{p}\left(H^{\prime}\left(T^{\prime} M\right) ; V^{\prime}\left(T^{\prime} M\right)\right), \forall X_{0}, \ldots, X_{p} \in \Gamma\left(H^{\prime}\left(T^{\prime} M\right)\right)$.
Let S be the tangent structure [7] locally defined by,

$$
\begin{equation*}
S\left(\partial_{k}\right)=\dot{\partial}_{k}, S\left(\dot{\partial}_{k}\right)=0, S\left(\partial_{\bar{k}}\right)=\dot{\partial}_{\bar{k}}, S\left(\dot{\partial}_{\bar{k}}\right)=0 \tag{22}
\end{equation*}
$$

In [8] is proved that S is a global defined and integrable structure. We have $S\left(\delta_{k}\right)=\dot{\partial}_{k}$ and we can consider $\left.S\right|_{H^{\prime}\left(T^{\prime} M\right)} \in \Omega^{1}\left(H^{\prime}\left(T^{\prime} M\right) ; V^{\prime}\left(T^{\prime} M\right)\right)$. Then,

Proposition 8 The complex Finsler manifold (M, F) is strongly Kähler if and only if $\left(d_{B} S\right)(X, Y)=0, \forall X, Y \in \Gamma\left(H^{\prime}\left(T^{\prime} M\right)\right)$.

Proof: Follows by definitions of S and d_{B}. Q.e.d

References

[1] M., Abate, G., Patrizio Finsler metrics-A global approach, Lectures Notes in Math., 1591, Springer-Verlag, (1994).
[2] T. Aikou, Applications of Bott Connection to Finsler Geometry, Steps in Diff. Geom., Proc. of Coll. on Diff. Geom. Debrecen, (2000), p. 1-13.
[3] N. Aldea, Contributions to the study of holomorphic curvature of complex manifolds, (in romanian), Thesis, Univ. Transilvania of Braşov (2005).
[4] R.H. Escobales Jr., Integrability criteria and vector-bundle valued cohomology for foliations, Houston J. of Math., 29(2), (2003), p. 295-311.
[5] R. Miron, M. Anastasiei, The Geometry of Lagrange Spaces. Theory and Applications, Kluwer Acad. Publ. 59, (1994).
[6] R. Miron, I. Pop, Algebraic Topology, (in romanian), Ed. Acad. Romanian, (1974).
[7] G. Munteanu, Complex spaces in Finsler, Lagrange and Hamilton Geometries, Kluwer Acad. Publ., 141 FTPH, (2004).
[8] G. Munteanu, C. Ida, Affine structure on complex foliated manifolds, Anal. St. ale Univ. " Al. I. Cuza", Iaşi, 51, s.I. Mat., (2005), p. 147-154.
[9] P. Tondeur, Survey of Riemannian foliations, Proc. of the $24^{\text {th }}$ Nat. Conf. of the Geom. and Top., Timişoara, (1994), p. 145-251.
[10] I. Vaisman, Cohomology and differential forms, M. Dekker, Publ. House, (1973).
[11] I. Vaisman, Lagrange geometry on tangent manifolds, Int. J. of Math. and Math. Sci., 51, (2003), p. 3241-3266.

Author:

Cristian Ida
Department of Mathematics and Informatics University Transilvania of Braşov
Address: Braşov 500091, Str. Iuliu Maniu 50
email:cristian.ida@unitbv.ro

