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Abstract. Extending the notion of probability of commuting pairs in [2,
6, 7, 8], it is introduced that of generalized commutativity degree. Its influence
on the group structure is investigated.
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1. The definition

All the groups which we consider are finite. The notion of commutativity
degree, or probability of commuting pairs, was introduced in [2, 7] and studied
by many authors in different contexts. See [3, 4, 5, 6, 8]. Focusing on the role
of the normalizers, instead of that of the centralizers, we define the generalized
commutativity degree of a group G as the ratio

gd(G) =
|{(g,X) ∈ G× L(G) | Xg = X}|

|G||L(G)|
, (1)

where L(G) is the subgroup lattice of G. Recall that N(G) =
⋂

X∈L(G)

NG(X) is

the norm of G, studied in [1] and [9, Chapters 1.4, 1.5]. It is useful to consider
Eq. (1) in the following form

|G||L(G)|gd(G) =
∑

X∈L(G)

|NG(X)|

=
∑

X∈L(N(G))

|NG(X)|+
∑

X∈L(G)−L(N(G))

|NG(X)| (2)
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Of course, gd(G) ∈ (0, 1] and it gives a probability structure on G × L(G).
Note that gd(G) = 1 if and only if the sum of all |NG(X)| for X ∈ L(G) is
equal to |G||L(G)|. By default, a hamiltonian group G has gd(G) = 1 and their
structure is well–known by [9, Theorem 2.3.12]. Then we will avoid the study
of these groups from our description. Roughly speaking, we will avoid from
our description the direct products of abelian groups and quaternion groups of
order 8. On another hand, we will investigate the role of Eq. (1) and (1) with
respect to structural properties of G and will find some bounds for gd(G).

2. General properties

A concrete example will help us to visualize Eq. (1) and (1).

Example. The symmetric group S3 has L(S3) = {{1}, S3, A3, H,K, L}, where
A3 = 〈(123)〉 = 〈a〉, H = 〈(12)〉 = 〈h〉, K = 〈(13)〉 = 〈k〉, L = 〈(23)〉 = 〈l〉.
We may easily check that

|{(g,X) ∈ S3 × L(S3) | Xg = X}|

= |{(1, A3), (a, A3), (a
−1, A3), (h,A3), (k,A3), (l, A3),

(1, {1}), (a, {1}), (a−1, {1}), (h, {1}), (k, {1}), (l, {1}), (1, S3), (a, S3), (a
−1, S3)

(h, S3), (k, S3), (l, S3), (1, H), (1, K), (1, L), (h,H), (k,K), (l, L)}| = 24

so that gd(S3) = 24
36

= 2
3
. S3 is not hamiltonian and Z(S3) = N(S3) = {1}.

See [9,Theorem 1.4.3]. On the other hand, we have

6 · 6 gd(S3) = 1 · 6 +
∑

X∈L(S3)−L(N(S3))

|NS3(X)| = 1 · 6+

|NS3(H)|+|NS3(K)|+|NS3(L)|+|NS3(A3)|+|NS3(S3)| = 1·6+(2+2+2+6+6). �

[3, Theorems 2.5, 3.3] and [8, Lemma 1.4] show that the commutativity de-
gree is monotone. This is a mensural property which is useful in [6, Theorems
8,9,12]. For gd(G) we have something of similar.

Proposition 2.1. Let G be a group, H ∈ L(G) and N be a normal
subgroup of G. Then
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(i) gd(H) ≤ |G : H|gd(G) and gd(G) ≤ |G : H|gd(H). The equality holds if
and only if G = HNG(X), for each X ∈ L(G).

(ii) gd(G) ≤ gd(G/N)gd(N). The equality holds if and only if NG/N(X/N) =
NG(X)/N , for each X ∈ L(G) containing N .

Proof. (i). NH(X) lies in NG(X) for every X ∈ L(G) and so gd(H) ≤
gd(G). A fortiori, gd(H) ≤ |G : H| gd(G). The first inequality follows.

Note that |NG(X) : NH(X)| ≤ |G : H|, then |NG(X)| ≤ |G : H||NH(X)|.
Therefore,∑

X∈L(G)

|NG(X)| ≤ |G : H|
∑

X∈L(G)

|NH(X)| = |G : H|
∑

X∈L(G)

|NG∩H(X)| =

Note that X is contained in NG∩H(X) and so in H. Then we may substitute
X with a variable Y running in L(H). But, |NG∩H(Y )| ≤ |NG(Y )|. Then

= |G : H|
∑

Y ∈L(H)

|NG∩H(Y )| ≤ |G : H|
∑

Y ∈L(H)

|NG(Y )|

and again |NG(Y )| ≤ |G : H||NH(Y )| gives

≤ |G : H|
(
|G : H|

∑
Y ∈L(H)

|NH(Y )|
)

= |G : H|2
∑

Y ∈L(H)

|NH(Y )|

from which the second inequality follows. Note that the equality follows if and
only if G = HNG(X).

(ii). Note that NG(X)/NN(X) ' NG(X)N/N ≤ NG/N(X/N) with equality
if and only if NG/N(X/N) = NG(X)N . Then∑
X∈L(G)

|NG(X)| =
∑

X∈L(G)

|NG(X)N/N ||NN(X)| ≤
∑

X∈L(G)

|NG/N(X/N)||NN(X)|

a substitution argument as in (i) above allows us to write

=
∑

(X,Y )∈L(G)×L(N)

|NG/N(X/N)| |NN(Y )| =
∑

X∈L(G)

( ∑
Y ∈L(N)

|NG/N(X/N)||NN(Y )|
)

=
∑

X∈L(G)

|NG/N(X/N)|
∑

Y ∈L(N)

|NN(Y )| = gd(G/N) gd(N)
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It is clear when the equality holds. �

Note that Proposition 2.1 is obviously satisfied in case of hamiltonian
groups and in particular of abelian groups. This is true also for the next
three results.

Corollary 2.2. Let G be a group. gd(G) ≤
∏

S gd(S), where S runs
through the composition factors of G. Repetitions are allowed.

Proof. This follows from repeated applications of Proposition 2.1 (ii). �

Corollary 2.3. Let G and H be two groups. Then gd(G × H) =
gd(G) gd(H).

Proof. This follows from Proposition 2.1 (ii). But, we give also a direct
proof of this fact for showing that gd(G) is multiplicative. We have

gd(G×H) = 1
|G×H||L(G×H)|

∑
(X×Y )∈L(G)×L(H)

|NG×H(X × Y )|

= 1
|G×H||L(G×H)|

∑
(X×Y )∈L(G)×L(H)

|NG(X)×NH(Y )|

= 1
|G||H||L(G)||L(H)|

∑
(X×Y )∈L(G)×L(H)

|NG(X)||NH(Y )|

= 1
|G||L(G)|

∑
X∈L(G)

(
1

|H||L(H)|
∑

Y ∈L(H)

|NH(Y )|
)
|NG(X)|

= 1
|G||L(G)|

∑
X∈L(G)

(
gd(H)

)
|NG(X)|

= gd(H) 1
|G||L(G)|

∑
X∈L(G)

|NG(X)| = gd(H)gd(G). �

The next result generalizes the situation for S3, shown in Example.

Proposition 2.4. Assume that G is a non-hamiltonian group of order pq,
where p < q are primes. Then gd(G) = 4

q+3
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Proof. From [9, p.26], except for {1} and G, L(G) has only q + 1 elements.
Then |L(G)| = q + 3. On another hand, Z(G) = {1}, then N(G) = {1} by [9,
Theorem 1.4.3]. In particular, |L(N(G))| = 1. The Sylow’s Theorem shows
there are q subgroups X of order p and only one subgroup K of order q. It is
easy to check that NG(X) = X and NG(K) = G. Then Eq. (2) becomes

pq(q + 3)gd(G) = pq +
∑

X∈L(G)−{1}

|NG(X)| = pq + (q|X|+ |G|+ |G|) = 4pq

and so gd(G) = 4
q+3

. �

From [9, pp. 26–29], or using GAP, it is easy to check that |L(D8)| = 10,
|L(D16)| = 19 and |L(Q16)| = 11. This intuition, in case of D2n and Q2n for
≥ 1, can be formalized, noting that they are extra-special 2-groups. Then for
n ≥ 2

|L(D2n)| = 2 + (n− 1) +
n−1∑
i=1

2i, |L(Q2n)| = 2 + n +
n−1∑
i=1

2i. (3)

Then, if p is the smallest prime dividing |G| and e ∈ {0, 1}, the assumption

|L(G)| = p + n− e +
n−1∑
i=1

pi (4)

is meaningful. For instance, (p, n, e) = (2, 2, 1) gives |L(D8)|.

Lemma 2.5. If G is a non-hamiltonian group satisfying Eq. (4) and
|N(G)| = p, then

gd(G) ≤ pn−1 + pn−2 + . . . + p3 + p2 + 4p + n− e− 2

pn + pn−1 + . . . + p3 + 2p2 + (n− e + 1)p
.

Proof. Note that |NG(X)| ≤ |G|
p

for every X ∈ L(G). Of course, |L(N(G))| =
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2. Then Eq. (2) becomes

|G|
(
p + n− e +

∑n−1
i=1 pi

)
gd(G) = 2|G|+

∑
X∈L(G)−L(N(G))

|NG(X)|

≤ 2|G|+
(
|L(G)− L(N(G))|

)
|G|
p

= 2|G|+ |G|
p

(|L(G)| − 2)

= 2|G|+ |G|
p

((
p + n− e +

∑n−1
i=1 pi

)
− 2

)
= |G|3p+n−e−2+

∑n−1
i=1 pi

p
.

This gives gd(G) ≤ 3p+n−e−2+
∑n−1

i=1 pi

p

(
p+n−e+

∑n−1
i=1 pi

) , and the result follows. �

No we will show the main result of the paper. From bounds on gd(G) we
may deduce structural information on N(G). This fact illustrates in the case
of gd(G) some known circumstances as [8, Theorems 3.1, 3.3, 4.3, 5.1], [3,
Theorems 3.10, 5.5], [4, Theorem B], [5, Theorems A, B].

Theorem 2.6. Let G be a non-hamiltonian p-group satisfying Eq. (4). If
1 > gd(G) ≥ 4

p+3
, then N(G) is non-cyclic.

Proof. Assume N(G) = G. Eq. (2) becomes |G||L(G)|gd(G) = |G||L(G)|.
This case cannot hold, since gd(G) < 1. Then N(G) 6= G. Assume N(G)
cyclic. Since G is p-group, {1} 6= Z(G) ≤ N(G). See [1] or [9, Theorem 1.4.2].
Then |N(G)| = p and Lemma 2.5 implies

4

p + 3
≤ gd(G) ≤ pn−1 + pn−2 + . . . + p3 + p2 + 4p + n− e− 2

pn + pn−1 + . . . + p3 + 2p2 + (n− e + 1)p
,

that is,

f(p) = 4pn + 4pn−1 + . . . + 4p3 + 8p2 + 4(n− e + 1)p ≤ gd(G)

≤ pn + 4pn−1 + . . . + 2p3 + 6p2 + 3(n− e + 1)p = g(p).

But each coefficient of the polynomial f(p) is greater than each coefficient of
the polynomial g(p), then we must have f(p) > g(p). This is a contradiction.
Then |N(G)| 6= p. We deduce that N(G) cannot be cyclic. �

Remark 2.7. From [1, Theorems 1, 2] we know that in a p-group G either
the group N(G)/Z(G), or [N(G), G], is cyclic. This shows how N(G) cannot
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be big. Theorem 2.6 shows in a certain sense how N(G) cannot be small. �

Remark 2.8. Looking at the methods in [4, 5, 7], we believe that most
of the results in the present paper can be adapted in the infinite case, at least
when we consider the compact groups. To the best of our knowledge, this is
still an open problem. Indeed, no literature is known on this point. �
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